POLITEKNIK DERGISi

JOURNAL of POLYTECHNIC

On a Study of the Quaternionic Lorentzian curve

Quaternionik Lorentz eğriler üzerine bir çalıșma

Yazar(lar) (Author(s)): Müge KARADAĞ ${ }^{1}$, Ali İhsan SiVRiDAĞ ${ }^{2}$

ORCID ${ }^{1}$: 0000-0002-5722-5441
ORCID²: 0000-0002-5596-9893

Bu makaleye su sekilde atıfta bulunabilirsiniz(To cite to this article): Karadağ M. ve Sivridağ A. İ., "Quaternionik Lorentz eğriler üzerine bir çalıșma", Politeknik Dergisi, 21(4): 937-940, (2018).

Quaternionik Lorentz Eğriler Üzerine Bir Çalışma

Araştırma Makalesi / Research Article
Müge KARDAĞ* ${ }^{*}$ Ali İhsan SİVRİDAĞ
Fen Edebiyat Fakültesi, Matematik Bölümü, İnönü Üniversitesi, Türkiye
(Geliş/Received : 02.09.2017; Kabul/Accepted : 24.10.2017)

ÖZ

Bu çalısmada öncelikle üç boyutlu Lorentz Uzayda $\mathrm{L}_{\mathrm{Q}}^{3}$ kuaterniyon ve pseudo-kuaterniyonlar gözönüne alınarak bir uzaykuaterniyonik eğri için Serret-Frenet Formülleri elde edildi. Daha sonra bunlar kullanılarak bir Kuaterniyonik Lorentz Eğrisi $\mathrm{L}_{\mathrm{Q}}^{4}$ için Serret-Frenet Formülleri yeniden türetilmiştir.
Anahtar Kelimeler: Regle yüzeyler, Lorentz uzayı, Minkowski uzayı, distribusyon parametresi, Laplacian ve D'Alembert operatörü.

On a Study of the Quaternionic Lorentzian Curve

Abstract

In this study, Serret-Frenet Formulas for a space-quaternionic curve were obtained by considering quaternions and pseudoquaternions in three-dimensional Lorentz Space L_{Q}^{3}. The Serret-Frenet Formulas for a Quaternionic Lorentz Curve $\mathrm{L}_{\mathrm{Q}}^{4}$ were then re-derived using them.

Keywords: Ruled surfaces, lightlike curves, lightlike surfaces, Minkowski space, distribution parameter, Laplacian and D'Alembertian operator.

1. INTRODUCTION

First of all, some basic definitions and concepts related to the algebra of Lorentzian curve are given. Hence, using this relations, the Serret-Frenet vectors of a Lorentzian curve is rederived. Moreover, some relationships between the Euclidean curve and the Lorentzian curve are obtained.
Definition 1.1 Let $\forall x=\sum_{A=1}^{4} x_{A} \vec{e}_{A}, y=\sum_{A=1}^{4} y_{A} \vec{e}_{A} \in$ V, be any two element of V then, Lie Operation is defined as follows
$[\mathrm{x}, \mathrm{y}]=\sum\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}} \mathrm{y}_{\mathrm{i}}\right) \overrightarrow{\mathrm{e}}_{\mathrm{k}}$
where, (i, j, k) is the circular permutation of $(1,2,3)$ [1].
Definition 1.2 Let S and T be defined as;
$S x=\sum_{i=1}^{3} \mathrm{x}_{\mathrm{i}} \overrightarrow{\mathrm{e}}_{\mathrm{i}}, \quad \mathrm{Tx}=\mathrm{x}_{4} \overrightarrow{\mathrm{e}}_{4}$
for $\quad \forall x=\sum_{A=1}^{4} \mathrm{X}_{\mathrm{A}} \overrightarrow{\mathrm{e}}_{\mathrm{A}} \in \mathrm{V}$

It is clear that $S T=T S=0$ and $S+T=I \quad[1]$.
Definition 1.3 Let $\alpha: V \rightarrow V$ be defined as
$\alpha=-S+T$
a linear transformation, for $\forall x \in V$,

[^0]\[

$$
\begin{equation*}
\alpha \mathrm{x}=-\sum_{\mathrm{i}=1}^{3} \mathrm{x}_{\mathrm{i}} \overrightarrow{\mathrm{e}}_{\mathrm{i}}+\mathrm{x}_{4} \overrightarrow{\mathrm{e}}_{4}=-\mathrm{Sx}+\mathrm{Tx} . \tag{3}
\end{equation*}
$$

\]

Here if $\alpha^{2}=I$ then α is called involutory linear isomorphism [1]. S and T, defined as in (2) are called spatial and temporal projections on V, respectively. α involutory isomorphism which given by (3) is called Hamilton Conjugation on V [1].

Definition 1.4 The two bilinear forms on V, are defined as; for $\forall x, y \in V$ then
$g(x, y)=\sum_{i=1}^{3} x_{i} y_{i}-x_{4} y_{4}, h(x, y)=\sum_{A=1}^{4} x_{A} y_{A}$.
In this definition; g and h are non-degenere, real, and symmetric bilinear forms. Furthermore; S and T are defined as in (2) with (3) and they are self-adjoint with respect to bilinear forms defined as in (4).

That is, for each $x, y \in V$,

$$
\begin{aligned}
& g(S x, y)=g(x, S y)=h(x, S y)=h(S x, y) \\
& g(T x, y)=g(x, T y)=-h(x, T y)=-h(T x, y) \\
& g(\alpha x, y)=g(x, \alpha y)=-h(x, y) \\
& \text { [3]. }
\end{aligned}
$$

Definition 1.5 Let be any symmetric bilinear form on V.If, ' \circ ' is a binary operation than define $\quad \forall x, y \in$ V,

$$
\begin{equation*}
x \circ y=[x, y]+x_{4} S y+y_{4} S x-b(x, y) \vec{e}_{4} . \tag{8}
\end{equation*}
$$

In this condition, (V, \circ) is a real algebra (In generally, it is non-associative and non-commutative). For this real algebra, if $b=h$ then the quaternion is called pseudo-
quaternionic algebra, if $b=g$ then the quaternion is called real-quaternionic algebra on V [1].
In the quaternionic condition; binary operation is denote - ' and the pseudo-quaternionic condition is stand for ' * '. Let us consider any $x \in V$, thus $N(x)$ is defined as $x \circ \alpha x \in V$. It is clear that for each $x, y \in V$,
$N(x)=-b(x, \alpha x) \vec{e}_{4}$.
Again, it is clearly seen that,
$N(x+y)-N(x)-N(y)=x \circ \alpha y+y \circ \alpha x=$
$-\{b(x, \alpha y)+b(y, \alpha x)\} \vec{e}_{4}$.
Since α is respect to both g and h self-adjoint then; we have there exist two following equations
$(x \cdot \alpha y+y \cdot \alpha x)=-2 g(x, \alpha y) \vec{e}_{4}=2 h(x, y) \vec{e}_{4}$
(quaternionic condition)

$$
\begin{gathered}
(x * \alpha y+y * \alpha x)=-2 h(x, \alpha y) e_{\vec{~}}=4 \\
=2 g(x, y) e^{\vec{~}} 4
\end{gathered}
$$

(pseudo - qaternionic condition) [2].
Definition 1.6 Let $x \in V$. The norm of $x, N(x)$ is defined as (9). In the quaternionic condition, $N(x)$ is defined as $h(x, x) \vec{e}_{4}$. If the another pseudo-quaternionic condition then $N(x)$ is defined as $g(x, x) \vec{e}_{4}$. Hence; $N(x)$, are used to be, is equal to Euclidean norm $N(x)=$ $\|x\|^{2} \vec{e}_{4}$. In the pseudo-quaternionic condition for each $x \in V$, then x is called
$g(x, x)>0$ then space - like
$g(x, x)=0$ then null
$g(x, x)$ < 0 then time - like
[2].
Definition 1.7 A quaternion x is called a unit quaternion if $\|x\|_{L}=1$ then, in addition a pseudo quaternion x is unitory whenever $N(x)$ is either $+\vec{e}_{4}$ or $-\vec{e}_{4} \quad[4]$.

Definition 1.8 If two quaternions x and y (or pseudoquats) are satisfied $x \cdot \alpha y+y \cdot \alpha x=0,(x * \alpha y+y *$ $\alpha x=0)$ then they are called ortogonality. Another equvalent condition for ortogonally is
$h(x, y)=0$ or $g(x, y)=0$.
Now we define the relationship between quaternionic and pseudo-quaternionic multiplications: Let x and y be two elements of V. By making use of findings (5) and (8) for $x * y-x \cdot y$, we obtain
$x * y-x \cdot y \equiv\{g(x, y)-h(x, y)\} \vec{e}_{4}$.
As a result of equation (13), we have;
$x * y \equiv x \cdot y-2 x_{4} y_{4} \vec{e}_{4}$
[1].
In this study L_{Q}^{4} denotes the 4-dimensional pseudoquaternionic Lorentzian space.

Definition 1.9 Let $M \subset L_{Q}^{4}$ be a curve which has $s-$ arc parameter at Lorentzian space. If the velocity vector of M is \dot{x} then
$g(\dot{x}, \dot{x}) \prec 0$ then $x(s)$ is called time-like curve
$g(\dot{x}, \dot{x}) \succ 0$ then $x(s)$ is called space-like curve
$g(\dot{x}, \dot{x})=0$ then $x(s)$ is called null curve
[4].
Definition 1.10 Let $M \subset L_{Q}^{4}$ be a curve. If the SerretFrenet frame field is $\left\{V_{1}(s), V_{2}(s), V_{3}(s), V_{4}(s)\right\}$ then the k_{i} function which is defined as

$$
\begin{equation*}
k_{i}(s): I \rightarrow I R \quad, s \rightarrow k_{i}(s)=g\left(\left(V_{i}\right)^{\prime}(s), V_{i+1}(s)\right) \tag{15}
\end{equation*}
$$

is called, $i-t h$ curvature function of M curve and, $k_{i}(s), 1 \leq i \leq 3$ real number is called $i-t h$ curvature of this curve at the point $M(s)$ [4].
Now we study on pseudo-quaternionic Lorentzian Space with the use of these relations.

2. MATERIAL and METHOD

2. 1. The Serret- Frenet formulae of the Pseudo space Quaternionic Lorentzian curve on L_{Q}^{3}

Let us show 3-dimensional pseudo-quaternionic Lorentzian space with L_{Q}^{3}. Let M be a pseudo-space quaternionic time-like curve.
Let \tilde{g} and L_{Q}^{3} be shown Lorentzian binary operation as, for $\forall x, y \in L_{Q}^{3}$
$\tilde{g}(x, y)=\sum_{i=1}^{2} x_{i} y_{i}-x_{3} y_{3}$
then, ' \circ ' binary operation in L_{Q}^{4} is defined as
$x \circ y=[x, y]+x_{4} S y+y_{4} S x-b(x, y) \vec{e}_{4}$.
If we review the last equation for L_{Q}^{3}; $b=\tilde{g}$ and if we consider ${ }^{`} *^{\prime}$ instead of ` \circ ' binary operation, we obtain
$x * y=[x, y]-\tilde{g}(x, y) \vec{e}_{4}$.
Let $X: I \rightarrow L_{Q}^{3}$ be a time like space-quaternionic curve. Hence; $\dot{X}=t$ then, $N(t)=-1$. So, $N(t)$ be defined as $N(t)=\tilde{g}(t, t)=t * \alpha t$.
If we derive this equation with respect to s; we obtain
$\dot{t} * \alpha t+t * \alpha \dot{t}=0$.
As a result of this;
\mathfrak{t} is \tilde{g}-orthogonal to t . That is, $\tilde{\mathrm{g}}(\mathrm{t}, \mathrm{t})=0$.
$\dot{t} * \alpha$
t is a time-like quaternion.
Hence, we define n_{1} space-quaternion and k scalar function as they satisfy the following conditions when \dot{t} is a pseudo-quaternion:
$\dot{\mathrm{t}}=\mathrm{k} \mathrm{n} \mathrm{n}_{1}, \mathrm{k}=\mathrm{N}(\mathrm{t})$.
n_{1} is \tilde{g}-orthogonal to t from (i) there is a n_{2} spacequaternion which is satisfy
$\mathrm{t} * \mathrm{n}_{1}=\mathrm{n}_{2}=-\mathrm{n}_{1} * \mathrm{t}$.
Here, we can write $t * n_{2}=-n_{1}=-n_{2} * t$ and $n_{2} *$ $n_{1}=-t=-n_{1} * n_{2}$. Hence, t, n_{1}, n_{2} are mutually $\tilde{g}-$ orthogonal unit pseudo space-quaternion in L_{Q}^{3}.

We have derived from (19) and obtained;
$\dot{\mathrm{n}}_{2}=\left(\mathrm{t} * \mathrm{n}_{1}\right)^{\prime}, \quad \dot{\mathrm{n}}_{2}=\mathrm{t} *\left(-\mathrm{kt}+\dot{\mathrm{n}}_{1}\right)$
Thus; $\dot{n}_{1}-k t$ is \tilde{g}-orthogonal to \dot{t} and n_{2}.
$n_{1}=\frac{\ddot{X}}{N(\ddot{X})}$ is unit space-quaternion and
$\dot{n}_{1} \in \operatorname{Sp}\left\{t, n_{1}, n_{2}\right\}$.
As a result of this, we can write
$\dot{\mathrm{n}}_{1}=\lambda_{1} \mathrm{t}+\lambda_{2} \mathrm{n}_{1}+\lambda_{3} \mathrm{n}_{2}$
Hence; $\left\|\dot{n}_{1}\right\|$ is
$\tilde{\mathrm{g}}\left(\dot{\mathrm{n}}_{1}, \dot{\mathrm{n}}_{1}\right)=\lambda_{1} \tilde{\mathrm{~g}}\left(\mathrm{t}, \dot{\mathrm{n}}_{1}\right)+\lambda_{2} \tilde{\mathrm{~g}}\left(\mathrm{n}_{1}, \dot{\mathrm{n}}_{1}\right)+\lambda_{3} \tilde{\mathrm{~g}}\left(\mathrm{n}_{2}, \dot{\mathrm{n}}_{1}\right)$, $\tilde{\mathrm{g}}(\mathrm{t}, \mathrm{t})=-1$.

Namely, X is a time-like pseudo-space quaternionic curve. In addition, in a similar way

$$
\begin{aligned}
\varepsilon_{0} \lambda_{1}=\tilde{\mathrm{g}}\left(\dot{\mathrm{n}}_{1}, \mathrm{t}\right)= & -\tilde{\mathrm{g}}\left(\dot{\mathrm{t}}, \mathrm{n}_{1}\right)=-\mathrm{k} \varepsilon_{0} \lambda_{1}=-\mathrm{k}, \\
& \frac{1}{\varepsilon_{0}}=\varepsilon_{0}
\end{aligned}
$$

$\lambda_{1}=-\varepsilon_{0} k$ and t is a time like then
$\varepsilon_{0}=-1$. Because of; it obtained $\lambda_{1}=k$.
In addition, $\lambda_{2}=\tilde{g}\left(\dot{n}_{1}, n_{1}\right)=0$ and
$\lambda_{3}=\tilde{\mathrm{g}}\left(\dot{\mathrm{n}}_{1}, \mathrm{n}_{2}\right)=\varepsilon_{0} \mathrm{r}$, hence $\tilde{\mathrm{g}}$ is $\tilde{\mathrm{g}}\left(\mathrm{n}_{1}, \mathrm{n}_{1}\right)=1$. Namely, if n_{1} is space-like then $\varepsilon_{0}=1$ and $\lambda_{3}=r$. So we obtain
$\dot{\mathrm{n}}_{1}=\mathrm{kt}+\mathrm{rn}_{2}$.
By substituting (5) in (6), we find
$\dot{\mathrm{n}}_{2}=\mathrm{t} *\left(-\mathrm{kt}+\dot{\mathrm{n}}_{1}\right)$
$\dot{\mathrm{n}}_{2}=-\mathrm{rn}_{1}$
(19), (21) and (22) equations are called Serret-Frenet Formulae of a curve which is time-like pseudo spacequaternionic curve in L_{Q}^{3}. $\left(t, n_{1}, n_{2}, k, r\right)$ is called FrenetApparatus of this curve.

The matrix form for this Serret-Frenet Apparatus of this curve is given by

$$
\left[\begin{array}{l}
\dot{t} \tag{23}\\
\dot{n}_{1} \\
\dot{n}_{2}
\end{array}\right]=\left[\begin{array}{lll}
0 & k & 0 \\
k & 0 & r \\
0 & -r & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n_{1} \\
n_{2}
\end{array}\right]
$$

2.2. The Serret- Frenet formulae of PseudoQuaternionic Lorentzian curve on $L_{\mathbf{Q}}^{4}$

Now, by making use of the Serret-Frenet formulae of a pseudo space-quaternionic Lorentzian curve at L_{Q}^{3}. We have rederived this formulae for one pseudo-quaternionic curve on L_{Q}^{4} : let $\tilde{X}=\sum_{A=1}^{4} q_{A}(s) \vec{e}_{A}$ be a time-like curve. The pseudo-quaternionic Lorentzian multiplication is shown by g. We have
$\dot{T}=K N_{1}, \quad K=N(\dot{T}), \quad N(T)=-1$,
$N\left(N_{1}\right)=-1$
If we derive $N(T)=-1$, then we obtain
$g(\dot{T}, T)=0$. Here by making use of (24) we have
$N_{1} * \alpha T+T * \alpha N_{1}=0$.
For a result of them,
N_{1} is g-orthogonal to T .
$\mathrm{t}=\mathrm{N}_{1} * \alpha \mathrm{~T}$ is a space-quaternion.
Here, T and N_{1} have unit then t has unit length.
From $t=N_{1} * \alpha T$ then, the vector N_{1} can choosen as equal to $t * T$ along the curve. Namely this can be written as
$N_{1}=t * T$.
If we derive equation (25) and and use Eqs. (19), (24) and (25), we obtain,
$\dot{N}_{1}=\dot{t} * T+t * \dot{T}$
$\dot{N}_{1}=K T+k N_{2}$
Here N_{2} is
$N_{2}=n_{1} * T$
The characterization of N_{2} is given as follows:
N_{2} is unit.
T, N_{1} and N_{2} are mutually g-orthogonal.
Now, in the derivation of $N_{2}=n_{1} * T$ by making use of (21), (23) and (24) we have the following result;
$\dot{N}_{2}=\dot{n}_{1} * T+n_{1} * \dot{T}$
$\dot{N}_{2}=k N_{1}+(r-K) N_{3}$
Here, N_{3} is taken $N_{3}=n_{2} * T$. According to this condition; the characterization of N_{3} is given as follows: The norm of N_{3} is $N\left(N_{3}\right)=1$.
T, N_{1}, N_{2} and N_{3} are mutually g-orthogonal.
As a result of these, the derivation of N_{3}, by making use of (2.0), (24) and (25) we obtain,
$\dot{N}_{3}=\dot{n}_{2} * T+n_{2} * \dot{T} \dot{N}_{3}=-(r-K) N_{2}$
The equations of (24), (26), (28) and (29) are called The Serret-Frenet Formulae of \tilde{X} time-like pseudoquaternionic Lorentzian curve at L_{Q}^{3}. Thus, $\left(T, N_{1}, N_{2}, N_{3}, K, k, r-K\right)$ is called Serret-Frenet Apparatus of this Lorentzian curve.

The matrix form of this Serret-Frenet Apparatus for this Lorentzian curve is given by
$\left[\begin{array}{l}\dot{T} \\ \dot{N}_{1} \\ \dot{N}_{2} \\ \dot{N}_{3}\end{array}\right]=\left[\begin{array}{llll}0 & K & 0 & 0 \\ K & 0 & k & 0 \\ 0 & k & 0 & r-K \\ 0 & 0 & -(r-K) & 0\end{array}\right]\left[\begin{array}{l}T \\ N_{1} \\ N_{2} \\ N_{3}\end{array}\right]$
[4].

3. CONCLUSIONS

Lorentzian curves have been studied by many mathematicians, but a different study has been done with the terminology of quaternions for a quaternionic Lorentzian curve. Thus the Serret-Frenet formulas of space quaternionic curves are re-derived.

REFERENCES

1. Bharathi K. and M. Nagaraj, "Geometry of Quaternionic and Pseudo-Quaternionic Multiplications", Ind. J. P. App. Math., 16(7): 741756, (1985).
2. Bharathi K. and Nagaraj M., "Quaternion Valued Function of a Real Variable Serret-Frenet Formulae", Ind. J. P. App. Math., 18(6): 507-511, (1987).
3. Sivridag A. I., Gunes R. and Keles S., "The SerretFrenet Formulae for Dual Quaternion Valued Functions of a Single Real Variable", Mechanism and Machine Theory, 29(5): 749-754, (1994).
4. M. Karadag, "Helixes and Characterisations on the Quaternionic Lorentz Manifolds", Doctoral Dissertation, University of Inonu, (1999).

[^0]: *Sorumlu Yazar (Corresponding Author)
 e-posta : muge.karadag@inonu.edu.tr

