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In this thesis study, two different visual based controllers and an adaptive potential field
based on path planning methods are designed for a differential drive mobile robot. The designed
methods are operated in a multi-camera environment with fixed head camera configuration.
Configuration space hosts a number of static obstacles. The controller performs robot motions until a
pre-defined target is reached. For each controller two different positioning models are utilized. A
weighted graph and a triangle model have been proposed. This study is comprised of three stages. In
first stage; a simple go-to-goal controller designed for an obstacle free configuration space. In second
stage, designed controller has been fused with a modified path planning method (for obstacle
avoidance) and a newly designed controller. In last stage; an expandable configuration space is
created with multi-camera device and controllers have been adapted to this new configuration space.

The camera(s) captures image frames in an interior space. A real-time system tracks the
configuration space in consecutive frames to detect global positions of a mobile robot, target and
obstacles. A graph structure is formed by assuming robot wheels and target as nodes in weighted
graph positioning model. Distances between nodes are assigned as weights to the graph edges. A
virtual triangle is formed between the robot wheels and target in triangle positioning model. The
angles between edges are assigned as interior angles to the triangle corners. Both graph weights and
triangle angles are input parameters according to the used positioning model for designed controllers.

In first stage; go-to-goal behavior is modeled for the obstacle free environment. The general
Gaussian function is utilized to determine the velocity of wheels in designed controller for both
positioning models, separately. We compare outputs of controller with several conventional methods
which are PID and Fuzzy-PID. Then it has been seen that the mobile robot control has been performed
with high precision and accuracy by employing the developed visual-based Gaussian controller.

In second stage; a decision tree based mobile robot control and an adaptive potential field-
based obstacle avoidance control have been developed for a static obstacle hosted environment. Then,
we harmonized both control unit and performed a real-world experiment. Firstly, a path plan extracted
by using adaptive potential field method. To calculate potentials virtual range sensors are used.
Secondly, decision tree-based controller has advanced the wheeled mobile robot (WMR) on this
reference trajectory path in real-time. Experimental environment has included static obstacles and
different configuration spaces. Efficiency and robustness of potential field method has greatly
improved by utilizing optimal parameters found with adaptive potential field design. We have
acquired and evaluated both simulation and real-world experiment data from control process.

Finally, all the designed controllers and models have been combined and a new control
infrastructure has been developed to work with multi-camera device configuration in third stage. We
proposed a new multi-camera operating model by stitching multi-images into one image. Developed
path planning and path dividing methods are implemented on this stitched image. Experimental results
show designed controllers and methods successfully characterize WMR motions for multi-camera
model under different configuration spaces.

Keywords: Visual based control, Path planning, Gaussian controller, Decision tree controller,
Artificial potential field
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MOBIL ROBOTLARA YOL PLANLAMA UYGULAMALARI ICIN TEPE KAMERALAR iLE
KONTROLORLER TASARLAMA

Inénii Universitesi
Fen Bilimleri Enstitiisti
Bilgisayar Mithendisligi
Yazilim Anabilim Dali

123 + xv sayfa
2018
Danigman: Dr. Ogr. Uyesi A. Fatih KOCAMAZ

Bu tez ¢alismasinda, diferansiyel tahrikli bir gezgin robot i¢in iki farkli gorii tabanli kontrolor
ve potansiyel alan ydntemine dayali uyarlamali yol planlama metodu tasarlanmistir. Tasarlanan
metotlar ¢coklu-kamera ortaminda sabit tepe kamera konfigiirasyonu ile caligtirilmistir. Konfigiirasyon
uzay1 birden fazla statik engel barindirmaktadir. Kontrolor 6n-tanimli bir hedefe ulasincaya kadar
robot hareketlerini yiiriitmektedir. Her bir kontrolor igin iki farkli pozisyonlama ydnteminden
faydalanilmistir. Bu kapsamda; bir agirlikli ¢izge ve bir de trigonometrik tiggen modelleri 6nerilmistir.
Bu tez ¢alismasi ii¢ asamadan olusmaktadir. ilk asamada; engel icermeyen bir konfigiirasyon uzay1
icin temel bir hedefe-gitme kontrolorii tasarlanmistir. Ikinci asamada; yeni olarak tasarlanan bir
hedefe-gitme kontrolorii ile yeni olarak tasarlanan bir hedeften kaginma kontrolorii kaynastirtlmistir.
Son asamada ise; ¢oklu-kamera cihazlari ile genisletilebilir bir konfigiirasyon uzay1 olusturulmustur
ve kontroldrler bu yeni konfigiirasyon uzayina uyarlanmustir.

Kamera(lar) bir i¢ mekanda imge ¢ergevelerini yakalarlar. Robot, hedef ve engellerin global
konumlarini tespit etmek amaciyla; konfigiirasyon uzay: ardisik cercevelerde gergek zamanli olarak
izlenmektedir. Agirlikli ¢izge konumlandirma modelinde robot tekerleri ve hedef birer diigiim
varsayilarak bir ¢izge yapisi olusturulur. Diigiimler arasindaki mesafe degerleri cizge kenarlarina
agirlik olarak atanmaktadir. Uggen konumlandirma modelinde robot tekerleri ve hedef arasinda sanal
bir {icgen yapisi olusturulur. Uggenin kenarlar1 arasindaki i¢ acilar iiggen koselerine ac1 degerleri
olarak atanmaktadir. Hem ¢izge agirliklart hem de iiggen i¢ agilari kullanilan konumlandirma
modeline gore tasarlanmis kontrolorler igin giris parametreleri olarak kullanilmaktadir.

[k asamada; engel icermeyen bir ortam i¢in hedefe-gitme davranisi modellemistir. Gaussian
fonksiyonu her iki konumlandirma modeli igin teker hiz degerlerini belirlemek amaciyla varsayilan
kontroldr igerisinde kullanilmistir. Bu kontrolérden elde edilen g¢iktilar ise iki geleneksel kontrol
yontemleri olan PID ve Fuzzy-PID ile karsilastirilmistir. Tasarlanan gorii tabanli Gaussian kontrolorii
kullanarak mobil robot kontroliiniin yiiksek hassasiyet ve dogruluk ile gergeklestirildigi goriilmiistiir.

Ikinci asamada; statik bir ortam icin karar agaci tabanli bir gezgin robot kontrolii ve
uyarlanabilir potansiyel alan tabanli engel ka¢inma kontrolii gelistirilmistir. Daha sonra, her iki
kontrol birimi uyumlu hale getirilmis ve gergek bir diinya deneyi gerceklestirilmistir. Ilk olarak,
uyarlamali potansiyel alan ydntemi kullanarak bir yol plani ¢ikartilmistir. Ikinci olarak, karar agaci
tabanlt kontrolor tekerlekli gezgin robotu (TMR) bu referans yoriinge yolu iizerinde ilerletmeye
baslamigtir. Deneysel ortam statik engeller ve farkli konfigiirasyon uzaylari icermektedir. Uyarlamali
potansiyel alan yontemi ile bulunan optimum parametrelerden yararlanarak potansiyel alan
yonteminin verimi ve dayaniklilig1 biiyiik 6lgiide iyilestirilmistir. Kontrol isleminden simiilasyon ve
gercek diinya deneysel verileri elde edilmis ve degerlendirilmistir.

Nihai olan {iglincii asamada ise tasarlanan tiim kontrolorler ve modeller birlestirilmis ve
coklu-kamera cihaz konfigiirasyonu ile ¢alisabilecek sekilde yeni bir kontrol altyapist gelistirilmistir.
Cok goriintiiyli dikisleme yontemiyle tek bir goriintiide birlestirerek yeni bir ¢oklu kamera isletim
modeli dnerilmistir. Bu dikisli goriintii izerinde gelistirilen yol planlama ve yol boliitleme yontemleri
uygulanmistir. Deneysel sonuglar, tasarlanan kontrolérlerin ¢oklu kamera konfigiirasyonu igin de
TMR hareketlerini farkli konfigiirasyon uzaylari basarili bir sekilde karakterize ettigini gstermistir.

Anahtar Kelimeler: Gorii tabanh kontrol, Yol planlama, Gaussian kontrolor, Karar agaci kontrolor,
Yapay potansiyel alan
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1. INTRODUCTION

The control process is a challenging topic in robotics. There are significant
number of researches mostly concerning with in-device sensor control with
conventional methods which are PID, Fuzzy Control, Fuzzy PI, heuristics etc. [1],
[2], [3], [4], [5]. The control process is mostly implemented by using global position
and directional angular data with the controller functions [6], [7]. The general
controller tasks are executed with data obtained from in-device (or internal) sensors
such as encoders, gyroscope, accelerometer and out-device (or external) sensors such
as infrared, thermal camera, proximity sensors. By utilizing several sensor
information, the angular data are computed and input parameters controller functions

are updated to create next robot motion.

Minimizing the error is a critical issue in robotic control for industrial and non-
industrial robotics. There are two types of errors in robotic systems; non-systematic
and systematic errors. Non-systematic errors are generally caused by falling, hitting,
and sliding etc. On the other hand, systematic errors are generally caused by the
erroneous sensor data, encoder and physical form of the robot parts. The general
purpose of control methods is compensating these errors until the assigned task(s) are

completed [8].

Visual based control (VBC) systems are used to model a dynamic or static
system by employing visual features obtained from images provided by camera(s)
[9], [10], [11]. It can be said that a robot controlling process can be modeled by using
an image perception system. This process is performed by analyzing each of the
image frames obtained through the imaging sensor. Similarly, to conventional
controllers, the aim of VBCs is eliminating errors and decreasing cost of the motion
to an acceptable level. The main benefits of the VBC (or visual servoing) are that it
requires small amount of data from sensor(s), appropriate to control multiple agents
and internal or external sensors on the robots usually are not required. In terms of
expandability of configuration space, it ensures more working field by increasing

number of imaging device(s).

Visual servoing is broadly implemented in robotic researches. In early researches,
controllers for robotic arm manipulators have been modeled by using Jacobean-based

methods and visual features generally with eye-in-hand configuration [12], [13]. In



later researches, control tasks for humanoid robots, mobile robots, autonomous (or
self-driving) vehicles etc. have been carried out by image-based visual controllers
[14], [15], [16], [17]. In recent researches, the real time robotic systems, multitasking
robotics and unmanned aerial vehicles have been developed by utilizing mostly

estimation-based methods with image sensor hardware [18], [19], [20].

There are two camera configurations used in most of the VBC studies; firstly, the
camera(s) can be equipped onto the robot with eye-in-device configuration. Robot
determines its global position according to the object detection, measured depth
information from the images and distance data from the encoder values. Secondly,
camera can be equipped to a fixed position with eye-out-device configuration. Robot
determines its global position according to only the measured distance information
calculated on the images. Additional data like encoder values can be used in this
configuration as well. In both configurations, WMR control procedure highly
depends on the processing acquired images from the cameras and extract information
about the resided environment. Therefore, compared to the classical robot control
methods, it can be said that VBC is next phase of robot control models. Because
information about environment are obtained not only with sensors (range, altitude,
balance etc.) but also with imaging sensors. This study focuses on eye-out-device
camera configuration to control a WMR. Locomotion of a mobile robot with eye-out-
device configuration resembles that a child plays with his wheeled toy car with his

hands by looking car from the above.

Whether a controller infrastructure is built on visual or non-visual data, the
primary issues are accuracy, robustness and speed of the methods [7]. A general
control model should provide both speed and accuracy to enhance robustness. A
simple control model having low complexity is a good option for real time
applications. Therefore, the design of controller chunks and complexity change
according to the aim of application. E.g. a service robot requires less precision
compare to a surgical robot which requires high precision. In addition, the
configuration space contains several factors like ground form, light level, friction
coefficient, humidity, temperature, atmospheric pressure etc. [6]. A control system
can be non-sensitive or sensitive to these factors according to the specifications in the

working environment.



According to the specified tasks, a mobile robot controller is generally created as

module(s)/chunk(s). Main tasks for a mobile robot are;
L. Reaching to an unknown or a specific target,
II. Tracking a pre-defined path plan,
I1I. Static and dynamic obstacle(s) avoidance

The first introduced task “reaching a target” is known as go-to-goal behavior.
This behavior is modeled as the most basic control module of a mobile robot. The
second mentioned task “tracking a trajectory” corresponds to following a
detected/pre-defined path. This behavior can be considered as a collection of go-to-
goal behaviors rather than go to a single target position. In other words, a trajectory
actually consists a series of points and each point in this trajectory can be considered
as a target point. Therefore, it can be said that this behavior is sequential iteration of
a group go-to-goal control tasks. The last pointed out task “avoiding obstacles” refers
the performing go-to-goal behavior without crashing to any object. This means that
go-to-goal and obstacle avoidance behaviors are fused to perform a given task. In a
static environment, obstacle avoidance can be performed with two methods. In first
method; since obstacles are static, a path plan can be extracted from environment
before starting the motion process of robot. After creating a path plan mobile robot
simply tracks this path until reaching to the target position. In other words, go-to-
goal behavior is converted to a trajectory tracking behavior. In second method; the
mobile robot is starting with simply go-to-goal behavior. When an obstacle is
detected on the path, motion behavior is changed to obstacle avoidance from go-to-
goal and mobile robot simply avoids obstacle with minimum additional movements.
In a dynamic environment if a robot has to perform a continuous locomotion, there is
only one option; the robot should perform go-to-goal behavior and instant obstacle
avoidance behavior together. Because the dynamic obstacles (other robots, humans,
vehicles etc.) can appear on the path in any time. So, we can’t model it with a
trajectory tracking behavior after an offline path extraction. If continuous locomotion
is not an issue, then robot can be stopped when a dynamic obstacle appears on the
path. After this obstacle leaves from the path robot is triggered to continue its
previous motion model. Except from these three main tasks, there can be sub-tasks

and other environment specific tasks. For example; an autonomous car tracking only



specific targets such as traffic signs and make a movement decision with respect to

meaning of these signs.

Path planning is one of the basic components of the robot control process. It
simply concerns modelling a path between an initial position configuration and a
final position configuration. Path plan have to be extracted from an operating
environment by considering obstacles (wall, door, any object etc.). The key elements
in path planning are admissible path cost (or efficiency), path safety and robustness
[21]. Path planning is made according to the problem structure. There are two
approaches; global and local used to extract a path plan from a given environment or
configuration space [22]. Global approaches are divided into two categories;
retraction methods and decomposition methods. The retraction methods recursively
reduce the initial problem dimension by considering sub-part of the configuration
space. Decomposition methods characterize the obstacle free regions of a given
configuration space. On the other hand, local approaches are mainly use the distance
parameter to the target while avoiding obstacles in motion state. This distance value
(gradient of the cost function) is generally guide the local method. Local approaches
are more efficient to overcome the complex robots. Moreover, path planning can be
made with randomized methods or stochastic which considers building a graph and
find a local minimum at each iteration. In addition to configuration space, path
planning can be considered in trajectory space. In this space a straight line is created
between initial and final configuration while all of the obstacles in the environment
are neglected. In the next step this path progressively reshaped by reducing improper

parts (e.g. intersecting with an obstacle) of the acquired path.

There are a number of commonly known path planning methods. Each method
aims to find a convenient path with minimum cost. Each method aims to find a
convenient path with minimum cost. Dijkstra method [23], [24] finds shortest path
between given two points (nodes). A* [25] is a heuristic contributed version of
Dijkstra method. It uses an additional cost function that estimates cheapest path from
actual node to the target node in each step. D* [26] is dynamic version of A*. In an
unknown environment, method starting to work like A*, when a previously unknown
obstacle is detected, this information is added to map as a new map information.
Then, if it is necessary shortest path is updated according to this new map. There are

several common methods using random branching by starting a defined initial point



to a target point. The rapidly exploring random tree (RRT) [27] aims to find a path
between predefined start and finish coordinates in an unknown configuration space.
As its name emphasize it starts by branching randomly without crashing an obstacle
at each iteration until reaching to the final/desired position. The other type of RRT
method is Bi-RRT (Bidirectional-RRT) [28], it starts to branch from both starting
and finishing positions. Two trees approximate to each other in each iteration step.
The method stops the searching process, when any two branches of trees intersect at
an undefined position. To search a given position tree based BFS (Breadth First
Search) [29] and DFS (Depth First Search) [30] searching methods are also widely
used in a remarkable number of studies. There are probabilistic and statistical path

planning methods which are used learning-based methods.

Except from graph-based methods a path planning can be extracted from working
space by using a potential field inspired method which is known as APF — Artificial
Potential Fields. APF is firstly introduced by [31], it is a commonly used method to
create a path plan between an initial position and final position in an obstacle-hosted
environment. If potential field is considered as electrical field, then robot and
obstacles have same charges and target has opposite charge. Main idea is based that
robot configuration is treated as an electron which is attracted by target and repulsed
by obstacles. The resulting trajectory of this electron (robot) is the obstacle free path
in configuration space. However, there are several problems which causes to electron

(robot) can be trapped in a local minima or unstable oscillation for pure APF.

In this study, we design and experiment a Gaussian and decision tree inspired
WMR go-to-goal behavior controllers based on visual servoing by using two simple
graph or triangle positioning models separately. Then, we created a path planning
design with adaptive potential field approach and developed the decision tree based
visual controller to navigate the robot on this formed path. Lastly, a multi-camera
configured environment is utilized as a testbed. A load balancing system developed
for multi target and multi robot model as an additional experiment. The designed
methods have experimented with several configuration spaces. The designed
methods work with great accuracy and speed. In section 2 we touch existing studies.
Problem definition is given in section 3. We focus on theories, materials and methods
in section 4. Test results are demonstrated in section 5. Ultimately, conclusion and

future works are handled in section 6.



2. RELATED LITERATURE WORKS
2.1. Visual Based Control (VBC) Studies

Ziaei et al [32] form a global path plan for an omni-directional mobile robot by
utilizing a single CCD imaging device. To avoid obstacles, the APF (Artificial
Potential Field) method is executed in the configuration space. The obstacles are
static objects and borders of image obtained from camera. The robot 3D CAD model
is used to perform kinematic control assignments to physical servo interface.
Johnson et al [33] proposed a multi-robot model to detect position of mobile robots
by tracking color LEDs on the robots from a camera, simultaneously. They underline
that the false positive LED lights are an explicit challenging in the system. Chen and
Lee [34] have performed calibration of a fish-eye camera. The camera captures
images of the configuration space to implement a visual servoing control. The
obstacles detection is performed with image processing. A rectangle is used to frame
the objects. If there are no intersections in the image, then each corner of these
rectangles is connected. Eventually a connected graph is formed. The Dijkstra
method is used to discover a shortest and safe path to the target position in the graph.
It is said that the dilation of the detected objects cause to losing of safe paths.
Mezouar and Chaumette [35] have studied on a visual-based feedback control
system. It is claimed that an image-based control and a path plan extracted from
image space are pieced together. They said that proposed feedback control system
demonstrates robustness against the modeling errors. The robot has been tracked
with a single camera and errors are calculated in formed path trajectories. The
camera calibration and irregular shape information have been defined as main
problems in their study. Breitenmoser et al [36] have introduced a localization
method for robot-robot systems. It is aimed to obtain relative position of tracked
robot in 3D configuration space. In their proposed system A regression-based
estimation method is used to model position. Bista et al [37] have developed an
visual-based method for navigation by employing line segmentations for indoor
applications. They use only the 2D image information acquired from an internal
imaging device on the robot. It is said that accurate localization and mapping
processes are not required for a well-structured navigation system. Bateux and
Marchand [38] have proposed a visual servoing system based on histogram for

indoor/outdoor environments. In their study, the visual features are the histograms.



They said that without disturbing control laws, their proposed system can be applied
on any kind of histograms. Espiau et al [39] introduced a novel method to vision-
based control systems. The vision system is considered as a specific sensor assigned
to a task and included in a servo control loop in their basic motive. They defined two
key issues in vision-based control task, designing the efficient controllers and
performing the definition-specification. Pauli [40] investigated learning based robot
vision with details. He emphasized that it is desired to develop new-generation robots
demonstrating higher degrees of autonomy for fulfilling high-level purposeful tasks
in natural and dynamic environments. Zhao et al [41] performed a review on image-
based control methods used for agricultural robots in harvesting process. They
explored object detection in tree canopies and picking objects utilizing visual data as
major visual-based control methods and potential applications of these methods in
vegetable/fruit harvesting robots. They specified object recognition and coordination
of eye-hand as the most significant key issues. Donmez et al [42] performed an
visual-based control for a mobile robot. They used graph-based velocity control with
a basic branching algorithm design. Dirik et al [43] implemented a visual-based
WMR control in real time acquired images, similarly. It is claimed that the path

tracking error is reduced to a smaller value in each control loop.

In addition to these works, there are different control systems types that based on
RFID devices to identify real position of the mobile robot. The RFID devices placed
to a number of position in configuration space. Similar to the GPS (Global
Positioning System) infrastructure by utilizing signal values of RFID, the robot
position is identified. Several other researches place the camera on mobile robot
vertically, so that the imaging device detects the ceiling surface. This surface of the
ceiling is covered with physical markers like shapes, colors etc., then the robot
position is detected by using the markers, Martinelli [44]. Elsheikh et al [45],
designed a real-time path planner and navigation method for a non-holonomic mobile
robot depend on visual based control. Multi-Stencils Fast Marching as being first part
is used to obtain path plan. It is said that if the acquired path plans of fast marching
are directly utilized, then safe and smooth path is not guaranteed. Wang et al [46],
touches upon the adaptive visual-based control for a robotic manipulator. The
manipulator is placed under an uncalibrated eye-in-device form with uncertain

actuator backlash. It is said that the actuator backlash constraint for control to visual-



based manipulator is not to considered in existing methods. This constraint is
inevitable for the robot and effect the dynamic performance, remarkably. Zhang et
al [47], developed a monocular visual control approach for non-holonomic mobile
robots. It is said that the presented method operates well even with both unknown
extrinsic camera-to-robot and unknown depth parameters. It is said that the
stabilization problem is a challenging issue and still unsolved. They claimed that by
utilizing adaptive control and back-stepping method a novel two-stage controller is

developed.
2.2. Fundamental Path Planning Studies

Elfes [48] introduced a sonar based real-world mapping and navigation
system. An autonomous mobile robot was operated in unknown and unstructured
environment. The introduced system utilized sonar range data to establish a
multileveled description of the robot’s surroundings. It has been said that practical
real-world stereo vision navigation systems simply form sparse depth maps of their
surroundings. He claimed that the proposed system ensures a sufficiently rich
definition of the robot’s environment to invoke for more complicated tasks. Elfes
[49] reviewed occupancy grids which utilizes a probabilistic tessellated
representation of spatial information for perception of robot and world modeling, as a
new approach. In the real-world experiments, obstacle avoidance was ensured by
using potential fields and A* search algorithm. It is claimed that the occupancy grid
infrastructure assures a robust and combined approach to a variety of issues in spatial
robot perception and navigation. Borenstein and Koren [50] designed a new
approach titled as virtual force field which associates accuracy grids for obstacle
representation and potential fields for navigation. The robot avoided traps like dead-
ends or ‘U’ shaped obstacles by using wall following mechanism in their study. They
claimed that their navigation algorithm also takes cognizance of the dynamic
behavior of a fast-mobile robot and overcomes the local minimum problem. By
inspiring their previous work, Borenstein and Koren [51] introduced a new
approach referred as vector field histogram that provides the detection of unknown
obstacles and avoids collisions while simultaneously steering the mobile robot
toward the target. The method utilizes Cartesian histogram grid as a 2D world model.
This world model is updated continually with distance data sampled by internal

distance sensors. They claimed that vector field histogram method is computationally



efficient, robust, and eliminates misreading(s). It was said that it permits continuous
and fast motion of, the mobile robot without stopping for the obstacles. Murray and
Sastry [52] investigated methods for steering forms with nonholonomic limitations
between various configurations. They derived suboptimal trajectories which are not
in canonical form. A class of systems which steerable using sinusoids were
described in the study. They claimed that building of a trajectory for systems with
drift is still an explicit problem. Laumond et al [53] presented a fast and precise
path planning method based on recursive subdivision of a obstacle-free path
produced by a geometric planner neglecting the limitations of motion for their
mobile robot. They claimed that the acquired trajectory is improved to yield a path
which is of near minimal length in its homotopy class. It is emphasized that the
existence of an obstacle-free trajectory is formed by an open connected domain of
the acceptable configuration space. Fierro and Lewis [54] introduced a controller
which provides the combination of a neural network (NN) computed-torque
controller and a kinematic controller for the nonholonomic mobile robots. Stability in
control is provided by using Lyapunov theory. They claimed that their method does
not need information about the cart dynamics generated utilizing an NN back-
stepping method. It is said that an NN dynamic controller and a fine-designed
kinematic controller may improve the performance of the mobile robot remarkably.
Dellaert et al [55] introduced a robot localization method with the Monte Carlo
Localization (MLC) method, where density of the probability included by
maintaining a group of instances which are randomly taken from it is presented. It is
said that by employing a sampling-based representation a localization method that
can exemplify arbitrary distributions was acquired. They defined sample
impoverishment: in the resampling stage, high weighted samples will be chosen
multiple times, resulting in a loss of ’variety’ as a major problem. Kuffner and
Lavalle [56] introduced an efficient and simple randomized algorithm for
overcoming single-query problems of the path planning in high-dimensional
configuration spaces. Their method operates by progressively forming two Rapidly-
exploring Random Trees (RRTs) rooted at the initial and the target positions. They
defined several performance issues to improve RRT even further. Cosio and
Castaneda [57] is introduced a novel layout for a mobile robot autonomous
navigation, depending on genetic algorithm and artificial potential fields. Genetic

algorithm is responsible for automatically determining the specifications of the
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optimal potential field. Intermediate targets have been utilized to guide the robot
through corridor corners and the door of the suitable room in their method. Whyte
and Bailey [15], [58] provided a broad introduction to Simultaneous Localization
and Mapping (SLAM) problem. They presented the structure of the SLAM problem
in standard Bayesian form, and clarifies the SLAM process evolution. They touched

several unresolved issues especially for unstructured and dynamic environments.
2.3. Recent Path Planning Studies

Xu et al [59] discussed the commonly known potential field approach for
obstacle avoidance in the scope of mobile robots. They indicate the requirement of
applying a motion planner for nonholonomic robots and recommend some additions
to other potential field-based models to deal with the limitations of car-type robots.
The curvature and point mass limitations from car-like mobile robots explained in
detail as practical constraints. Kovacs et al [60] presented a scheme for mobile robot
path planning task in household environments. They extended conventional artificial
potential field (APF) method by inspiring motion characteristics of household
animals. Mobile robot behaviors are modeled according to possible animal attributes
for path planning and goal is assumed as owner or a meal. Actually, they combine
APF and Bug Algorithm. It is claimed that by modelling natural motion attributes of
animals into the robot, the human—robot interaction transforms to much more natural
and intuitive. Guerra et al [61] introduced a new method to overcome local minima
which occurs in potential field method. It is said that unsteady equilibriums are
evaded capitalizing on the built Input-to-State Stability (ISS). Although the robot
controlled on extracted trajectory with success, oscillations have emerged while
moving in narrow passages. Jia et al [62] presented a novel coverage path planning
(CPP) algorithm for autonomous exploration robots. The proposed algorithm
decomposes the region of interest into cells by discovering landmarks in the
environment. Each cell is covered utilizing a zig-zag motion pattern. They claimed
that the developed landmark detection is robust to incomplete perception and can be
applied to any random shape obstacles. Bennet and Mclnnes [63] considered pattern
formation and re-configurability in a multi-agent strategy employing a new control
method developed over bifurcating potential fields. They claim that the various
patterns can be accomplished autonomously through a simple free parameter

exchange. It is said that APF method is suitable to implement multi-robot systems.
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Romero et al [64] presented an extension for the boundary value problem path
planner (BVP PP) to manage multiple robots in a soccer activity. This extension is
known as Locally Oriented Potential Field (LOPF) and computes a potential field
from the numerical solution of a BVP utilizing local relaxations in different parts of
the solution space. This process ensures to manage multiple robots simultaneously,
where each robot has different behaviors. Yan and Li [65] proposed a fuzzy logic
and filter smoothing by using the data from the laser scanning sensor. It is claimed
that in a dynamic environment, this algorithm can automatically extract the best path
according to the position and size of gaps between the obstacles. They said that fuzzy
algorithm and filter smoothing are appropriate to real time systems because of their
simplicity and fast response. Das et al [66] proposed a novel approach to improve
the path plan for multi-agents utilizing gravitational search algorithm (GSA) for a
dynamic configuration space. GSA has been improved based on memory data and
cognitive parameter of PSO (particle swarm optimization). The algorithm finds
obstacle free optimal path from predefined starting position to finishing position for
each robot in the environment. It is emphasized that both the obstacles and
environment are static relative to the robots. Montiel et al [67] introduced a new
method that computed optimum paths in environments including dynamic and static
obstacles with a WMR for path planning task. The developed method called as
Bacterial Potential Field (BPF) and they claimed that it provides an optimal, feasible
and safe path. They utilize from both Bacterial Evolutionary Algorithm (BEA) and
Artificial Potential Field (APF) to acquire an enhanced flexible path planning
method. They emphasize that method takes all the benefits of APF method and
reduce its deficiencies. BPF utilizes a WMR model that is generic but realistic. This
model takes into account the physical size of WMR and direction in the plane.
Santos et al [68] proposed a short-term path planner approach for self-driven
sailboats which has capability of dealing with upwind situations. In order to achieve
this, an initial path is geometrically formed and an optimization is performed over
this path, utilizing genetic algorithm. It is claimed that when compared to the brute
force approach, the optimization of the model is able to generate similar or better
results. Tan et al [69] presented an efficient fusion algorithm for the rotary-wing
flying robot for solving path planning problem in the 3D mountain environment. This
fusion algorithm integrates A* algorithm with artificial potential field method. Both

methods improved and optimized for 3D environment. It is emphasized that APF
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algorithm is used to smooth the trajectory to improve the performance of path
smoothness and traceability. Donmez et al [70] have proposed an adaptive artificial
path planning (A-APF) method to extract path plan in an obstacle hosted
environment. They conducted experiments in real-time. They claimed that A-APF
method provides feasible and fast solutions compare to default APF method. Dirik et
al [71] have proposed a fuzzy-logic decision cluster method for path planning in
visual based control systems. They extract fuzzy rules and implemented simulation
tests. It is said that the presented method enhances accurate and sensitive mobile
robot control procedure. Donmez et al [72] have proposed curve smoothing
methods on bidirectional rapidly grown random tree (Bi-RRT) path planning method.
They used Polynomial, Fourier and Gaussian curve smoothing methods with LAR
(Least Absolute Residuals) and Bi-Square weights to reduce path errors. They
claimed that the curve smoothing increases the path safety and decreases the path
errors and cost, significantly. Dirik et al [73] have developed a visual based control
system with fuzzy-PID method and creates rule table. They claimed that proposed
method is specialized for visual based systems and provides fast and accurate mobile

robot control process.

Kamarry et al [74] introduced a novel method to increase the distribution of the
nodes in the RRT. This approach enables a compact representation of the working
environment by decreasing the nodes redundancy. It is said that the presented biasing
method has low computational cost and it is easy to apply. Kunwook et al [75] offer
an efficient RRT* path planner for hyper-redundant in-pipe robot. They use sliding
windows for random sampling in the configuration space to acquire pipeline
topology advantages. It is said that the presented method explores applicable paths
more efficiently than the conventional methods. Shan et al [76] proposed an
improved D-RRT (Dynamic — Rapidly exploring Random Trees) path planning
method for the application of ALV (Automatic Land Vehicle) working in a dynamic
environment. It is said that nonholonomic constraints of the vehicle are combined
with three order B-Spline based functions. They claimed that the algorithm
guarantees the trackability of the path at the same time. Melchior and Simmons [77]
defines a novel modification to the default RRT path planning method. The Particle
RRT method explicitly consider uncertainty in its working space, similar to the

executing of a particle filter. Each extension to the search tree is behaved as a
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stochastic process and these extensions are simulated several times. Heb et al [78]
proposed a trajectory planning approach named as the RRT Controller and Planner
(RRTCAP*), assembling the planning stage of a RRT*-based algorithm with the
application stage on a physical robot. It is claimed that the presented RRTCAP* is
superior to the conventional RRT and RRT*-based path planning methods. Muiioz
et al [79] introduces two contributions: a mathematical formulation for any DTM
that can be used by heuristic search algorithms, and a path planning approach that
generates candidate paths which is safer than the ones obtained by previous methods.
Developed algorithm, named 3Dana, and it is claimed that the method considers
distinct parameters to enhance the quality of path: the maximum permitted slope by

the robot and the direction changes through the path tracking procedure.
2.4. Multi-Camera Studies

Visual based robot control is commonly researched in significant number of
studies. The main focusing point in these studies are generally; decreasing errors and
increasing speed and robustness. There are a number of configurations to implement
a visual based robot control infrastructure. Multi-camera configuration is one of
them. Malis et al [80] have expanded the conventional visual-based control methods
to the utilize of multiple imaging devices tracking several segment of an object. The
visual based control with the multi-camera has been developed as a chunk of the task
cluster method. They claimed that the specific selection of the task module permits
them to facilitate the control design and the stability analysis. Lippello et al [81] has
presented visual servoing method with position information utilizing a mixed eye-in-
device multi-camera infrastructure in their study. It is claimed that depending on a
modified Kalman filter. This method utilizes the information ensured by all the
imaging device without “a priori” distinction, permitting real-time estimation of
object position. Qiu et al [82] have proposed a robot visual servoing system using
multi-camera configuration. The designed system uses switching the vision system
between eye-in-device camera and the stereo cameras with voting process. They
claimed that the multi-camera infrastructure enable process in a more comprehensive
variety of situation than that of either eye-in-hand or stereo camera single
configuration. Yoshitata et al [83] proposed a visual control design that allows a
mini helicopter to hover under local and temporal occlusions. Two fixed and upward-

looking imaging devices observe four black balls fixated to rods attached to the
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lower side of the helicopter. They have said that the designed structure can hold the
helicopter in a resolute hover. Iwatani et al [84] presented a visual servo control
system using multi-camera for unmanned micro aerial vehicles. The cameras are
placed on the floor, and they are connected through a network. They claimed that the
controller is durable against to occlusion, and the helicopters can move easily and
freely in field of view of the camera. Weber and Kiihnlenz [85] have utilized
triangulation of images obtained by multi-cameras pointing in different directions to
control a robot with position based visual servoing (PBVS). They have said that the
triangulation is implemented by an iterative linear method which provides high
accuracy and real-time operating. Kermorgant and Chaumette [86] has offered a
basic sensor fusion design for multi-sensor robot positioning. To realize an image-
based visual servoing task, two cameras are used in eye-in-device and eye-out-device
configuration. It is claimed that this configuration enables a comprehensive
comparison of the suggested fusion design of sensor data. Elsheikh et al [87] has
recommended an application and practical results of dynamic path planning and
robot navigation by using visual servoing for a mobile robot in indoor environment.
It is said that short locomotion distances for the robot are anticipated, energy
consumption is balanced and consequently increase the overall traveling time.
Aliakbarpour et al [88] have presented a number of contributions to a visual-based
mobile robot control by utilizing a general camera model. They said that by utilizing
a basic radial model, the suggested visual servoing approach can be employed for a
large type of general cameras, both central and non-central. Ahlin et al [89] have
proposed a leaf grasping system using a robotic manipulator in an unstructured
environment by using deep learning and visual servoing. They said that Monoscopic
Depth Analysis (MDA) enables for a random number of features in unknown
geometric characteristics. Alepuz et al [90] have exhibited an visual-based controller
to fulfill a robot manipulator guidance. The eye-in-device camera configuration is
used for the manipulator and it is placed to a base satellite. The base is entirely
independent and floating in space without attitude control. They said that by
considering kinematics and dynamics, controller allows the robot to accomplish a

input position from an initial one and implement the tracking of a desired trajectory.

Previous studies are generally implemented with internal imaging devices. We

mainly focus hybrid utilization of visual features acquired from external imaging
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devices and controller method. There are commonly known control methods like
PID, Fuzzy controls etc. However, there are no specialized controllers for visual-
based control systems. Moreover, most of these researches are usually implemented
with only experimental simulations. In addition, all these studies are generally
implemented without considering camera scalability in the configuration space.
There are no detailed studies about eye-out-device camera configuration. They
generally focus stereovision systems with double cameras. Multi camera systems are
modeled with PBVS (Position based visual servoing) method commonly.
Additionally, the number of studies on eye-in-device are more than the number of
eye-out-device studies in the literature. In this thesis study, the eye-out-device multi-
camera configuration is investigated. The positioning scheme models for kinematics
are designed. The visual based control methods are modeled by using the Gaussian
and decision tree methods separately with two (graph and triangle) positioning
schemes. All the advantages and drawbacks of the visual based control system with
multi eye-out-device camera configuration are presented. We use four cameras for
proposed system. However, number of the cameras can be increased. Image stitching
process is used only once to create whole map of the configuration space. The path
plan is made on this map with A-APF. The path plan is divided according to the
relevant cameras. The divided path plans are tracked in each camera separately. The
mobile robot motion control is provided depending on the divided path plan under
the relevant camera. By this way, multi-image processing problem has been

overcome for the mobile robot motion.
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3. PRELIMINARY DEFINITIONS

The control of a differential drive WMR is generally performed according to the
local and global positions of the robot. A large stream of sensor-based information
and encoder data are continuously transferred between the robot and control system.
The received sensor data are processed to acquire input for the control model.
Therefore, such non-visual robot control systems use a number of resources to
implement the dynamic control of the robot [6], [91]. On the other hand, visual-based
control process needs less internal/external sensor data on robot, when it is compared
to the non-visual control systems. Besides, the position and distance calculation tasks

can be carried out by a camera(s) as imaging sensors in VBC systems.

Visual-based control for a WMR hosts a couple of important issues which are
camera calibration, object detection and tracking, controlling (real time or offline)
and imaging device - robot synchronization [40]. Camera calibration is generally
required to scale real-world objects to a 2D plane. If the camera lens is a fish-eye,
pin-cushion type than a distortion process may be required for good calibration.
Object (robot, obstacles and target) detection is needed to calculate position
information of these objects. Tracking objects in real time bounds up with
robustness, fastness and efficiency of object detection. Therefore, object detection is
a major pillar for the tracking process. Controlling of WMR generally depends on
encoder and sensor data in classical methods. However, visual based control heavily
depends on momentary image information about its surroundings; thus, image
processing techniques are required. By using position information extracted from
image frames robot motions/behaviors are modeled. Synchronization means
coordination between imaging device and robot. After image device takes a frame,
this frame has to be processed before robot makes a motion for a while. Because

there will be a time gap between parameter calculation and robot motion.

Except from defined issues; the main problem in visual based approaches with a
fixed head camera configuration is that the mobile robot can go out from viewing
area of the camera because of an obstacle, etc. Even if it disappears from viewing
area, an additional estimation-based method (Kalman etc.) can be utilized to detect
the position of robot. A fixed head camera configured visual control system
minimizes the errors, because the position of robot is continuously tracked and

updated according to obtained information from the taken images. The visual-based
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control can ensure significantly stable and accurate results in moving and positioning
tasks of the robot control. The specialized control methods for VBC environments
are needed. Since, there are no detailed studies for eye-out-device camera

configuration modules like positioning scheme, experiment environments etc.

The obstacle avoidance should be considered carefully to create an efficient path
plan. The extracted path trajectory has to ensure reaching to the target position
without any collision and friction to the obstacles. In other words, there have to be a
safe path. The second issue is that the WMR shouldn’t fall into a trap in any position
at the configuration space. The WMR can exhibit faulty motion behaviors like
redundant spinning, oscillation, no motion etc. The third issue is path cost which is a
significant issue in terms of energy and time efficiency. If there is a suitable path
providing minimum cost, then it should be selected. A path plan is extracted by
taking cognizance of these three issues together. Therefore, a safe path with minimal

cost and without traps will handle these problematic issues.

Two types of problems may cause to extracting the path plan inadequately in
potential field method [92]. Firstly, local minimum problem; when all the attractive
and repulsive forces are balanced, the robot falls into a trap and generally motionless.
The robot simply doesn’t make any progress. Second problem is known as unstable
oscillation stemming from high velocity, narrow passages, sudden changes and etc.
problems. Because of this problem, the path trajectory is generated with too much
swinging. The most basic solutions to these problems are that defining a minimum
attractive force on any point in configuration space and creating rotational force
fields around the obstacles so that these forces guide moving object. In this study,

these problems have been eliminated with adaptive design.

In this study, the mobile robot only fulfills given commands to adjust velocity of
wheels. Because the whole control processes are implemented on an external
computer system. Therefore, the internal processing device may not be required in
mobile robot. Besides, such hardware are generally increases the cost of the system
and consume high energy. In this case, a simple command interpreter and a wireless
communication infrastructure like Bluetooth or Wi-Fi is enough for eye-out-device
configured VBC. Ultimately, the developed methods ensure remarkable performance

in aspect of the cost and energy efficiency.
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4. MATERIAL AND METHOD

The presented control infrastructure includes several components. Physical
environment for experiments, hardware (robot, image processing and computation
unit and cameras) and controller software are the primary components. Image
stitching, object detection and tracking, parameter acquisition and calculation, path
planning and control functions are the main modules of controller software
component. Acquired images from the multi-cameras are stitched and environment
map is created. The method initially detects and tracks robot control markers and
target on this map. A path plan is extracted by considering obstacle positions. Then,
the input variables are computed by utilizing positioning scheme model. The velocity
parameters are calculated with the developed Gaussian/Decision tree-based control
functions. The obtained parameters are transferred to the mobile robot to trigger

motion. The controller navigates the robot until final target position is reached.

This thesis study has been implemented in three stages. In first stage; a go-to-
goal behavior controller is designed by using Gaussian and Decision Tree methods
for an obstacle free configuration space. Two different positioning models have also
been developed for the designed controllers. These models provide accurate, fast and
smooth controlling process. Each controller-model combination has tested in a real
environment with a differential drive mobile robot (or WMR). In second stage;
obstacles have been added to the configuration space. Therefore, a path planning
strategy is required as well. Artificial potential field (APF) method is modified to
design an adaptive path planning method working with dynamic parameters. The
adaptive designs have provided suitable parameters to path plan task. The Gaussian
or Decision tree-based controllers have been fused with adaptive-APF method to
create a novel real-time motion navigation. This new design has been tested with
positioning models in an obstacle hosted configuration space. In third and last stage;
multi-camera environment has been prepared and mid-controllers (path dividing,
path distribution, controller modifications etc.) for this configuration space have been
modified/developed. Multi-camera model is used to provide a scalable configuration
space. In this way, working space can be expanded. All previous controllers, models
and path planners have been tested in multi-camera configuration space as well. The

stages are illustrated in Fig. 1.
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Fig. 1. Stages for the thesis study

4.1. STAGE-1: Go-to-goal Controller

In this stage, a Gaussian based visual controller designed and two positioning
models developed for WMR. The controller method has been employed to perform
go-to-goal behavior for a differential drive mobile robot. The configuration space is
obstacle free and there is one target. This stage includes operating environment,
camera calibration, object tracking, general kinematics of WMR and controller
method. All these mentioned structures are common for three stages. It can be said
that the main base of this thesis study has been formed in this section. The utilized

controllers and models are specifically emphasized with details in the stages.
4.1.1. Operating environment of Stage-1

Configuration space consists of four main components; a mobile robot with
differential drive feature (or WMR), a target, obstacle free configuration space and a
camera with fixed observing (bird's eye view) configuration. The visual-based
control task is implemented on a floor with plain color covering under variable light
intensity values. The vertically hanged fixed camera is placed 180 cm above from the
floor. The camera has 3.2 MP resolution and its lens has 0.3 mm focal length. SVGA
(Super VGA: 800x600; 4:3) resolution is used. MATLAB R2016a is used for both
image processing and robot controlling process. Communication with the camera is
performed through USB 3.0 interface. The mobile robot and computer system
communication is carried out over Bluetooth 2.0 standards. Experiments have been
implemented on Intel 13-3217U 1.80 GHz CPU with 6GB DDR3 1600 MHz Memory
and 5400 Rpm HDD. Operating environment (configuration space) is demonstrated

in Fig. 2.
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Fig. 2. Operating environment for proposed control system

4.1.2. Camera Adjustment and Image Distortion

A general perspective of projection model for a camera is shown in Fig. 3.
Velocity screw of the image frame is defined in (4.1) and (4.2). The w is rotational
velocity and v(0) is translational velocity in this equation [93]. If it is assumed that
the focal length of the imaging device is equal to one — ‘1’ , then a point with X =
(x y z)T coordinates is projected to a plane on the input image as a point with X =

(X Y 1T by utilizing (Hata! Basvuru kaynagi bulunamada.).

Fig. 3. General perspective of projection model for a camera

F(0,%,,2) » T = (v(0),w) 4.1)

X=1% 4.2)

N | R

Camera calibration is required to scale and fit image frames to the 2D plane. A
fish eye lens is used. It transfers images to the imaging device sensor as barrel type.
Therefore, a distortion process is required to extract visual information from images

properly. Image planes are demonstrated with I-Barrel type, II-Pincushion type and
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III-Distorted in Fig. 4. In barrel type images; the magnification of image declines
with distance from the optical axis that stem from the focal length of camera lens
[93]. Model for radial image distortion is expressed with (4.3), (4.4), (4.5) and (4.6)
used to project images to two dimensional plane. The distorted Cartesian coordinates
x4 and y,4, distortion parameter is k, actual image coordinates are x, and y,, f, and

fy are focal length (mm), image center (principal point) are ¢, and c,,.

T

Fig. 4. Image planes (I. Barrel, II. Pin-Cushion, III. Distorted)

xg = x(1+ k1% + 16,7% + k37°) 4.3)
ya = y(1 + K72 + kor* + K37°) 4.4)

r?2 =x? + y? (4.5)
Xa = fiXa + Cx,Ya = fyYa + ¢y (4.6)

4.1.3. Object Tracking

Performing a good visual based control depends on performing a good object
detection and tracking. Because quality of this detection and tracking are decisive
factors for success of visual based control process. After detecting the obstacles and
target point in first frame, it is not needed to detect these components anymore for a
static environment (there are no dynamic objects). Therefore, only the robot is
detected and tracked in following image frames. Quantization and color thresholding
is used to perform detection process of labeled target, obstacles and robot. At first
step, an image frame is acquired with the fixed camera. Secondly, color space of this
image is transformed from the RGB space to the HSV space. Then a color mask filter
is executed to segment the related objects. Maximum and minimum range of the
Hue, Saturation, and Value channels are used in this mask function. HSV separates
the luminosity (or the image intensity), from the chrominance (or the color
information). This is very efficient in remarkable number of applications [94].
Therefore, if it is wanted to separate the color components from the intensity for

various reasons, then HSV is a good choice against these issues in computer vision.
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These reasons are robustness to illumination (changes in light level), get rid of
shadows etc. In next step, colors of image frame are quantized by decreasing color
depth 8 bit to 256. Then objects are detected by using color thresholding process.
Each acquired frame is exposed to the color thresholding process. After detecting the
position information of each object, the new velocity parameters for the WMR are

calculated.

The thresholding process is implemented with several steps: Each cell of the whole
image matrix is controlled. The cells having threshold values in these three-channel
transmuted to ‘1’ and the remaining cells transmuted to ‘0’. It simply filters the color
values by controlling the predefined threshold ranges. This procedure known as
“binary image acquisition” [95]. Equation (4.7) is utilized to identify range of color
channels defined in mask function. The h(p;) corresponds to the color channel
histograms in this equation. p; expresses the kth channel level and M corresponds to
the total level of the channel. To purify image from noisy parts which have pixel
value below the defined threshold, an elimination method converts these noises to
‘0’. Coordinate values of detected object centroids are computed. Then, coordinate
values are recorded to storage unit and marked on the related image frame. The
detection steps are demonstrated in Fig. 5. The image processing and controlling

scheme is given in Fig. 6.
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Fig. 5. (al-b1) Real time image frames from different experiments, (a2-b2) Centroid detection of

object components
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Fig. 6. Image processing and controlling diagram of visual-based control

Color quantization is a kind of clustering method that groups similar colors within a
threshold value [96]. It is used to dissociate color values and sharpen similarities
between color information of objects and other components in the image. It simply
facilitates the tasks of color thresholding masks before detection. Because of any
adaptive color-based thresholding method has not been used, there can be faulty
detections for objects when illumination changes remarkably. In other words, light
changes affect the luminosity value of each image frame. Therefore, quantization
process has been used to decrease the negative effects of this sudden light changes.
By assuming that the quantization levels of Q as q;,j = 1,...,n, the quantization
cells can be computed. Suppose that in the Voronoi diagram for Q, the C; are the
cells, then following the term (4.8) equation is formed to minimize expected error. In
this equation, the distortion parameter is d and the quantizer is q. By assuming

having the C; quantization cells, the optimal value for g; is defined by using (4.9).
E(d,q) = fd(x. q(x))du = Z f d(x, q(x))du = zf d(x,q;)duy  (4.8)
c Cj Cj

q;j = argmin E(d(x,c)) = argmin | d(x,c)du (4.9)

CECXEC] ceC Cj
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The mobile robot tracking is a key issue to collect information about the global
position of the robot, accurately. Since this information is utilized to calculate wheel
velocities input parameters. Instead of processing entire image frame as an input to
segmentation method; local frames (LF) covering the robot has been formed to
enhance the performance of segmentation. This structure is created according to the
dimensions of robot. The local frame creation process is demonstrated in Fig. 7. The
coordinates of local frame are calculated between certain numbers of image frames
according to a pre-defined threshold parameter. The (4.10) and (4.11) equations are
employed to implement this process. In these equations; the n represents the frame
numbers acquired. The global coordinates of the robot are x; and y; (P1 point). The
global coordinates of local frame are LF, and LF, and equal to x; and y; initially. So,
the robot center node is also utilized to ensconce local frame around the robot in
specific image frames. The new global coordinates for the robot are x; and y; . LF
coordinates are only updated in every 15 image frames. The LF is created by starting
from a position (P2 point) calculated with the pre-defined distances. The LF covers
the area starting from x; — 90 and y; — 90 (red point) to a constant equal length for

two axes.

(%1, if n"%15=0andn >0

4.1
X1 if n%15#0andn >0 (4.10)

_ {yln, if n%15=0andn >0

Yu if n"%15 # 0andn > 0 (4.11)

y.90 Y,

x,-90

Fig. 7. Local frame demonstration on a real image frame
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4.1.4. General Kinematics of WMR

Before touching the control scheme in thesis study, it is suitable to give an idea
about general control scheme of a WMR. The general kinematics are simply
emphasized in [97]. Assume that the position of a WMR is selected as (x4, ¥4)
according to the center of the target position (x,, y;-). The L distance and ¢ angle can
be set to be simply constant parameters. Then the position parameters of the robot-

target can be explicated with following equations (4.12) and (4.13).
Xq = X, + L cos(0, + ¢) (4.12)
Ya = Yy + Lsin(6, + @) (4.13)

The v, (vy, vy) velocity and w. (w;, ) angular velocity are directly bound up
with to the velocities of the right and left wheels of the mobile robot. Angular velocity
values w,;(t) and w,(t) are calculated by using equation (4.14). In this equation r
represents the wheel radius and [ represents the distance between the two wheels

(wheelbase).

V() r/2 r/2
v@):[o o]w“) (4.14)
[yg } —r/l T/l [“)T(t)]

To make compatible the kinematic models to the real-world pattern following
equations (4.15) and (4.16) are used. These equations characterize velocity and
angular velocity parameters for the mobile robot. In this equation R parameter is

instantaneous curvature radius of the robot trajectory relative to the mid-point axis.

v() = W(OR =5 (v, (6) + 1, (1) @.15)

v () = v, ()

: (4.16)

w(t) =

A general expression can be put forth for velocity (v) and angular velocity (w)
parameters. By this way, we can simply generate following final equations (4.17) and

(4.18) for a two-wheeled differential drive mobile robot.

R 2v
v=5(vr+vl)—>F:vr+vl (4.17)

25



R wL
w=z(vr—vl)—>?=vr—vl (4.18)

The general kinematics of the differential drive mobile robot can be characterized
with the following equation (4.19). The v, is linear forward velocity and w, is angular

velocity for the WMR in this equation.
V. cos 0,
Ye| = [vc sin 6 (4.19)

Similarly, the kinematics for the target reference can be modeled with the

following equation (4.20).

Xy v, €0S 0,
Vr|= [vr sin er] (4.20)
6, w,

By fusing previous statements, we can extract control variables with the following
equation (4.21). Then the control parameters are defined with the equation (4.22)

statement.

x(t) cosf(t) 0 ®)
y®)| = [st(t) 0][ w(® (4.21)
6(t) 0

q() = S(@&©®) (4.22)

4.1.5. Vision Based Control

Visual based control is one of the popular research area in robotics. It is also
known as visual servoing. It simply concerns about controlling a robot by using visual
information around its environment. In other words; visual based control methods aim
to manage a dynamic system by using visual features obtained from images provided
by one or multiple cameras [9], [98], [99]. Except from conventional sensors visual
based information is a necessity for robotics. For instance, real-time robotic systems,
human-robot interaction, autonomous vehicles, indoor and outdoor robotics etc. are
almost all utilize the visual information to make a decision. It is the major part of
human/animal inspired control theory. Since most of the livings utilize their visual

sensory organs predominantly besides their other sensory organs. Of course, simple
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tasks, repetitive works, trajectory tracking etc. simply can be done by using non-
visual sensors (encoders, odometry, altitude, gyro, accelerometer, velocity sensors and
so on) alone. But when a recognition process is an inevitable situation then visual

based control task becomes imperative partially or totally.

In Fig. 8, the main steps for image processing until the controlling process of the
mobile robot are shown as layered structures. It simply shows; image acquisition (a),
object detection (b), the graph/triangle construction (c), tracking of local frame (d),

parameter calculation for dynamics (e), and motion of mobile robot (f).

NSNS

I,

d

Fig. 8. Main image processing steps in control process

4.1.6. Positioning Models of Kinematics for Proposed Models

Detected objects from the segmentation process are expressed as base components
in the binary image. Each centroid of these base components represents control points
for the mobile robot control models. These control points are connected to each other
with line parts. The control points and lines are utilized as nodes and edges for graph-
based positioning model as the first approach. Distance values of the lines have been
computed and appointed as edge weights. These values are input to the control
process for graph-based positioning model. In second positioning model, triangle
structure is formed by utilizing these control points and lines. Interior angle values are
computed between line intersections. These values are used as input to the control
process for the triangle-based model. Details of the positioning models are given

separately in following section.
A. Weighted graph-based model
Positioning Scheme for Kinematics

In Fig. 9 (a), graph-based positioning model for the control method is shown. In

this figure, the node ‘t’ corresponds to the target, ‘r’ and ‘I’ nodes represent right and
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left circular labels (control points of wheels), the ‘c’ node expresses the centroid of
red triangle label. ‘D1’, ‘D2’, ‘D1’ and ‘Dw’ specify edges between nodes and they
have distance values. The distance value of ‘Dr’ is the length of the shortest path from
initial position to the target position. These distances are weights of each edges in the
graph. They have been used as inputs to perform control task for mobile robot. Each
node has 2D Cartesian coordinates and except for target node ‘t’, coordinates of other
nodes change as the motion is performed. The ‘Ilw’ and ‘rw’ represents orientation of
the robot wheels. Segmented base components (graph nodes) of a real image frame
are demonstrated in Fig. 9 (b). RGB labels correspond to the distance values (weights)
of each edge. For example, the distance value between the target (t) and left node (1)
on the robot is “771px’. The obtained graph parameters are updated in each image
frame with respect to the new values of the node coordinates. The velocity of left and

right wheels are successfully set in each updating process in real time.
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Fig. 9. (a) Distance based positioning scheme, (b) A real image frame
Distance Input Calculation

Euclidian Distance Value (EDV) is computed and assigned as a weight value to
each edge between the nodes (t, I, r and ¢) in the graph by using (4.23). EDV of the
Dr edge expresses the distance from robot to the target. EDVs are assigned to D1, D2,
Dr and Dw in each control loop. The EDV values are utilized to characterize the input

parameters of the controller algorithms/functions.
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d(p,q) = (4.23)

B. Triangle Based Model
Positioning Scheme for Kinematics

The triangle-based positioning model for control method is shown in Fig. 10 (a).
The ‘t’ point corresponds to the position of target, ‘I’ and ‘r’ locations express the left
and right wheel labels, the ‘c’ point of the triangle component represents the centroid
of directional label in this figure. ‘AL — Angle of Left Wheel’, ‘Ar — Angle of Right
Wheel” and ‘At — Angle of Target’ specify the angles between edges. These angle
values are simply interior angles of a polygonal shape (triangle). They are primary
input variables to implement mobile robot control process. Each corner point of
triangle has coordinates in 2D space and these coordinates and angle’s values change
while robot moves. The robot direction is modeled according to the changing AL and
Ar difference in each control cycle. An example real-world image frame for detected
objects and triangle positioning is shown in Fig. 10 (b). The degree values of each
angles have been shown with the color labels. For instance, degree at the left label is
‘85.33°’. The angle values at target and wheel labels are calculated and updated in
each control cycle. The velocities of wheels are accurately calculated by using these

angle values in control process.
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Fig. 10. (2) Angle based positioning model scheme, (b) A real image frame
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Angle Input Calculation

Each intersectional edge has an angle value in triangle structure. These angle
parameters are determined by utilizing (4.24) and (4.25). The A, A, and A, are
distance vectors between ‘t’, ‘I’ and ‘r’ coordinates of discovered objects. The ang,. is
the radian value of related angle. The 43¢, corresponds to the degree equivalent of the
radian value. Velocities for both wheels are calculated by using these angle values for

triangle-based approach.

AZ — A} — AZ
ang, = acos <_2Ty*Az (4.24)
180
Az = ang, * (4.25)

C. Unit Transformations for Velocity of Wheel

The pulse values are sent to the robot to control velocity of wheels. The received
pulse values are converted to mm/s unit with (4.26). The V, represents velocity of the
left-right robot wheels in mm/s. The v,, represents pulse value sent to the wheels. The
t, corresponds to the refresh time (a constant value). The @,, express the diameter of

the wheel. The Nb,, represents the cycle resolution.

—_ = — %

t, Nb,

W[ = Bt (4.26)

4.1.7. Gaussian Control Model Kinematics

Gaussian function is a smoothing method which is commonly used in a great
number of studies. The general Gaussian function with single dimension (f;) is
defined in (4.27). The parameter x is the difference of input parameters (D; — D, or
A; — Ag). The m value (~3.14) is a constant parameter in f;. The o is standard
deviation, variance is 02 and mean or expectation of the distribution is p. The value of
o is empirically adjusted to ‘0.41°. The u value is set to ‘0’. Since the optimal x value
is ‘0°, it means that both D1 and D2 or AL and Ar are equal or the robot direction is
straight toward the target. The controller input x is the absolute difference value
between D1 and D2 distances for graph approach (4.28). Moreover, this x input is the

absolute difference value between AL and Ar angles for triangle approach (4.29). The
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A and ¢ parameters are used as smoothing factors. If x value approximates to ‘0, then
fe approximates to ‘1’ and if x value approximates to ‘oo’, then f; approximates to
‘0’. Therefore, S — “Speed Coefficient” is computed by multiplying S,,.x —
“maximum speed of wheel” with the subtraction of the f; value of related wheel from
‘1’ by using (4.30). Equations (4.31), (4.32) and (4.33) are used to find S; - ‘Speed of
Left Wheel” and S; — ‘Speed of Right Wheel’. The S,;,.« is the pulse value. It can be
set to ‘1200’ for utilized mobile robot as maximum tick value. The ‘T’ is a constant
scaling coefficient. Acquired value of f; function provides addition to the velocity
value of one wheel and subtraction from the velocity value of the other wheel
according to sign of x. The f; is employed to characterize velocities of the robot
wheels with a single function. It is used to handle control of a differential drive
mobile robot. The f; is adapted to the configuration space to perform real time go-to-

goal control in a static environment.

fo) = —— e (427)
x) = e 20 .
G oV2an
D, - D,
= 4.28
x p) | (428)
A — A
x=|—£ (4.29)
@
S¢ = Smax * (1 - fG) (4.30)
_ (Smax * T+ S¢, D, <D,
Sp= {Smax *T—Sg, D, > D, (4.31)
_ Smax*T'l‘Sc, D1>D2
Sk = {Smax *T—S¢, D, <D, (4.32)
SL,R = Smax *T + Sc, D1 = DZ (433)

The advantage is that a single f; model is adequate to set velocity parameters for
mobile robot wheels in every control process cycle. It ensures a fast and efficient
processing performance in real time. The output of this f; model is added to the
velocity of the behindhand wheel and subtracted from the velocity of the leading
wheel of the mobile robot. This means that the behind wheel according to target

position, takes positive f; value for its velocity calculation. In this way, velocity
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values of wheels are affected from position values. Fig. 11 shows our f; curves. The
red line indicates the x input velocity when the robot is in motion state and the blue
line indicates the stopping process with f; = 1.
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Fig. 11. Gaussian curve graphics for designed control

A. Calculation of Path Cost Difference

The path cost difference is generated between the linear Dy path and the real path
created by the robot motions. The path cost difference is simply calculated by using
(4.34). This value shows how much difference occurs between these paths. The Dy
represents the linear path distance and the D, corresponds to the actual path distance.
The sampled coordinates on the formed path are the x;y; ... x,,y,,. The actual point is

q, and the next sampled point is p,.

Dr _ 2iz1(qi —po)?

DA - XnYn 2
z:9513/1 \/Z}rl:l(qf - pf)

(4.34)

B. Procedures of Stopping Process for Kinematics

The stopping task is performed when a predefined threshold is reached. This
threshold parameter is the distance value Dy, between r and 1 coordinates on the robot
label in graph approach. When the distance between robot and target (D7) equal to or
below this threshold by reducing gradually, ‘0’ signal pulse is transmitted to the robot
with S; p calculation by changing parameter to start the stopping process of the robot.
The Dy is controlled in each control loop. This threshold parameter is controlled

according to the target angle value A; at the target position in triangle approach.
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When the A7 value is equal to or exceeds the ‘60°” by increasing gradually, ‘0’ signal
pulse is transmitted to the robot with S;  calculation by changing parameter to start

the stopping process of the robot. Similarly, the A is controlled in each control loop.

In experiments, the mobile robot has stopped according to the target and robot
positions. The f; parameter value o is reassigned in the end of the execution time
passed to complete given task. This reassigning process of ¢ parameter is performed
to stop the robot in a certain stage when previously mentioned threshold value(s) is

reached. The robot motion is stopped with ‘f; = 1’ value by changing value of x to
‘0’ and value of ¢ to ‘1/v2m’. This means that S; z takes the ‘0’ value and so the

stopping process of the robot is triggered with (4.35) for the graph and (4.36) for the

triangle approaches.
SL,R = Smax * Sc, DT S DW - 30 (435)
SL,R = Smax * Sc, AT 2 60 (436)

If this threshold condition is not met for the utilized control approach, then the
calculation of velocity is proceeded with the previously defined (4.31), (4.32) and
(4.33) equations. The computed velocity values are converted to the tick/pulse type

with the parameter transformations and then transmitted to the robot.
C. Control Scheme for Visual Control System

The entire control stages for controller models is demonstrated in Fig. 12. An
image frame captured from the fixed head camera in real-time. Object detection tasks
have been executed in the captured image frame. A weighted graph or triangle
structure is formed according to the utilized model approach by using identified
objects. The weight values (distances) of edges for graph model and the degree values
(angles) of edge intersections for triangle model are calculated. The Gaussian function
is operated by giving ‘x’ difference value (D;-D, or A;-Ag) as input variable. The
output of the Gaussian is added/subtracted from wheel velocity values according to
this ‘x’ value sign (— or +). The (4, —) signs means that the velocity of the left wheel
increased and the right wheel is decreased. Similarly, (—, +) signifies the vice versa.
Besides, (~, ~) corresponds that the wheels are affected by same rate. The threshold
of stopping process is controlled, if the threshold is satisfied, then the control

procedure stops. Otherwise, control processes continue by taking next image frame

33



from the initial phase. These entire tasks are performed by utilizing only the visual

features without any information from the sensors.

Velocity (+,) ‘

Fig. 12. General working phases for designed control method

4.2. STAGE-2: Path Planning
4.2.1. Operating environment of Stage-2

As distinct from Stage-1, the operating environment includes obstacles for Stage-2.
Therefore, a path planning method have to be used to extract a proper trajectory for
WMR. The camera position and system hardware are all have same parameters as in
previous stage. The obstacles are placed with the several different configurations to
see performance of the control infrastructure in simple and extreme conditions. The

operating environment for Stage-2 is demonstrated in Fig. 13

USB 3.0 Cable
(((tE

Computer

Fig. 13. Operating environment (Left — Representative, Right — Real)
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Fig. 14 shows the object detection task for this stage. There are three kind of object
that have to be detected. These objects are used to perform tracking process in mobile
robot control process. To detect obstacles, a suitable threshold mask is used. Because
of static nature of the configuration space, obstacles are detected for once at the start
of the control process. After that only the mobile robot is tracked to detect its new
position. The target and obstacles are static, so it is not necessary to track them. Their

positions have been simply stored for further usages.

1

Fig. 14. Object Detection; I. Acquired image, II. Thresholded image, I1I. Detected objects, IV.
Calculated angles
Local frame method is utilized exactly same as in previous stage. Local frame
coordinates are updated when a threshold limit for processed image frames is reached.

Fig. 15 demonstrates local frame detection in configuration space.

AE )

Degree: 72 60 °

Fig. 15. Local frame demonstration on a real image frame

4.2.2. Fundamentals of Potential Fields

Potential field is a term used to define vectors array representing a certain space.
Typically, a vector consists of magnitude (m) and direction (d) parameters, Fig. 16. A

vector represents a force in potential fields. Length of the vector corresponds to the
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magnitude and angle of the vector corresponds to the direction. All these vectors in
potential fields can be resembled offline local compasses giving the needed direction
with a distance weight at different points. Therefore, the Artificial Potential Field
(APF) can be utilized to model go-to-goal and avoiding obstacles behaviors together.
Two kinds of force are used to steer and advance the object (robot) in APF method.
These forces are attractive field and repulsive field forces. Potential field structures
are illustrated in Fig. 17 for an electrical potential field; (a) represents attractive field

between opposite poles and (b) represents repulsive field between same poles.

Fig. 17. Potential field structure (Electrical)

Attractive Potential Field (P,): It has attractive forces used to attract/pull the
object to the target position according to the given configuration space. Magnitude of
this force generally proceeds with same value until the moving robot reaches to the
target position. According to design this attractive force can be increased or decreased
under certain circumstances. It can be linearly increased or decreased or dynamically
changed according to configuration space parameters. Repulsive Potential Field
(Brep): It has forces pushing object at a certain rate to overcome obstacles and unseen
locations. Magnitude of this force can generally show variability according to size of
the obstacles and distance values between object and obstacles. In other words, this
force demonstrates a dynamic variability until robot reaches to the target position.
Gradient vector structures are utilized while these forces are specified as magnitude
and direction. These forces are demonstrated in Fig. 18 for a representative
configuration space. Fg;, is the attractive force, F.., is the repulsive force and Fipq;

is the resultant sum of these two forces.
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Target (Goal)

Obstacle

Fig. 18. Potential field forces

In some cases, a vector field is gradient of a P(x,y) potential function expressed

as following (4.37);

dP 6P>

(Ax,Ay) = VP(x,y) = (a'@ (4.37)

If the potential area is defined mathematically, g = (x,y)T to be the robot
coordinates, then it is basically computed by utilizing (4.38). Prorq:(q) is total
potential field in configuration space. Py (q) is attractive filed and P, (q) is the

repulsive field in this equation.

Piotar(q) = Pare(q) + Prep @) (4.38)

Attractive force is the negative gradient of attraction field and repulsive force is the
negative gradient of repulsion field. F(q) is to be gradient of artificial force vector

field, then it is found by using (4.39).

F(q) = —VPu(q) — VPrep (@) = Fare(q) + Frep(Q) (4.39)

In this equation, VP expresses P gradient vector. F,:;(q) is the artificial attractive

force and F..,(q) is the artificial repulsive force. Robot position is shown with

q(x,y). Thus, the following equality (4.40) is found.

Faet (Q) = —VPy:(q) and Fgy, (Q) = _VPrep (q) (4.40)

Attractive field between target and robot is built to attract robot to the target
position. Attractive potential field created by target is found with (4.41).
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1
Eidz(q, qn),d(q,qp) < d *p,

Pare(q) = (4.41)

1
d 4 {d(q,qn) = 53d *n",d(q,qn) > d *,
d(q, qp) is current distance value of robot to the g, target. { is attraction gain and

d 5, threshold value being next value of conical form of second-order function.

T . .
qg = (xg, yg) to be location of target vector. pgoq(q) = ||q — 4y || is the
Euclidean distance from the position of robot to the position of target. Attractive force
on the robot is computed as negative gradient of attractive potential field and gets the

form (4.42) given below.

1
Fare(q) = =VPay(q) = _ECVPéoaz(Q) = —((q - Qg) (4.42)

Fat¢(q) is a vector which head toward g, point (target/goal). It has linearly related
magnitude to distance from q to q,. The F,;(q) components are negative directional

derivatives of the attractive field throughout x and y directions in 2D coordinate

space. Therefore, when influencing of attractive potential field starts, components can

be expressed as (4.43) and (4.44);
Fare—x(q) = =Q(x — xg) (4.43)
Fatt—y(Q) =—={(y— yg) (4.44)

In these equations, Fy;._y is attractive force in x direction and Fgs;—y, is attractive
force in y direction. The mobile robot has to be pushed from the obstacles. The
influence on the robot by obstacles is not wanted when robot is far away from these

obstacles. Then, repulsive potential field (4.45) can be formed as following.

2

1 1 1
Pep(@) = {E" (@ B 5) @)= (4.45)
0.,p(@) >0Q"

In this equation, n is repulsion gain, Q* is the distance threshold value that will
create a repulsive force on robot for an obstacle. q. = (x.,y.) to be a unique
configuration for the nearest obstacle to q. The shortest path between the robot and
obstacle is p(q) = |lqg — q.||. When distance between obstacle and robot is larger than

Q*; there is no influence for robot. Note that, { and n gain parameters and d* and Q*
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threshold parameters are set empirically. Similarly, repulsive force is the gradient of

repulsive potential function given as following (4.46) and (4.47).

0, p@@ =po
Frep(q) = =VP¢p(q) = {n (ﬁ _ %) (pz(q)) V@),  p(@) < po (4.46)
0, p@ =po
)= {" (ﬁ B .0_10) <pth)> (o=ag) r@sp0 Y

Frep—x(q) and F.,,_,,(q) are the repulsive forces Cartesian components. When the

repulsive field become effective on the robot, the components can be expressed as

(4.48) and (4.49).

. . . 0, p(q) = po
FTe —x = X —Xc 4.48
0 {’7 (p(q) B %> <p2<q)> (uy = ycn)’ @sp

~ . ) . ~ 0, p@ =po
Frep-y(")_{"(m_%)(pZ(q)><||§—§Zn)’ @sp

Although there are a great number of obstacles, repulsive potential field in total is

sum of repulsive potential fields of all obstacles. The potential field in total can be

signified with following equality (4.50);

P(9) = Pare(@) + ) Prep(@) (4:50)
i=1

In this equation, n corresponds to the number of obstacles. Then, total artificial

force can be formed as following (4.51);

F(@) = Fare(@) + ) Frep(@) (451)
i=1

On the other hand, there are several issues which cause that the method not to work
properly in potential field. The moving object cannot make any progress because of
local minimum or it makes excessive swinging in its movements due to unstable
oscillation. In Fig. 19, local minimum (I, II) and unstable oscillation (III) problems

are demonstrated. As seen in figure, local minimum problem stems from balanced
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repulsive and attractive forces. Because of this balancing situation robot cannot make
any progress, so it cannot reach to the desired position. Unstable oscillation problem
stems from narrow passages or unsuitable parameters. The robot makes excessive and
unnecessary swinging movements, so it reaches to the target very late and wastes

energy.
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Fig. 19. Main APF problems (Local minima and unstable oscillation)

4.2.3. Adaptive Artificial Potential Field (A-APF)

These mentioned parameters are dynamically changed in proposed adaptive
artificial potential field method. Parameters are readjusted depending on magnitude of
potential forces from the obstacle, global positions of obstacles and distance to target
parameters in each new path coordinate assignment and control iteration step. Objects
and environment variables are demonstrated in Fig. 20. Blue arrows represent
attractive force and red arrows represents repulsive force. The equation (4.52);

d(q,490)a, £ d(q,9,)4 £, and d(q,9,)4 v, terms express the distance measurements

taken from front, front-left which is between front and front-left-diagonal and front-
right which is between front and front-right-diagonal. Repulsion gain ‘n’ is increased
(4.53) as approaching to the obstacle (d, distance) in configuration space. The
distance from robot to target is d(q, qy). Similarly, attraction gain ‘¢’ is increased
(4.54) as approaching to the target (d; distance) in configuration space. Distance
sensors are n = {1, 2, ...,pn} around the robot and measurement taken by them are

expressed with d(q, q5)a,,4(q,q0)a,, - A(q, %)dpn- The average value of the total
measurement taken from sensors around the robot is expressed with d(q, q,)q,,- The

total number of distance preceptor is pn. Potential calculation order factor ‘k’ (or

d *,) value which is a critical parameter is also raised (4.55) with small rates as
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approaching to the obstacle (d,, distance). It has been changed between the 2.85-3.20
value ranges. The “y’, ‘6” and ‘€’ parameters are positive constant factors. The
minimum attractive potential threshold ‘ap,,;;” in any point on the entire
configuration space is assigned to partly overcome the local minima issue. This
minimum potential force value is decreased (4.56) dynamically with small rates as

approaching to the target (d; distance). ‘9’ parameter is also a constant scaling factor.

dl

Obstacle
Front

.
Sensors

Target
(% « — — L - Object

\_ Distance

Sensors
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Fig. 20. Objects and variables in working environment

d(q,q0)a,; = avyg (d(q. doda, T A(4,40)ay, +d(g, qo)dm) (4.52)
1
n=n+n*xy| ————=|>d, { (4.53)
/d(q.qo)daf
=1+ 8( ! >=>dl (4.54)
= * _ ¢ .
Vd(q, qn)
1
k=k+k=xe =d, (4.55)
f::ll d(q' QO)dn
pn
APmin = APmin T APmin * 9 (4\/ d(q' Qh)) = dt \) (4-56)

Some key points detected between obstacles are generally accepted as node in
graph-based methods. Path planning is implemented on these nodes. Therefore,
finding these key points (nodes) is an additional task besides path planning. However,

in APF method; total resultant force is found by taking resultant of total repulsion
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force created by obstacles and total attraction force created by the target on the robot.
This vector force provides readjusting the position needed to be arrived, velocity and

direction parameters in every step.

Before the main experiments, to show advantages of the A-APF; default and
adaptive APF methods have been executed on two different configurations. The
simulation results of these pre-experiments have been demonstrated in Fig. 21.
Default APF has reached to the solution in 972 steps (or frames) for conf-a, on the
other hand, A-APF has reached to the solution in 76 steps. For second configuration
conf-b, default APF has reached to the solution in 290 steps, whereas A-APF has
reached to the solution in 64 steps. It is clearly seen that A-APF is far more superior

in terms of performance.

conf-a conf-b

Default APF

Adaptive APF

Fig. 21. Simulation instances for several configurations

Table 1 demonstrates the path cost for default and adaptive methods. A-APF has
provided more efficient path extraction compare to default one. Although default APF
seems to be extract smooth looking path for conf-a, there are excessive amount of
unstable oscillations. It completely confused the path trajectory for conf-b. In

addition, A-APF has completed the given configuration in less time,

Table 2. These excessive time periods mainly stemming from oscillations; so, from
the constant parameters. Ultimately, A-APF has overcome these issues, since it

continually updates its parameters in each iteration.

Table 1. Path costs

Method conf-a conf-b
D-APF 625.60px 1015.89px
A-APF 568.98px 559.73px
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Table 2. Path extraction times

Method conf-a conf-b
D-APF 315.237s 129.622s
A-APF 8.236s 7.407s

Fig. 22 shows (a) k — potential calculation order factor ‘K’, ap,,i, — minimum
attractive potential ‘MAP’ and (b) n — repulsive potential scaling ‘RPS’ and ¢ —
attractive potential scaling ‘APS’ parameter changes for conf-a configuration.
Similarly, Fig. 23 shows these parameter changes for conf-b configuration. k
parameter has been shown with blue color and ap,,;, has been shown with red color
in (a). n parameter has been shown with red color and { parameter has been shown
with blue color in (b). Parameter changes are more evident at some points where robot
approaches to an obstacle or to the target. After passing an obstacle, it can be seen that

the parameters changes in a smoother way.
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Fig. 22. A-APF parameter changes — conf-a
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Fig. 23. A-APF parameter changes — conf-b

4.2.4. Decision Tree and Visual Based Control

Decision tree (DT) is a tree-like graph that represents model of decisions and
generate new decisions according to possible inputs. It is used to create a suitable

decision by branching new levels until the given input is satisfied. In decision tree,
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each internal node expresses a "test" on an attribute, each branch signifies the result of
the test and each leaf node corresponds label of a class. The paths from root to leaf
means classification rules. It is also used to model expert systems as well. It is simple,

flexible and provides fast outcome acquiring.

Decision tree is used to model a specialized controller for VBC. It determines
WMR control parameters by using available input parameter(s) in this study. Decision
tree structure produces suitable velocity parameters in control process according to
angle values of triangle. The structure of the tree to generate control parameters is
illustrated in Fig. 24. After calculating control parameters, velocity assignment is
performed according to decision tree shown in Fig. 25. This second decision tree

takes difference of angle values on the mobile robot wheels.

A, value is the absolute value of difference between A; and Ap angle values.
Branching from this node to below tree layer is made according to the predefined
value ranges. For example; assume that A; value is ‘8°°, then branching actualizes
from the first node to the leftmost node in the second layer. The third layer contains «
and B values that are coefficient parameters. As the angle difference increases the
difference between these coefficients also increases. Tree branches include branching

conditions.
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Fig. 24. Angle difference — Control parameters decision tree

Equation (4.57) express general branching condition. a and S parameters take new
values (a,, and ) according to A; value within the defined range. If A; does not
match to the defined range, it is controlled whether it matches or not to next range

condition (NRC) and this process proceeds in this way.
A, <|Agl < Ap?a=a, B =B,:af =NRC (4.57)

After gaining the @ and 8 control parameters second decision tree takes sign value
of Ay and acquired control parameters to calculate required velocities for mobile
robot wheels. The A, parameter represents sign or magnitude of the difference value.
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There are three possible signs ‘—, 0, +’; so, decision tree has three nodes in second
layer. If the sign is negative, branching occurs to the left and V; and V calculated
with -/+ additional values respectively. If the sign is positive, then V; and Vj,
calculated with -/+ additional values. If the sign is neutral/zero, then V; and Vj

calculated with same +/+ additional values.

| Av |

f\' <0 j—ljco A, >‘0¢
e gy
vV, (4]

VO (Ve [(Ve@®)]| |Ve® Va ()

Fig. 25. Angle magnitude — Velocity assignment decision tree

Velocity parameters of WMR are characterized by using following equations. In
equation (4.58) V4 1s the maximum velocity limit that the mobile robot can achieve.
V. parameter is a constant velocity coefficient parameter. The A is the first distance
value between WMR and target positions. The first distance value means that the
distance calculated in initial starting configuration space. The A, is the new distance
value between WMR and target positions in configuration space. It means that the
actual distance value after starting mobile robot motion. The A4 parameter in (4.59) is
the average value of A; and Ap sum. The y in (4.60) is the average value of total
scaling factors. The V;, represents the velocity of left wheel and the Vi represents the
velocity of right wheel. The A;, Ag and Ay are the interior angle values of the triangle
structure as indicated before. The a and S are the constant scaling factors. The A4
parameter is the absolute value of difference between A; and Ai. Velocity values are
calculated by using (4.61), (4.62) and (4.63) equations. Velocity computation of a
wheel is performed by depending on opposite corner angle value according to wheel
position. The scaling factors a and f affects the velocity magnitude with different
rates as angle values change. This dynamic parameter changing operation provides

smoother motions instead of sharp motions for WMR.

Ar, Ar + Ag,
Vmax = Ve +Vex—=1 (4.58)
Ar Ar
A+ A
L= % (4.59)
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r=— (4.60)
v, = (Vmax+AR)*a+\/(Ad+1)*AT+1 (4.61)
Ve = (Vpax +AL) * B F \/(Ad +1) AT — (4.62)
VoL = (Vnax +42) *v + \/(z‘hz +1) AT 1 (4.63)

A. Calculation of Path Cost Difference

Ds and D, path is used to calculate the proportion of the path cost between the
simulation path and real path formed by robot motions until arriving the target
position. Path cost difference (PDC) is simply computed by employing (4.64). This
value provides to see how much difference occurs between these paths. In this
equation, D corresponds to distance of simulated path acquired from path planning

process and D, stands for distance of real path shaped by WMR.

DS l 1(ql )2
sz 5y -

B. Procedures of Stopping Process for Kinematics

PDC -

(4.64)

Stopping procedure is performed when a predefined threshold parameter is
satisfied. This threshold parameter is the angle value between edges at the target
position (A7) for triangle approach. When A, value reaches to or exceeds the ‘60°’
by increasing gradually, the ‘0’ pulse values are transmitted from V, p calculation to
the wheels with parameter changing to stop the robot. According to current A value,
robot velocity is decreased in each iteration step as approaching to the target location,
progressively. Ar is controlled for each image frame in real-time. V,  takes value ‘0’
when the target position is reached. The stopping process of robot starts with (4.65)

for this control infrastructure.

V, =08&Vg = 0iff Ay > 60 (4.65)
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If this condition is not satisfied, then the velocity calculation is proceeded as it has
been done previously in (4.61), (4.62) and (4.63). Calculated speed values are
converted to the tick/pulse type with required intermediate processes and then the

values are transmitted to the robot with ordinary procedures.
C. Control Scheme for Visual Control System

The entire working scheme for designed control model is demonstrated in Fig. 26.
In each control process, an image frame is captured from fixed head camera in real
time. Object detection task has been executed on this image frame. A path plan is
extracted by using adaptive potential field method (A-APF). This path plan is created
at first control loop. After this first step, same path plan is used throughout the all
control process. According to the used model approach a triangle structure is formed
by utilizing detected objects. This triangle is formed between wheel labels and a
middle-point located on the extracted path. This middle-point is selected by using a
pre-defined skip-factor in path matrix. For triangle model degree values (angles) and
of edge intersections are calculated. Decision tree function is employed by getting ‘x’
difference (A;-Ag) as input value. Result of this function is added to/subtracted from
wheel velocity values according to sign of this ‘x’ value. In velocity computation
step, the signs (+, —) express that velocity of left wheel increased and right wheel is
decreased by decision tree. Similarly, (—, +) express vice versa. In addition, (~, ~)
expresses that the velocities of both wheels are influenced with the same rate.
Ultimately, threshold (A7 = 60) is controlled. The control process is stopped, if

condition is met. Otherwise, control loop proceeds from initial step with next frame.

v
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Fig. 26. General working phases for designed control method
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Using Cartesian coordinates on detected objects and path plan; a triangular
positioning scheme is created to generate the control input. This triangle is formed
between the wheel labels and a threshold point (intermediate target) on the obtained
path. The inputs obtained from this scheme are given to the decision tree controller
and the WMR velocity parameters are calculated. The threshold is selected using a
predefined jump factor in the path matrix. In each iteration, the threshold point is
updated according to the jump factor value, depending on the angle A at the target.
The update process of this threshold point ends when the final target which is the last
position of the path is selected. Fig. 27 shows the threshold point representation on a

path plan. These threshold points can be defined as intermediate targets.

Path Plan -
Cartesian
Coorﬁih’iﬁtes Threshold Point
FA N (Intermediate Target)
! S
*f* *******wuu*u** " .
ot Fhag 7y
o oy
A

Target

Obstacle
Fig. 27. Path plan threshold point representation

The operating layers of the whole system is demonstrated in Fig. 28. Image frame
is taken from the fixed head imaging device (a), threshold process is carried out (b),
object detection and geometric parameters are calculated (c), taking local frame
around the robot within defined threshold value (d), according to object positions
simulate and extract a path plan with A-APF (e), calculate input parameters according
to path plan and robot position (f), velocity parameters for both wheels are calculated

(g), convert and send parameters to the physical mobile robot (h).

Fig. 28. Operating layers of the designed system
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4.3. STAGE-3: Multi-Camera Extension

The multi-camera configured control system has four sub-stages: In first stage,
physical environment including configuration space, camera positions and
connection/cabling are prepared. In second stage, image-based tasks; image stitching
and object detection are implemented, then environment map is created. In third stage,
path plan is extracted and divided. In last stage, the WMR motion control is
implemented. The stages are illustrated in Fig. 29. The system modules and

configuration space are given in Fig. 30.

Stage-1 Stage-3
-

Configuration Connection Object Path WMR Control
Space & Cabling Detection Planning Process
9 9 9 9 9

Camera Image Environment Path
Set-up Stitching Map Extraction Dividing
Stage-2 §tage-4

Fig. 29. Stages for the multi-camera control model
USB

csl

(TG

Fig. 30. System modules and configuration space

4.3.1. Operating environment of Stage-3

Operating environment includes all Stage-2 properties. Besides, configuration
space observed through four cameras that have same specifications. All cameras are
placed a fixed position with same heights from the ground. They have been hanged
210 cm above from the floor. Their lenses are perpendicular to the floor. The cameras

are connected to the computer with USB 2.0 ports. Each camera covers an area
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including two axes labels according to camera position. Experiments have been
performed on Intel i3-3217U 1.80 GHz CPU with 6GB DDR3 1600 MHz Memory
and 5400 Rpm HDD. The utilized mobile robot steering wheels are quite thin and ball
caster wheels are small. Therefore, plastic yellow layer is used to prevent wheel
jamming to suture area of the floor tiles. The brown rectangle objects are obstacles
and blue circular object is the main target. Different colored and shaped labels have
been placed to the floor as distinctive properties for feature detector. Fig. 31
demonstrates working space representatively. Cameras are expressed with C1, C2, C3
and C4. Viewing area for C1 is the multiplication of C1_x and C1 _y. Intersections of
two camera viewing areas are C1-C2, C1-C3, C2-C4 and C3-C4. There is one more
intersection area where all camera can see and it is C1-C2-C3-C4. This means that
there are several areas tracked by different cameras. The remaining areas are observed
with only one camera in environment. Blue objects (T1, T2) represent the target
position. Red objects (I1, 12) represent boundary positions where robot starts to enter
viewing area of two cameras at the same time on the path. Rpl, Rp2 and Rp3 are
reference points between two obstacles. They are used to show path skeleton which

resembles the shortest path between given two positions.

................................................................................................................
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Fig. 31. Working environment for designed control system (Representative)
4.3.2. Image Stitching

Image Stitching is one of the particular studying fields that is commonly
researched. It hosts a number of problems needed to be overcome. Generally, there

are two basic goals; overlapping the images taken from same position and different
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angles, on top of each other and fusing common intersection points in the best
possible way. Basic matters needed to be considered in image stitching are as

following;

¢ Density of variables across the whole scene
e Variable density and contrast values between frames
e Lens distortion
- Pin cushion, Barrel/Bucket and Fisheye
- Setting the lens profile at the selected focal length
- Use of available lens profiles
e Dynamics / movements in the scene
- Shadowing / Ghosting
- When the images are aligned, basically one of them is selected
e Alignment error (Axis misalignment)
- Shadowing / ghosting again
- Better control points should be selected
e Visually satisfactory results
- Super wide panoramas may not always be satisfactory
- Gold ratio, 10: 3 or other satisfactory scale trimming
The main problem with image stitching is the difference in the component size
between the x and x’ regions due to the angle difference as shown in Fig. 32. In the
equations (4.66), (4.67), (4.68) and (4.69) below, the components to which x is

connected are given [100];

Fig. 32. Parameter changes due to panoramic shooting angle

x = K[rt]X (4.66)

x'=K'[r't") X' (4.67)
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H=KRR ™K 'tobe, x' = Hx (4.69)

Typically, only R and f (4 parameters) will change, but usually there are 8
parameters of H (homography). In there, the K and K' are the measurement
(calibration) matrices. The X is the actual location of the object. The x and x'
represent the position of the same objects taken from different angles at the same
focal length. The R and R’ are rotation matrices. The t and t' are translation matrices.
Fig. 33 shows the distance difference between the components in the region
originating from the camera angle with the same red dot common to both images. A

component, which is only the second image, is indicated by a green dot.

Camera Center

Fig. 33. Images taken from a camera made return motion (Photo: Russell J. Hewett)

The ‘n’ images will be taken from the ‘n’ head cameras for image stitching. These
images are placed horizontally or vertically relative to the camera positions by
superimposing common areas with the next intersection of the image. Although it is
similar to creating a panoramic image, it is different from each other in terms of the
location in which the image is taken. Images obtained for a panoramic image are
taken at different angles with a single camera from the same point. On the other hand,
images are obtained from different points but from the same angle (perpendicular to
the surface) in the multi camera configuration. Generally, creating a panoramic image
with source images taken from the same spot is more prone to distortions in the
image. This is the difficulty of matching the intersection points of the images because
of the fact that the input source images are taken from different angles. If the feature
matchings at these intersections are not sufficient, the stitching success at the relevant
region will be low and visible distortions will occur. The presence of common
intersection areas closest to each other due to the shooting angle is an enhancement
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factor in the images taken consecutively from the central view. Fig. 34 shows two

image frames superimposed on top of each other.

Fig. 34. Two superimposed images

In multi head-cameras, the performance will be higher because the images are
taken from the same angle. Since the matching ratio of inter-view intersections is very
high, the panorama can be started from the desired image. The key-points can be

detected with SURF [101] or SIFT [102] feature detectors to extract image properties.

This work will use SURF. The pseudo-code of the image stitching is given in Table 3.

Table 3. Image stitching process

Take two images as parameters, G (1) and G (n-1)
Make feature extraction on both images with SURF
Calculate the set of matching points (Feature-Match)

B b

Apply RANSAC to estimate a homography transforming the image that
overlaps the spots, T (n)

o

Convert images using this homography
6. Stitch the images together

7. Repeat the process steps to stitch the next image with these blended images

Image properties are detected and matched from G(n) to G(n — 1) — (common
intersection regions are determined). The SURF features are extracted from the black-
and-white form of the first image. Because the images are close enough to the camera,
a projective conversion is used. If pictures are farther away, affine transformation is
used. Then, in the iteration, the SURF properties of the G(n) image are extracted.
Matching of these extracted properties between G(n) and G(n — 1) is made. The
geometric transformation of T'(n) mapped from G (n) to G(n — 1) is calculated by the
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RANSAC method using property mappings and taking the previous property

mappings as parameters.

Transformations mapped from G (n) into panaroma image/view T (1) * -+ * T(n —
1) * T(n) are calculated. It is obtained by multiplying itself and the previous
transform together. Moving from the situation that "the center of the captured scene
exhibits the least distortion", a good panorama can be obtained by changing the
transformations. The change process is done by inverting the transform for the central
image and applying this transform to all the other. This case can be neglected in this
study, since multiple head-cameras all receive images from the same vertical angle
and from different positions. Therefore, angle-induced distortions hardly ever occur.
Similar to the previous stages; the object detection process is performed with color

segmentation and quantization.

. .
U
Fig. 35. (I) Images obtained at the same angle from different camera positions (II) stitched state of
four-images

(I

In Fig. 35, four images (a, b, ¢, d) taken from the cameras are shown. The cameras
have same specifications. The images taken from different positions and same angles
are stitched on common intersection points, (I). The opacity values have been changed

so that the stitched areas in the images look clear, (II).
4.3.3. Robot Control in Multi-Camera Configuration

All designed controllers and positioning models are generally used with a fixed
single head-camera configuration in the literature. In this study, number of cameras is
increased to create an expandable/scalable configuration space. Four cameras are used
to acquire image frames from configuration space as shown in Fig. 36. These acquired
images are stitched and fused to get one bigger image. After this stage, the object

detection is performed on this fused image, so that the binary map is obtained. Next
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step, the path plan is extracted from the binary map with A-APF (Adaptive Artificial
Potential Field). Then the controller method drives mobile robot throughout this path

in real time until it reaches to the target position.

ST "
@“E% E QEQ} E

USE

Fig. 36. Multi-camera — Computer connection and configuration space

Acquired path from the stitched image is expressed with the S,44,. This path
variable contains coordinates of the path which are obtained from the A-APF path
planning process. In the next stage, Spq¢, 1s divided (4.70) according to each related

camera viewing area (CVA). The S, represents the path fragment under the

path

camera x (Cy) and it is called sub-path. The Sp4:, can be divided to one sub-path,
several sub-paths or maximum four sub-paths. The S, 4, does not be divided if the
mobile robot, target are under the same camera and target is reachable from there. The

divided paths assigned to a path tracking queue (Pq) according to the path tracking
order (P,). For instance, if the S,y is pass through C, and C, then it divided as
Szpath and S4path and these sub-paths are added to P, with P, = (2,4). This means
that the mobile robot reaches to the target by using C, and C, cameras. Sub-paths
have one sub start point (Sy.,) and one sub target point (Sy,,). For instance, the
mobile robot starts to move from a S, , towards S, , under the C; CVA. When it

reaches to the S

xpp» 1tS current position is assigned as S,

;p Of the next path in P,.

This iterative process continues until the all sub-paths in P, are processed.

The S,q¢n coordinates are distributed to the path hosted CVAs with rescaling

process by using (4.71). X,ew and Yy, are the new (x,y) path coordinates that are
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desired to calculate in undistorted image space. X,,4 and Y,,4 are the width and
height of the undistorted image. x,;; and y,;4 are the path coordinates in stitched
image. X;is and Yy are the width and height of the distorted image. To detect
whether the robot appeared in the intersection area or not; this area on the path is
controlled by using (4.72) and (4.73) conditional statements. I,,,,, is the intersection
area; it takes 1 or 0 value; 1 value means that robot is in I, intersection area. Cy; 1S
the active camera. If robot is not in the intersection area then C,.; is equal to the
currently working camera (Cpye). Igy represents the intersection area of all four

cameras. The ty, . is the main target position in 2D image space. If robot is detected

under Iy, then the Cy, which holds ¢, ,,. in its CVA, is activated.

Spath = Prq = (Sx()yamn: Sx@paiw ) AVX(M) =n,1<n<4An€z  (470)

Xold * Aund Yoid * Yund
Xnew = X—A Vnew = Ty, V(Xo1as Yora) € Spath 4.71)
dis dis
Inm =17 Caee = Cx # Coee = Cpre 4.72)
layy =17 Coer = C, & 3 txi,yi € Cpt Coer = Cpre 4.73)

The Sxpath is tracked according to its path coordinates. Firstly, a sub-target Sy, is

determined in these coordinates according to a pre-defined threshold. In each control
iteration, the next path coordinate which is after threshold position is assigned to the

Sx,,- In each Sx,, Sy,, starts from threshold position according to Sy, and updated

ath’

continually until S, is assigned to S, . When the robot reaches the last S, the next

C, takeover the tracking process for related Sxpatn- AAS 2 result, the motion is modeled

according to progressively updated S, sub-target. This process provides smooth

t

motion especially in sharp turns in sub-path plan. Fig. 37 illustrates the sub-target

tracking process.

56



Degree: 180.01)

Degree: 497 ©

@Degree: 73.58°
‘v‘

Degree: 61.45 ©

Fig. 37. Sub-path and path tracking under C,

The entire multi camera-based control process flow is demonstrated in Fig. 38.
Unlike the single head-camera configuration, designed infrastructure works a bit
different for multi head-camera configuration. Acquired image frames are stitched
and object detection is made on this stitched image; so, the binary map of the
environment is obtained. A path plan is formed on this map. After acquiring the path
plan, path is divided and distributed to the required regions on the map. The robot is
tracked with related camera where it is in the field of view. In other words, the
overhead camera which can cover the robot starts tracking process. The controller
triggers the motion of mobile robot. When robot move towards to the field of view of
another camera; firstly, control process is proceeded until robot fully appears in the
intersection region. According to related camera(s) of this intersection region, the next
head camera is activated with respect to view field of other camera where the next
part of extracted path is located. When this second camera is activated, the first
camera is deactivated instantly. This means that only one camera is activated at a
time. This process continues until the mobile robot reaches to the main target (¢, ,,)
position. At each intersection point suitable camera take over the tracking process and
control task is proceeded in this local configuration space. Suitable camera means that
path is in field of view from last intersection region where robot reaches to the next
intersection region or target position. The extracted path from whole map can be in

one or more camera field of view. This situation changes according to target distance,
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obstacle positions and robot position and direction. In each camera region, the
controller is executed normally without any additional workload. The controller is

only stopped or actuated when there is an intermediate or main target. Summary of

the multi camera-based control system is illustrated in Fig. 39.
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Fig. 38. Multi camera-based control process flow of designed system

Fig. 39. Summary of the multi camera-based control system: (I) Simultaneously acquired images

from all cameras (II) Stitched image (III) Detected obstacles (IV) Extracted path plan between robot

and target (V) Calculation of controller inputs (VI) Robot implementation
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5. EXPERIMENTS
5.1. STAGE-1: Obstacle Free Experiments
5.1.1. Experiment Configurations

Velocity of wheels are calculated by processing image frames; the input
parameters of controller are fluently calculated until the mobile robot arrives to the
target position in an indoor environment. The distance from starting to the target
positions is set to 100cm in experiments. The S, value is adjusted to *80 tick/ps’ in
all experiments. The starting direction (heading) of the WMR is set to two different
directions; ‘0°” and ‘180°” according to the position of target. The direction statuses
are adjusted to test position of simple and extreme conditions in both positioning
models. Because the angle value between the target and mobile robot changes in the
range of minimum 0° to maximum 180°, we have selected and used these two angle

directions. There are four different conditions for experiments;

- Distance of 100 cm and angle of 0° implementation for the graph-based

model; it is named as 100 0 G

- Distance of 100 cm and angle of 180° implementation for the graph-based
model; it is named as 100_180 G

- Distance of 100 cm and angle of 0° implementation for the triangle-based

model; itis named as 100 0 T

- Distance of 100 cm and angle of 180° implementation for the triangle-based

model; it is named as 100_180 T

These four experiment conditions have been implemented three times in the
configuration spaces. Therefore, 12 experiments have been performed with three
repeats and the average values of the repeated experiments are computed to obtain
accurate results for these four experiment conditions. The robot is gradually fitted to a
smooth trajectory after a period of motion. The obtained information from control

model processes are stored to hard drive for additional comparisons.
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5.1.2. Graph Based Control Model
A. Control Model Experiments

In Fig. 40 and Fig. 41; the starting positions of the WMR are shown with (a) frame
and finishing positions are shown with (b) frame. The small frames at the bottom
demonstrate the robot positions during processing time. It should be said that the
black line is the power cord shown behind the robot. The 100 0 G experiment is
given in Fig. 40. The red, green, blue and white labels represent the D;, D,, Dy, and
Dy, respectively. The path trajectory followed by the robot is demonstrated with red
path in (b) frame. When D < Dy, — 30 conditional statement is true, the robot has
been stopped. The path trajectory has been fluctuated at some sections. These
fluctuations stem from the unsystematic errors. Preventing them is a challenging
issue, but the control system successfully manages these errors. The 100 180 G
experiment is demonstrated in Fig. 41. According to the target position the robot is
placed in the reverse direction. Trajectory is illustrated with the red path in the (b)

frame. All initial and final control parameters are given in Table 4.
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Fig. 40. (a) Starting position of mobile robot (b) Finishing position of mobile robot
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Fig. 41. (a) Starting position of mobile robot (b) Finishing position of mobile robot
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Table 4. Graph based control model experiments

Initial (px) Final (px)
Experiment D, D, Dy D, D, D, Dy D,
100 0 G 494 493 73 463 64 80 71 36
100 180 G 491 489 72 517 75 81 72 41

B. Control Model Observations
100_0_G Experiment

Fig. 42 (a) represents weight changes for the experiment of 100 0 G. The D; and
D, parameters approximate to each other in some frames. There are several
disruptions in distance value by starting 30" frame. The sudden distances disruptions
stem from irregularity of floor plane or a foreign object on the path. By starting 62"
frame, the difference between D; and D, increases within several frames. According

to several experiments, the frame loss causes this parameter differentiation.

Fig. 42 (b) demonstrates the velocity variations of robot wheels for the 100 0 G
experiment. The f; function gives sensitive responses to changing in distance until
the 55 frame. The WMR has been tried to be kept in the path trajectory, continually.
The deviation from the target may be caused by irregularity of the floor. The velocity

variables are stable after that point.

The 77 images are processed in 9.08s. So, 8.480 image frames per second are
achieved and it takes 0.117s to be processed for each image frame. If storing and
displaying is inactive for this experiment; then 14.745 images per second are

achieved. These performance rates are admissible for a real time VBC system.
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Fig. 42. (a) Distance changes of mobile robot (b) Velocity changes of mobile robot
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100 180 G Experiment

Fig. 43 (a) represents weight changes for the experiment of 100 180 G. The
parameters D; and D, are nearly equal in some image frames as from the starting
position. The difference between D, and D, parameters increases until the direction of
robot has 90° or below value according to the target position after several frames.
That motion behavior proceeds to the 20" frame, after this frame; these two-distance
values approach to each other. The Dy, value changes between 71px and 74px and its

average is 72px. The Dy declines stably until the Dy, — 30 condition is satisfied.

Fig. 43 (b) shows velocity variations of the robot wheels for the 100 180 G
experiment. The Sp has drastically increased and the S; has drastically decreased at
19% frame. The S, is amplified and Sy is minified until the direction of robot fits to
the linear path trajectory towards the target after several frames. The S; and Si have
changed with low rates suddenly at some points until the last image frame. This

means that controller has tried to keep the WMR in the path trajectory.

The 86 images are processed in 10.06s. Therefore, 8.548 image frames per second
are achieved and it takes 0.116s to be processed for each image frame. If storing and
displaying is inactive for this experiment; then 14.915 images per second can be

processed with the system.
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Fig. 43. (a) Distance changes of mobile robot (b) Velocity changes of mobile robot
5.1.3. Triangle Based Control Model
A. Control Model Experiments

In Fig. 44 and Fig. 45; starting positions of the robot are shown with (a) frame and

finishing positions are demonstrated with (b) frame. The 100 0 T experiment is
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demonstrated in Fig. 44. The blue, green, red and black labels represent the A;, Ag,
A7 and total angle in (a) frame, respectively. The red path represents the trajectory in
(b) frame. When A >= 60 condition is met, the robot motion has been stopped. The
path trajectory is emerged almost linearly. The path has been disturbed at some
points. The main reasons behind these fluctuations are touched in previous section.,
The 100 180 T experiment is given in Fig. 45. It implies that according to the target
position the robot is placed in the reverse direction. All initial and final values are
presented in Table 5.
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Fig. 44. (a) Starting position of mobile robot (b) Finishing position of mobile robot
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Fig. 45. Starting position of mobile robot (b) Finishing position of mobile robot

Table 5. Triangle based control model experiments

Initial (px) Final (px)
AL Ag Ar AL Ag Ar
100 0 T 87.32° 84.19° 8.49° 57.26° 61.37° 6137
100 180 T  86.61° 85.02° 8.37° 54.98° 57.66°  67.36°

Experiment
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B. Control Model Observations
100_0_T Experiment

Fig. 46 (a) demonstrates angle changes for 100 0 T experiment. The A; and Ag
are approximate to each other in several image frames. There are sudden fluctuations
in distance value by starting from the 10 frame. If these angle variations are too big,
then according to the observations the main reason is several frames loss. The values
approximate to each other with small rate of differences by starting the 64™ frame.

When A7 is equal or greater than 60°, the WMR has been stopped.

Fig. 46 (b) shows changes in velocity of robot wheels for the 100 0 T experiment.
The f; function exhibits sensitive responses to angle variations. The WMR has been
precisely tried to be kept in path trajectory towards the position of target. The floor
irregularity may give rise to a deflection from the target. But the velocity values are

stable except several frame points.

The 77 images are processed in 10.84s. It signifies that 7.103 images per second
are processed and it takes 0.140s to be processed for each image frame. If storing and
displaying is inactive for this experiment; then 12.236 images per second can be
processed with the system.
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Fig. 46. (a) Angle changes of mobile robot (b) Velocity changes of mobile robot
100_180_T Experiment
Fig. 47 (a) represents angle variations for the 100 180 T experiment. The
parameters A; and Ay values are almost equal in several frames. After several frames,

the difference between A; and Ay increases until the robot direction has 90° or small

value according to the target position. That motion characteristic proceeds to the 22"
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frame. These two angle parameters approach to each other after this frame. The Ay
parameter decreases to ‘0’ value until the 22" frame. In later frames, the Ay increases

consistently to the A = 60 threshold limit.

Fig. 47 (b) demonstrates changes in velocity of robot wheels for the 100 180 T
experiment. The robot performs a rotation motion until 22" frame where the direction
of robot decreases below the 90°. The Si has increased drastically, the S; has
decreased drastically at this frame. The S; is amplified and S; is minified until the
direction of robot fit to the linear path trajectory towards the target position after
several frames. The S; and Sy parameters have changed with small rates in following

frames. It means that the controller has tried to keep the robot in fitted path trajectory.

The 92 images are processed in 12.54s. This means that 7.336 images per second
are processed and it takes 0.136s to be processed for each image frame. If storing and
displaying is inactive for this experiment, then 12.941 images per second can be

processed with the system.
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Fig. 47. (a) Angle changes of mobile robot (b) Velocity changes of mobile robot
5.1.4. Additional Experiments

Four additional experiments are conducted except from previous experiments. Two
distinct directions as 45° and 90° have been experimented. They are the starting robot
directions. These experiments are shown in Fig. 48 and Fig. 49 for triangle and graph-
based positioning models, respectively. The (al-a2) demonstrates the initial positions
and (b1-b2) demonstrates the final positions for the robot in both experiments. The
robot has been arrived to the target successfully by the developed controller in both
directions. The experiment details are only exhibited as table results. The name

additional experiments are coded in the same way as the previous experiments.
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5.1.5. Comparison of Controller Models

Average experiment results are given in Table 6, Table 7, Table 8 and Table 9.

“Total frame” are processed frames from initial to the final position. The “FPS” is

frames processed per second. The “Elapsed time” is total time that is emerged due to

the control process. The “P. Cost rate” represents the path cost rate that is the

difference of percentile rates between the cost of the shortest path and the physical

path. The “Energy Cons.” represents to rate of consumption for energy. We have

performed two non-visual control models to manage the WMR. These commonly

known control models are PID and Fuzzy-PID. The default parameters are used in

both controllers. It is aimed to see the performance and efficiency issues by

comparing both visual and non-visual controllers.

Table 6. ‘0’ degree experiments for controllers

. Total Elapsed P. Cost Ener
Experiment Frame FPS* Tinll)e** Rate Cong.y
100 0 G 77 8.480 9.08s 0.891% 1.12%
100 0. T 77 7.103 10.84s 0.822% 1.35%
PID - - 13.11s 3.283% 2.82%
FUZZY-PID - - 11.93s 2.037% 2.51%

Table 7. ‘180’ degree experiments for controllers

. Total Elapsed P. Cost Ener
Experiment Frame FPS* Tinll)e** Rate Cong.y
100 180 G 86 8.548 10.06s 5.760% 1.47%
100 180 T 92 7.336 12.54s 7.348% 1.84%
PID - - 16.34s 10.783% 3.46%
FUZZY-PID - - 15.56s 9.545% 3.29%
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Table 8. ‘45’ degree experiments for controllers

. Total Elapsed P. Cost Ener
Experiment Frame FPS* Tinll,e** Rate Conf.y
100 45 G 77 8.521 9.03s 2.708% 1.28%
100 45 T 75 7.217 10.39s 3.324% 1.52%
PID - - 14.05s 5.013% 3.16%
FUZZY-PID - - 13.44s 4.222% 3.08%

Table 9. ‘90’ degree experiments for controllers

. Total Elapsed P. Cost Ener
Experiment Frame FPS* Tinll,e** Rate Conf.y
100 90 G 75 8.528 8.79s 3.980% 1.22%
100 90 T 76 7.292 10.42s 5.832% 1.63%
PID - - 14.79s 7.425% 3.32%
FUZZY-PID - - 14.02s 6.004 % 3.17%

It can be expressed that the graph-based model has better performance than the
triangle-based model and non-visual models in aspect of time. It primarily stems from
excessive computation processes in triangle-based model. Since calculation of degree
values of angles are more complex. Moreover, the triangle-based model has better
cost values in the experiments of ‘100 0 X°’ compare to others. However, situation
in the experiments of ‘100 180 X’ is exact opposite; graph-based model minimizes
the cost more feasibly. The major reason is the simple structure of the graph model.
The path cost rate of proposed method is discovered less than the conventional
methods. In terms of the energy efficiency proposed method is better than other
methods. It should be emphasized that the designed methods are superior to the

conventional methods and in terms of efficiency and cost.

Table 10 shows the frame loss in experiments. Main reason of the loss is high
level illumination changes. Average frame loss rate has occurred as 1.26%. By
designing more efficient image processing methods detection, the performance rate
can be improved to the better levels. For example; machine learning methods like
ELM, deep learning and other artificial intelligence methods ensure better recognition

process compare to primitive methods like shape or color-based detection approaches.

Table 10. Frame loss rates in control process

Experiment Average Average Frame Loss
Frame FPS*

100 0 G/T 77 7.791 11— (1.30%)

100_180_G/T 89 7.942 2—-(2.25%)

100_45 G/T 76 7.869 1-(1.32%)

100 90 G/T 75.5 7.910 0—(0.00%)

Average 79.375 7.878 1—(1.26%)
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5.2. STAGE-2: Path Planning Experiments

Experiments have been conducted as both simulation and real-world
implementation. Firstly, a configuration space map with position parameters are
acquired by processing image of real working environment. Then A-APF simulation
has been performed this obtained map and a path plan is extracted. Acquired plan is
used to perform WMR motion with decision tree controller in the path trajectory.
There are three different configuration spaces in experiments. For each configuration,
initial movement direction of WMR is set to ‘0°” and ‘180°” relative to the position
of target. These both directions are selected to see the effect of simple and extreme

position conditions. The WMR is located to 110 cm away from the target.
5.2.1. Configuration-1
A. Experiment Conf-1_0

WMR has been positioned towards to the target position approximately with 0°
value. Obstacles have been distributed randomly. Simulation result is demonstrated in
Fig. 50. The robot has reached to the target successfully and it takes about 5.692s.
Extracted path seems to be safe and efficient. There are several little fluctuations in
path, but in fact, they have no remarkable effect on cost. Distance data and potential
force changes have been shown in Fig. 51. When distance data shows balanced
changes, potential forces have also settled down. Real experiment has taken about
19.762s and it has been demonstrated in Fig. 52. Angle and velocity changes have
been given in Fig. 53. Because of velocity is affected by angle values, output of the

velocity has demonstrated similar pattern to the angle changes.

Fig. 50. Simulation result of experiment Conf-1 0
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Fig. 53. (a) Angle change vs. (b) Velocity change
B. Experiment Conf-1_180

WMR has been positioned contrary to the target position approximately with 180°
value by previous configuration. The simulation result is demonstrated in Fig. 54. The
robot has successfully reached to the target position and it takes about 6.748s. The
path has been created safely and efficiently. The acquired distance data and potential
force changes have been shown in Fig. 55. As the robot approaches to the obstacle,
rapid changes have occurred in potential forces. Real experiment takes 23.799s and it

has been demonstrated in Fig. 56. Angle and velocity changes have been given in Fig.
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57. Because of velocity is affected by angle values, output of the velocity has

demonstrated similar pattern to the angle changes.

Fig. 54. Simulation result of experiment Conf-1_180
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5.2.2. Configuration-2
A. Experiment Conf-2_0

WMR has been positioned towards to the target position approximately 0° with a
single obstacle configuration. Simulation result is demonstrated in Fig. 58. The robot
has reached to the target and it takes about 6.508s. The path has been formed safely
and efficiently. The distance data and potential force changes have been shown in Fig.
59. Potential field have created major forces when moving object approximate to an
obstacle. After 24" frame potential forces have exhibited more stable patterns. Real
implementation takes about 26.104s and it has been demonstrated in Fig. 60. Angle
and velocity changes have been shown in Fig. 61. There is an unexpected angle
output and velocity response in 44™ frame. This momentary change stems from a

miscalculated centroid due to high amplitude of light variation.
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Fig. 59. (a) Sensor data vs. (b) Potential forces
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B. Experiment Conf-2_180

WMR has been positioned contrary to the target position approximately by 180°
with previous configuration. Simulation outcome is demonstrated in Fig. 62. The
robot has reached to the target position and it takes about 7.725s. The path has been
emerged as safe and efficient. The distance and potential force changes have been
given in Fig. 63. Potential field have generated large forces when the moving object
approximate to an obstacle. Stable patterns have been achieved by starting 42" frame
for potential forces. Real implementation takes about 29.520s and it has been given in
Fig. 64. Angle and velocity changes have been shown in Fig. 65. As implied before,

output pattern of velocity is similar to the output of angle variations.

Fig. 62. Simulation result of experiment Conf-2_180
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5.2.3. Configuration-3

A. Experiment Conf-3_0

WMR has been positioned towards to the target position approximately with 0°
value. The ‘U’ shaped obstacle has been placed to space. After performing obstacle
detection, convex-hull method is used to transform concave object to convex object.
The simulation result is demonstrated in Fig. 66. The robot has arrived to the target
successfully and it takes about 8.283s. The extracted path is safe and efficient. The
distance data and potential force changes have been shown in Fig. 67. Real

experiment takes about 32.664s and it has been demonstrated in Fig. 68. Although
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simulated path is safe, there is a risky approximation to the obstacle in real

implementation. The angle and velocity changes have been given in Fig. 69.

Fig. 66. Simulation result of experiment Conf-3_0
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B. Experiment Conf-3_180

WMR has been positioned contrary to the target position approximately by 180°
value with previous configuration. Similarly, convex-hull method is used to convert
concave object to convex object with minimum edge boundaries. Simulation result is
demonstrated in Fig. 70. The robot has arrived to the target position successfully and
it takes about 9.566s. The path is extracted safely and efficiently. The distance data
and potential force changes have been given in Fig. 71. Real implementation takes
about 34.895s and it has been shown in Fig. 72. The previously mentioned risky
approach to the obstacle is eliminated by using object dilation. By this way path

safety is increased. Angle and velocity changes have been given in Fig. 73.
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5.2.4. Experiment Comparisons

The experiments have been repeated three times for each configuration. Average
values of these experiments data are given in Table 11. If the configuration
complexity has been increased for potential fields, arriving time to the target has also
increased in both simulation and implementation, generally. Similarly, path cost has
also increased by depending on complexity of configuration space. When the robot is
positioned contrary to the target position, the path cost is expected to increasing. In
Conf-1 experiment path cost did not remarkably change. In Conf-2 experiment, path
cost is increased with contrary direction. However, in Conf-3 experiment path cost
decreased with contrary direction; this is because, sometimes turning around to the
target help decreasing the path cost. Since, the WMR did not go toward the middle of
obstacle directly. On the other hand, the implementation path cost is always less than
simulation path cost for all experiments. Because, the decision tree controller drives
WMR to the continually updated positions of middle-targets (or local targets) by
minimizing the errors. It smooths sharp turns stemming from APF path planning. In
other words, the local solutions give better results than global solutions. By this way,

path cost has decreased. The simulation speed is set to larger than implementation
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speed. Because we want to extract path plan as fast as possible. Average path cost

gain actualized about 11.335%.

Table 11. Simulation and Real Implementation Comparison

Experiment Simulation Implementation Simulation Path Implementation
Configuration Time Time Cost (px) Path Cost (px)
Conf-1_000 5.692s 19.762s 486.268 442.356
Conf-1_180 6.748s 23.799s 485.874 439.145
Conf-2_000 6.508s 26.104s 619.761 548.210
Conf-2_180 7.725s 29.520s 644.236 562.661
Conf-3_000 8.283s 32.664s 753.703 656.506
Conf-3_180 9.566s 34.895s 730.276 640.700

5.2.5. General Observations

The path plan has extracted with a simple adaptive APF. The decision tree-based
control has been successfully operated in different configuration spaces. The control
method does not produce any remarkable bottleneck to entire control process. The
robot has accurately arrived to the target position for each configuration. As the robot
approaches to an obstacle, distance values measured around the robot are decreased,
so the potential forces give sensitive responses. Potential forces have stabilized as
WMR move away from the obstacle. Eventually, path plan is extracted with A-APF
method successfully. Method success has been investigated under different
circumstances like obstacle positions, variable ambient light. After gaining a suitable
path from initial position to the target position, this path has been given to the real-
time control process as trajectory input. Decision tree-based controller successfully
manages the WMR with acquired obstacle-free path plan in real-time. Angle values
have been correctly calculated. Therefore, velocity have been acquired smoothly in

each control iteration.
5.3. STAGE- 3: Multi-Camera Experiments
5.3.1. Experiment Configurations

Multi-camera experiment has been performed with four webcam cameras. In single
camera tests, a single CCD camera is used as emphasized before. The CCD camera
provides more color depth compare to webcam, but it is very expensive. Therefore,
this cost is needed to be reduced for a multi-camera configuration. On the other hand,

webcams are easy to use, platform independent in terms of software and hardware,
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adaptable to any environment with proper configuration. Of course, the CCD cameras
have their specific advantages. However, such properties do not be required for this

WMR control configuration.

Each webcam is adjusted to SVGA resolution. Cameras have been hanged to the
ceiling in a way that their lenses have been located as perpendicular to the floor with
aluminum support profiles. Cameras have been placed about 210cm from the floor.
According to this camera position each camera covers about 3.05 m%, so in total
approximately 12.20 m2 area should be processed for this configuration. It should be
noted that all the webcams are same models and they have same specifications. Each
camera is connected to the computer through USB 2.0 ports, separately. This physical

configuration has been demonstrated in Fig. 74.

Fig. 74. Real multi-camera based WMR control operating environment

Several different colored and shaped labels have been placed to the floor as
distinctive properties for SURF detector. Because the SURF detector searches and
locates similar properties according to given input image. The size and color of shapes
have been randomly determined. The only important factor is position of these labels.
Each camera covers a single plain area including two axes labels according to camera

position as shown in Fig. 75.
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Fig. 75. Colored and randomly shaped labels on the operating floor

The webcams (Logitech C920) used for multi-camera configuration is shown in
Fig. 76. They are attached to aluminum profiles with plastic clips. It has 3.2MP
maximum video resolution and 15MP image resolution. However, SVGA (800x600)
is used for visual servoing task. Therefore, even more basic webcams will be enough

to deal with the indicated resolution.

Fig. 76. The webcam used to perform multi-camera configuration
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Camera positions have been shown in Fig. 77. IDs are given as C1, C2, C3 and C4
to the cameras respectively. Camera viewing area is indicated with blurred area for
Cl1. C1-X and CI1-Y are the length and height of rectangular C1 camera viewing area
(CVA). Other cameras have similar viewing areas according to their positions. The
blue and red areas represent the common intersection areas for two webcams. The
middle square area represents intersection area of four webcams. Black lines represent

guidelines.

C1-X

Intersection
regions

Fig. 77. Camera positions and camera intersection areas

5.3.2. Multi-Camera Experiment with Conf-1

Images taken from the cameras from bird’s eye view configuration are shown in
Fig. 78. The grayish areas on the left or right edges in the images are real floor texture
of the experiment environment. The utilized mobile robot steering wheels are quite
thin and ball caster wheels are small. Therefore, plastic based yellow layer is used to

prevent wheel jamming to suture area of the floor tiles.

Fig. 78. Real areas covered and acquired by the cameras

The stitched images are demonstrated in Fig. 79 as the first configuration (Conf-1).
Images are simply superimposed and re-scaled. To increase accuracy of SURF
detector, colored labels are used. Eventually, images are stitched to each other
successfully. The brown colored objects represent the obstacles. Robot is under the C,
camera CVA and the target is placed under the C;. It can be seen that there is different
level of shadowing in the images taken from the cameras. Because of such

differences, several negligible inconsistencies in stitched objects have emerged. They
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are negligible; since, all these errors are too small to be effective on path planning and

visual servoing tasks.
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Fig. 79. The stitched image to acquire Configuration-1 (Conf-1)

After acquiring stitched environment, obstacle detection task is executed as in
single camera configuration, Fig. 80. The obstacles are detected and the environment
is converted to binary map. This process is performed by assigning ‘1’ to the
obstacles and assigning ‘0’ to the remaining area. This task is known as ‘Binary
Image Acquisition’. The robot and target positions are also detected and stored. To

increase safety, the object dilation is used to re-scale detected obstacles.

Fig. 80. Obstacle map acquired from the stitched image
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Adaptive artificial potential field (A-APF) method is performed the path planning
process on acquired map. The extracted path has crossed on three cameras. The P, =

(C4,C,,Cy) and 192 image frames have been processed. Therefore, 192 different
position sampling has been taken on the acquired path. These positions are used to
implement visual based control process with designed controllers. Simulation takes
about 11.2s, so 17.142 frames per second is obtained. The simulation path cost is
found as 1037.53px. The Gaussian controller with triangle positioning scheme is
manage the robot to approach to the target position, successfully. The next suitable

position is calculated in each iteration. In Fig. 81, the formed path by A-APF is given.

.\\\mm

Fig. 81. Simulation path with A-APF

Attractive potential field (A-PF), repulsive potential field (R-PF) and total potential
field (T-PF) force values against number of processed image frames are given in Fig.
82. A-PF force increases at several frames from the starting, then it decreases until the
target position is reached. On the other hand, R-PF forces show changing pattern until
the assigned task is completed. T-PF forces is formed by combining attractive and
repulsive forces. As it can be seen, total forces are quite similar to the opposite

direction values of the A-PF forces.

82



] 20 40 60 80 100 120 140 160 180 200

Fig. 82. Potential force change

The changes of attractive and repulsive gain values (aps = ¢ and rps = 1) are given
in Fig. 83. The ‘aps’ increases for a while from the start point, then it decreases with
small rates as iteration continues. The ‘rps’ increases aggressively at first, then it
decreases almost vertically to a point. It approaches near stabilize state with a little
fluctuation until the end of the simulation. On the other hand, potential calculating

order shows small changes and minimum calculating order shows no-changes.
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Fig. 83. Potential scaling factors change
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Real implementation frames under C, are given in Fig. 84. The °fl, 2 ... 8
frames show different robot positions at different times. In Fig. 85, the C2-s, C2-f and
Cls, Cl-f represent the starting and final position under C, and C;, respectively. The
simulated and real paths are given in Fig. 85 as well. The 153 frames are processed in
total (with all sub-paths in P.,). Moreover, 14.57 FPS is achieved with 10.5s time for

Conf-1. Only one-third of the total frames are stored to keep performance stable.
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Fig. 84. Sample frames from visual based control task under C4 camera

Fig. 85. (I) Robot positions under C2 and C1 cameras (II) Simulation and Real paths

Acquired path plan has been used as reference path which have to be followed by
the mobile robot. The robot is triggered to make motions according to reference path
in real time. Ag, A; and A; values are calculated as 73.81°, 69.19° and 37.0°
respectively according to the intermediate target at the first starting frame. These
values are calculated as 59.29°, 61.41° and 59.29° respectively at the end of the
control task. Robot has successfully reached to the pre-defined target about 10.5s.

Starting and finishing positions of the mobile robot is given in Fig. 86.

Fig. 86. (a) Starting position and (b) finishing position of the mobile robot

84



Sample frames from the visual control process in the whole working environment

are given in Fig. 87. The ‘fl, 2 ... {8’ frames demonstrate different robot positions at

different times.

Fig. 87. Sample frames from visual based control task

The path created by robot motions are given in following Fig. 88. The controller
has tried to kept the mobile robot on acquired path through the control process. The
distance of path created by robot motions until to the target position is emerged a little
smaller than the distance of simulation path. Main reason behind this situation is the
dynamically changed local targets used to track the simulation path. Local target is
extracted from simulation path within a pre-defined threshold value and it is
periodically updated until reaching to the main/final target. In this way, the controller

generally smooths sharp turns.

Fig. 88. Simulated path and starting position of robot
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The path and robot motions from selected frames are demonstrated in Fig. §9.
Except from starting and finishing positions of robot, several additional intermediate
positions have been given. Eventually, the mobile robot has smoothly tracked the
input path. There may be some error between simulation and real path. However, this

error is so small in terms of path cost, so it is negligible.

Fig. 89. Simulation path and mobile robot motions

The real path formed by the mobile robot has been given in Fig. 90. As it seen, the
distance of real path is emerged a little smaller than the simulation path. Its length is

found about 995.16px. Therefore, there is only 4% difference between paths.

Fig. 90. Simulation path (red) and Real path (blue)
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The angle value changes of the control points (mobile robot wheels) and target are
given in Fig. 91. The local target point is controlled in each iteration and if it is
required, this target position is updated. The angle changes have dramatically
increased when the mobile robot starts to perform turning motions. At the end of the
control process Ay, A; and Ag angle values approach to the each other very closely.

This means that the robot gradually approaches to the target position.
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Fig. 91. Angle changes of control points

Velocity changes of the left and right wheels are given in Fig. 92. The changes in
velocity values look like the changes in A; and Ag angle values with different
magnitude. The main reason is that the angle values directly affect the velocity values
of mobile robot wheels. Both the angle and velocity value changes are a bit jagged.
This is because; sensitivity of the controller and storing of selected sample frames to

the disk.
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Fig. 92. Left and Right velocity changes of WMR wheels
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5.3.3. Additional Experiments with Different Configurations (Conf-2/3)

Experiments have been performed on two different operating environment
configurations beside the previous configuration (Conf-1). The experiment
environment and acquired path plan with A-APF method is given in Fig. 93 for Conf-
2 and Fig. 94 for Conf-3. In each configuration, the object dilation to the obstacles has
been implemented to increase path safety. Only the acquired paths and numerical

results have been given in these experiments.
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Fig. 94. (I) Configuration-3 (Conf-3) and (II) simulated path plan

The mobile robot has successfully reached to the pre-defined target under
configurations with different obstacle alignments in simulation experiments. In each
configuration images taken from camera can be superimposed differently. The
important principle is the fusing common intersection areas with a high degree of
precision. The starting and finishing positions with angle values by the mobile robot
are given in Fig. 95 for Conf-2 and Fig. 96 for Conf-3. In Conf-1, the WMR has
started with Ar = 14.94°, A; = 142.30° and Ay = 22.76° and reached to the target
with Ay = 57.34°, A; = 61.33° and A, = 61.33° angle values. On the other hand, in
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Conf-2, the WMR has started with A = 32.47°, A; = 65.88° and Ap = 81.65° and
reached to the target with A = 57.03°, A; = 55.80° and A = 67.17° angle values.

Fig. 95. (I) starting position and (II) finishing position for Conf-2

Fig. 96. (1) starting position and (II) finishing position for Conf-3

The formed path by the mobile robot from starting position to finishing position is

given in Fig. 97. In each configuration the object dilation to the obstacles has been

applied to increase path safety.

Fig. 97. (I) path formed in Conf-2 (II) path formed in Conf-3

Acquired time and path cost values are given in Table 12. Except the first

experiment (Conf-1) simulation is performed faster. The real path cost is generally
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smaller than simulation path costs. The average difference between simulation and
real path costs has emerged about 3.656% for all experiments. Both simulation and
real paths are not the best paths in terms of cost and safety. However, it can be said
that acquired paths are close to the best solution and provides feasible balance

between the cost and safety.

Table 12. Acquired time and cost values for different configurations

Simulation Implementation Simulation Path  Real Path Cost

Experiment
Time (s) Time (s) Cost (px) (px)
Conf-1 11.2 10.5 1037.53 995.16
Conf-2 114 11.9 1088.65 1055.42
Conf-3 12.5 13.8 1143.08 1099.27

5.3.4. General Observations

Multi-camera configuration has some advantages and disadvantages. Advantage is
that the sensor-in-device (or eye-in-device) hardware are not needed. Therefore, cost
of the system can be reduced. Second advantage is that working space can be enlarged
with additional cameras. Third advantage is that all the robots can be controlled from
one system (actually system may be saturated to an upper limit). Disadvantage of the
designed system is that it can be only established for indoor environment. The number
of required cameras may be high for large interior environments. So, the flexibility of
the system will reduce. To overcome this problem, according to applying area, focal

length and resolution of cameras and light intensity have to be tested and adjusted.

Image stitching is a time-consuming task, but this task only performed once for
every mobile robot control task. The illumination and shadowing can also be the
problematic issues for multi-camera configuration. Although all the cameras have
same specifications and have been placed to the same height, images taken from these
cameras can have different level of shadowing and illumination. Therefore, these two

problems should be focused further in eye-out-device robot control systems.

On the other hand, the control process can be done without image stitching task
under multi-camera configuration. This process can be done by modeling intersection
areas as middle-target points. The mobile robot can progressively reach its final

position by using these middle targets as starting/finishing positions.
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5.3.5. Experiments without Image Stitching (Conf-1)

Multi-camera images have been stitched in previous experiments. It provides
accurate results but it is a time-consuming task. Since, before performing the control
process all images are stitched by utilizing SURF detector. Then path is extracted
from this whole image. The acquired path positions are distributed according to the
camera coverage area where the WMR will appear. For instance, two cameras may be
enough to deliver the mobile robot to the desired target position. Acquired images
from the cameras are demonstrated in Fig. 98. It is shown that the mobile robot is
initially positioned under the C4 camera and main target is fixedly positioned under
the C1 camera. The configuration space is the same space used in the first image

stitching based multi camera experiment.

Fig. 98. Real acquired areas covered by the cameras

This time images are not stitched. Each of the camera images are considered local
maps that includes local initial and target positions. Local target is determined
according to the most suitable intersection area which is closest to the main target and
has enough space for WMR. When the WMR reaches to the local target position in
first camera coverage area where it resides, this local target point is assigned as initial

position for WMR in next camera which closest to the main target position.

The local target determination process is illustrated in the following Fig. 99. The
direction information is determined relative to the target and initial positions of the
mobile robot. Therefore, it can be said that the main target is in NW (North-West)

direction.
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Fig. 99. Obstacle-free intersection regions for a camera (C4)

After determining the directional information, the closest intersection area to this
direction is identified by using distance information to the target as well. In this case
the closest intersection area to the main target is I1. Then the robot motion is triggered
towards to I1 intersection area. The local target is assigned to upmost middle point in
this area because of location of intersection area. Aim of selecting the upmost position
of the intersection area (local target) is that providing the robot remains in the
boundary of the intersection area. On the other hand, aim of the middle position of the
point is that to provide a balanced distance between obstacles. The exact position of
the local target may change according to the location of intersection area. Therefore, it
may be leftmost, rightmost, lowermost and uppermost. However middle position is
selected vertically or horizontally. It should be remembered that C1-C3 and C2-C4
intersection areas are horizontal and C1-C2 and C3-C4 intersection areas are vertical.

Intersection areas have been shown with red rounded rectangles in Fig. 99.

The default robot position and path simulation under C4 camera is given in Fig.
100 (I) and (II), respectively. The selected f1, {2, ..., f8 frames showing robot positions
and angles from initial to the final position in Fig. 101. The WMR has reached to the
defined position about 4.24s in 46 frames. So, it can be said that 10.80 frames per
second are processed while storing and displaying data tasks are activated. 4;, Az and

Ar angle changes and velocity of wheels during the control process are graphically
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demonstrated in Fig. 102. The formed paths by simulation (blue) and real robot (red)
are shown in Fig. 103. The path length is found as 442.51px in total for simulation

and 423.45px in total for real experiment.

Fig. 102. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels
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Fig. 103. Simulation path (blue) and Real path (red)

The default robot position and path simulation under C2 camera is given in Fig.
104. The selected f1, {2, ..., f8 frames showing robot positions and angles from initial
to the final position in Fig. 105. The WMR has reached to the defined position about
2.12s in 26 frames. So, it can be said that 12,26 frames per second are processed while
storing and displaying data tasks are activated. A;, Ag and Ar angle changes and
velocity of wheels during the control process are graphically demonstrated in Fig.
106. The formed paths by simulation (blue) and real robot (red) are shown in Fig. 107.
The path length is found as 283.34px in total for simulation and 271.18px in total for

real experiment.
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Fig. 104. (I) Camera 2 (C2) coverage area (II) Simulated path under C2
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Fig. 106. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels

Fig. 107. Simulation path (blue) and Real path (red)

The default robot position and path simulation under C1 camera is given in Fig.
108. The selected f1, {2, ..., f8 frames showing robot positions and angles from initial
to the final position in Fig. 109. The WMR has reached to the defined position about
3.62s in 42 frames. So, it can be said that 11,60 frames per second are processed while
storing and displaying data tasks are activated. A;, Ap and A angle changes and
velocity of wheels during the control process are graphically demonstrated in Fig.

110. The formed paths by simulation (blue) and real robot (red) are shown in Fig. 111.

95



The path length is found as 354.19px in total for simulation and 332.83px in total for

real experiment.

Fig. 108. (I) Camera 1 (C1) coverage area (II) Simulated path under C1
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Fig. 109. Selected instance frames showing robot positions and angles
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Fig. 110. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels
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Fig. 111. Simulation path (blue) and Real path (red)

The experiment results have been summarized in Table 13. According to the
obstacle alignment and configuration space specifications, utilized cameras may
change. In other words, cameras with the different number and the different coverage
areas can be utilized until the predefined target position is reached. Moreover, a
camera may be utilized more than once to perform given control task(s). Comparing
to the image stitching based multi-camera model, this pure multi-camera model can
achieve better simulation and implementation times. Average simulation time is
decreased from 11.7s to 10.46s with 10.6% gain and average implementation time is
decreased from 12.07s to 9.71s with 19.55% gain. However, for all experiment
configurations in pure model, except from Conf-3; path cost is increased about 3.01%
from 1089.75 to 1122.56 for simulation and path cost is increased about 1.1% from
1049.95 to 1061.46 for implementation. Therefore, it can be said that simulation and
implementation time of pure model is generally better than stitch-based model. On the
other hand, simulation and implementation path cost of stitch-based model is mostly
better than pure model. The main reason behind this situation is that the complete path
model is extracted from the whole configuration space including all robot, target and
obstacles in stitch-based model. However, path is partly extracted from local

configuration space of related camera according to the robot position in pure model.

Table 13. Acquired time and cost values for different configurations

Utilized Simulation Implementation  Simulation Path  Real Path
Experiment
Cameras Time (s) Time (s) Cost (px) Cost (px)
Conf-1 C4,C2,Cl1 9.98 9.07 1080.04 1027.46
Conf-2 C4,C3,Cl1 10.75 9.88 1185.63 1121.57
Conf-3 C4,C2,Cl1 10.64 10.17 1102.03 1035.36
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5.4. The Main Influencers for Control Models

[Mlumination highly affects the threshold masks in the object detection process.
Because of that both color features and color quantization methods are employed
together to implement accurate object detection in the acquired images. If experiments
are conducted under minor changing or constant light conditions, then masks operate
without any error. The calibration of camera and image distortion affects data
computations in processed image frames. The results are obtained with low accuracy
without good and stable calibration and distortion. For example; a camera with
fisheye lenses is not appropriate as a head imaging device without calibration.

Calibration and distortion should be done according to the environment parameters.

The Gaussian and decision tree-based controllers have been exhibited an efficient
and promising control task. It is easy to implement in visual based control designs. It
can be used with both simple (angle, encoder etc.) and complex input parameters
(depth, lidar information etc.). It has demonstrated a great consistency with potential
field method. Several modifications may be required to apply it to other path planning

methods.

Standard potential field method is sometimes insufficient to meet admissible safety
and cost issues. Main reasons behind these are the local minimum, unstable
oscillation, obstacle positions and so on. Safe path is created by dilation process on
detected object in the most of studies. Geometric calculations also provide relative
solutions to these problems. But eventually most effective and robust method is
providing parameters which are changeable according to conditions of configuration

space. Such mechanisms can be created with adaptive methodologies.

System hardware also influences performance of the visual based robot control. It
should be emphasized that all the processed images are displayed and stored in real-
time besides the stored WMR controller data. If the processing of displaying and
storing the image data to the storage unit are deactivated, then images can be
processed about 72.4% more performance averagely. There is no parallelization in
control processes with accelerators like Graphic Processing Unit (GPU) processors. If
GPU or CPU acceleration is exerted by parallelizing the existing control algorithms,
then the performance can clearly be increased to better levels. Therefore, hardware is

one of the most prominent factors in a real-time VBC system.
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Multi-camera based visual control allows robot to be operated by the designed
control system for large areas in interior spaces. The camera specifications should be
same to acquire better efficiency and performance. Another factor is number of the
cameras, but an external computer can cope with a certain number of cameras.
Therefore, as the number of the camera increases the number of required computers
will also increase. This situation is the main drawback of such systems. Illumination
is a significant factor for multi-camera as it is in the single camera configuration.
Each camera may be exposed different level of illumination. This difference may
cause improper stitching process. Another option is managing the visual control
process without images stitching. However, the path planning may emerge as a

challenging issue.
5.5. A Multi Target Design with Load Balancing
5.5.1. System Design

Additional modules have been developed in order to determine the system
performance in multiple targets and to suggest a load balancing system (LBS). There
are multiple targets and two robots in the environment. The goal is to achieve a
balanced distribution of workloads by considering the cost for both robots. As in the
previous implementations, the configuration space image is obtained from the head

camera.

The global positions of the robots and targets located on the input image of the
configuration space are determined by the methods of color quantization and
thresholding. The coordinates of the specified targets (or graph nodes) are kept in a
matrix. The distance vectors from robots to nodes are calculated with these
coordinates of targets and robots. The distance vectors are placed in a vector matrix
table with the corresponding target ID and coordinate values. The number of vector
matrix table will be calculated as much as the number of robots in the system. Two
separate vector matrix tables are created for two robots. Then, the dimensions of the
matrix space to be formed according to the number of targets in the environment are
determined. The distance values of each target to both robots are compared according
to the robot positions and the vector magnitudes in each vector matrix table. The
target is assigned to the robot's navigation class according to the robot's proximity

status to this target and the target having corresponding ID is deleted from both vector
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matrix tables. This procedure has been repeated while the LBS has in both active and
inactive status. Thus, the effect of load balancing on the navigation route has been
investigated. The new navigation classes may also contain a different number of
target elements according to the status of whether LBS is on or off. Fig. 112 shows
the general operating steps of the system up to the creation of matrices (TMs) having
target information for each robot. These matrices of targets include information about

the targets to be navigated for each robot.
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Fig. 112. Creating matrices holding target information

Fig. 113 illustrates the object identification steps for the components in the
configuration space having multiple targets and two robots. All targets detected have

been retained in a target matrix table.

G 1

Fig. 113. Color-based component detection process: (I) Real-environment image, (II) Quantized

image, (III) Binary map view of the environment, (IV) Detected components
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5.5.2. Load Balancing System (LBS)

Load balancing is used to allocate the targets (workloads) in the environment in a
balanced and effective manner among existing robots. By using the load balancing,
the aim is to enable the robots to touring their given target areas faster and with less
cost. The proposed load balancing method carries out the division of targets by
considering two criteria. The first of these criteria is to distribute a balanced number
of targets. For example; nine targets can be allocated as four and five targets between
two robots in the configuration space. It is aimed to give the similar number of
workloads to the robots. For this control, the distance of each target to the robots is
checked and the assignment procedure is performed according to the proximity status,
which is the first criterion of equilibrium. Table 14 below shows the first step of the
load balancing algorithm applied according to the target parameters. This process

takes place before the path plan is extracted.

Table 14. Load balancing algorithm based on number of targets

Input-1: Target location matrix - KM
Input-2: Distance vector matrices — MR1, MR2
Input-3: Number of targets — HS
Equilibrium limit — DS: HS /2
If HS < 0 then,
END
If HS > 0 then,
Loop: i=0; i<HS; i++
If MR1; < MR2; then,
New KM Matrix: KMpg; < KM;
If MR1; > MR2; then,
New KM Matrix: KMy, <« KM;
Else if MR1; = MR2; then,
If n(KMpg,)|In(KMpg,) = DS then and
Ifn(KMg,) <n(KMg)) x,y €{1,2} Ax#y
KMy, < Remaining targets
End Condition
End Loop
End Condition
Output: KMRls KMRZ

According to the number of targets, LBS algorithm takes three inputs in the first
stage. These parameters are the KM matrix which includes the position information of
the targets, the MR1 and MR2 matrices which contain the distance data of each robot
to all targets and the HS parameter which is the number of targets. If the number of
targets (HS) is ‘1 or higher, then the iteration is triggered and run until HS value is
reached. At each stage, the distance of each target to the robots is checked, and if the

robot is close to the target, then the target is assigned to this robot.
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In case of equality of distance values, the target is assigned to a random robot.
Assignment of targets to the nearest robot will continue until the number of targets
assigned to one of the robots is equal to the DS (half of the number of targets). When
this value is reached, all remaining targets are assigned to the robot with fewer
assigned targets. Thus, a target assignment process is performed between the robots
by considering the number of targets. In the last case, one more or an equal number of
targets are assigned to one of the robots. The KMy, and KMy, are newly created
matrices of target positions. The n(K Mg, ) is the number of targets in the matrix. The

x and y parameters are integers.

The second criterion for LBS is the traveling distances of the robots. The LBS
algorithm checks this criterion after the acquisition of the cost of the path with the
nearest neighbor or genetic algorithm. In this context, after the path plans are obtained
in two classes having balanced number of targets, the path costs for each robot are
calculated and compared. According to this cost, one or more of the workloads
assigned to a robot can be reassigned to the other robot. The algorithm given in Table

15 performs this process after the path plan has been extracted.

Table 15. Load balancing algorithm according to path costs

Input-1: Shared target locations matrix — KM pq, KMp,
Input-2: Path plan costs for R1 and R2 — Y Pgy, Y Pp,
Input-3: Distance vector matrices — MR1, MR2
Absolute difference of path plan costs — YPyp = |YPgqy — YPgy|
IfYPyr < min(YPgy,YPg,) + 0,20 then,
END
Loop: while YPyr = min(YPg,,YPg,) + 0,20,
IfmakS(YPRl, YPRZ) = YPRI then,
KMp, = KMg; Ax=1
KMRy = KMRZ /\y =2
MR, = MR1 AMR, = MR2
If maks(YPgq,YPgy) = YPp, then,
KMp, = KMg, Ax =2
KMpg, = KMg; Ny =1
MR, = MR2 AMR, = MR1
End Condition
Hpg, = maks;(KMg,),
New KM Matrices: KMg, = KMpg, U Hg,, KMg, = KMp,\Hp,
New Path Cost: YPg, = d(KMg,) € {MR,}, NN||GA
New Path Cost: YPy, = d(KMy,) € {MR,}, NN||GA
End Loop
End Condition
Output: YPg,, YPg, and KMg,, KMpg,

The KMpg,, KMpg, shared target positions matrices, Y Pgq, Y Pg, matrices including

path costs for each robot and MR1, MR2 distance data for each robot to all targets are
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given as input to LBS algorithm according to the path costs. If the absolute value of
the difference between the cost of two path plans is less than 20% of the smallest path
cost Y Py, then the algorithm is terminated. In case of the difference is large than the
20%, the parameters for the high path costs are assigned to the parameters KMp,,
MR, and x, and parameters for the low path costs are assigned to the parameters
KMpg,, MR, and y. After this assignment, the farthest node distance value to the robot
position is determined for the path having the largest distance value and it is assigned
to the Hp, parameter. In the next step, the Hy, target is added to the new target
location matrix KMp,, and the target Hg, is subtracted from the K Mg, matrix. New
path costs are found by re-calculating the KM, and KMp,, distance matrices of the
targets with GA and NN. This target addition/subtraction and reassignment process
continues until the threshold value between the path costs is reached. If this threshold
value is not reached, then the algorithm terminates and the nearest value close to the
threshold value is considered as the solution. In order to see the efficiency of load

balancing, the LBS module is integrated into the system as an optional plug-in.
5.5.3. Nearest Neighbor Method

The nearest neighbor method uses the distance between the target nodes to create a
path in a simple way. The start position node can be determined by the algorithm or
by external selection. After selecting a starting position, the distances between this
node and other target nodes are calculated. This distance calculation is done by using
the Euclidean distance equation. In the next step, all distances from the starting node
to the others are compared and the node with the smallest distance from the starting
point is selected as the second target to be visited. This new node is reassigned as the
start node. The previous node is removed from the navigation matrix. All previous
steps are repeated for this new node. This path extraction process continues until all
variables in the dataset are processed in the same way. When all node visits are
completed, a path is obtained that visits all nodes. The resulting pathway may be the
least cost path, but the closest neighbor method generally produces an acceptable
level of cost in the TSP (Travelling Salesman Problem). The closest neighbor method
has been used as its default specifications in this study. Fig. 114 shows the working
diagram for the NN method.
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Fig. 114. Nearest Neighbor (NN) working diagram
5.5.4. Genetic Algorithm (GA)

Genetic algorithm is a method that is inspired by nature and makes problem
solution closer to the best solution by performing a search and optimization process
on the target dataset. It tries to reach a holistic solution based on the principle of
survival of the best, while conducting the search process in multidimensional and
complex space. The genetic algorithm generates a set of solutions unlike a single
solution to the problem. Since it works with nature inspiration, selection attempts to
further improve the data population with crossing and mutation steps. The algorithm
is stopped when the maximum number of iterations is reached. The method tries to
make the best choice for the current situation through the fitness function. It produces
effective, efficient and useful solutions when traditional optimization methods do not
give good or expected results. Fig. 115 shows the working scheme of the algorithm. It
is commonly used to solve the TSP. The calculation of the fitness value is based on
the distance values between these object nodes. As a result of tests for maximum

iteration, an upper limit has been determined empirically.
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Fig. 115. Genetic Algorithm (GA) working diagram
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5.5.5. Findings and Observations

In order to see the performance values of the proposed system, a configuration
space with a total of two different target layouts including 8 and 24 targets have been
used. Two robots (R1 - Red, R2 - Green) share the tasks in the system. Robot
positions are arranged so that they are opposite directions. The distribution of targets
has been set in three forms; random (R), stacked to one side (S) and collective (C).
The 12 different experiments have been performed in total according to three target
distributions, two different target numbers and activation status of LBS

(active/inactive).

In the task sharing, the proximity of the targets to the robots is considered. In this
case, it can be said that load balancing is ignored. When LBS is activated, it is
ensured that the total distance values of the paths followed by the robots are brought
closer together. In some studies, it is tried to provide load balancing by distributing
the targets in balanced numbers to the robots. However, it is not provided an efficient
solution by considering only the number of targets. Since, the costs of the paths may
be very different from each other. For this reason, both number of targets and cost of

traveling criteria are taken into account for load balancing in this study.

The experiment environment is as shown in Fig. 116 for the configuration of 8
targets. In the figure, there is a random distribution in part I, in section II is piled to

the right side, and in section III there is a collective distribution.

Fig. 116. Different distribution configurations of ‘8’ targets in different positions

The path plans obtained for the 8 targets with nearest neighbor and genetic
algorithm methods are given in Fig. 117. The path shown by red has been obtained by
the NN method, while the path shown by blue has been obtained by GA. When the
path plans are examined, it is observed that the genetic algorithm creates similar path
plans with the nearest neighbor and differentiates in some sections. This difference

leads to cost differentiation in path costs. This is due to the fact that the methodology
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of the methods is different in the evaluation process. On the other hand, the number of

iterations for GA in 8 target configurations are set to 30.

I IT

Fig. 117. Path plans for 8 targets with NN (red) and GA (blue) methods

Fig. 118 shows the paths plans created when LBS is open. As it can be seen, an
equal number of targets are assigned to each robot in all distributions. After this
assignment, navigation plans have been extracted between targets with NN and GA.
In the next step, the second part of the algorithm is run if the difference between the
distances of path plans exceeds the threshold value. Since this threshold is not

exceeded in these distributions, path plans are considered to be efficient.
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Fig. 118. Acquired path plans for ‘8’ targets (LBS open)

The experiment environment is as shown in Fig. 119 for the configuration with 24
targets. In the figure, there is a random distribution in part I, in section II is piled to

the right side, and in section III there is a collective distribution.

[
= = ® i
®
° L e ° ® = ee
R2 S e o RI R2 o o RI R2 o . & R1
© o @ ‘ ®
& Y . I o€ - -0
’ . ® ®
® o - ® s? ® an -
] L] e @ <:'J°
) @ ® ® e
® ®

Fig. 119. Different distribution configurations of ‘24’ targets in different positions

The path plans obtained for the 24 targets with the NN and GA methods are given
in Fig. 120. The path shown by red has been obtained by the NN method, while the
path shown by blue has been obtained by the GA method. Similarly, although there is
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a similarity ratio of the paths obtained in the same way, there are also sections in
which they differ. The number of GA iterations has been set to 60 for 24 targets. As
the number of targets increases, the minimum number of iterations needed also
increases. Increasing the number of iterations can provide better results in the GA
method, but the algorithmic performance decreases. In experiments (I) and (III),
where the distribution shows a homogeneous characteristic, it is seen that similar or
close number of targets are assigned to R1 and R2 robots. On the other hand, in the
experiment (II) in the middle side, 8 targets have been assigned to the R1 robot while
16 targets have been assigned to the R2 robot. This causes an unbalanced workload

distribution between the robots.

1T

Fig. 120. Path plans for 24 targets with NN (red) and GA (blue) methods

In Fig. 121, only one target has been reassigned to the R1 robot from R2 robot by
executing the LBS algorithm, (I). The distribution has been performed again
according to the number of targets and path cost in the experiment, (II). A more
balanced target assignment has been made to the robots. There is no change due to the
fact that the targets are already balanced and the difference between path costs is

below the threshold value in the experiment, (III).

&

Fig. 121. Acquired path plans for 24’ targets (LBS open)

Distributing the target tasks to the robots with load balancing by considering the
number of targets and the closeness of the targets to the robots ensures that the paths
obtained do not cross. This structure minimizes the negative situations of robots such

as waiting and disturbing each other.
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The path costs are given in Table 16 for the R1 robot and in Table 17 for the R2
robot. The obtained path costs by NN and GA methods have been given in all target
numbers and distribution configurations while LBS is inactive. Table data provides
basic data to see the individual workloads of robots. The GA method has generally
generated paths lesser cost than the NN method except for a few configurations. On
the other hand, there are also plans having same cost with the NN and GA methods.
As the number of targets increases, path costs generally increase in both methods.
According to the distribution of the targets, it has been observed that the cost is higher

in the random distribution and the cost is lower in the collective distribution.

Table 16. Path costs (px) obtained in experiments for R1 - LBS closed (LBS-C)

Distributions

Exp. Name R S C
NN GA NN GA NN GA
8 Target 624 593 734 734 401 395
24 Target 1428 1342 1098 985 837 842

Table 17. Path costs (px) obtained in experiments for R2 - LBS closed (LBS-C)

Distributions

Exp. Name R S C
NN GA NN GA NN GA
8 Target 565 588 305 305 362 349
24 Target 1349 1318 1820 1746 878 866

The path costs are given in Table 18 for the R1 robot and in

Table 19 for the R2 robot. The obtained path costs by NN and GA methods have been
given in all target numbers and distribution configurations while LBS is active.
Similarly, the GA method has given better results than the NN method when the load
balancing is active. The difference between path distances has been further reduced
by LBS. The results given in bold text mean that better results are obtained when the
load balancing is active. It can be said that LBS generally provides better results for

task sharing, except for a few cases.

Table 18. Path costs (px) obtained in experiments for R1 - LBS open (LBS-O)

Distributions

Exp. Name R S C
NN GA NN GA NN GA
8 Target 624 593 613 613 361 352
24 Target 1436 1302 1495 1276 840 856
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Table 19. Path costs (px) obtained in experiments for R2 - LBS open (LBS-O)

Distributions

Exp. Name R S C
NN GA NN GA NN GA
8 Target 565 565 546 546 352 344
24 Target 1268 1218 1369 1209 798 781

Table 20 shows the total workloads (costs) for each configuration. When the total
workloads are examined, it is understood that GA method gives better results than NN
method in most cases. There are also cases where the NN method equals to the GA in
the total path costs. The GA method has ensured improvements in path costs from 0%
to 13.24% compared to the NN method. On the other hand, when the effect of load
balancing on the total path cost is examined, it has been observed that the LBS
provides improvements in all other cases except for the 8 target tests where the
distribution is stacked (S). In the case which could not improve the overall cost of the
path, the workload has been given with the similar costs to the robots in the
background and significant improvements have been achieved. This could provide
better energy management. These results indicate that the higher the number of
targets, the better the load balancing results. On the other hand, a more efficient
working infrastructure has been built in terms of time and energy by providing similar

number of workloads to robots.

Table 20. Total workload of robots in each configuration (total cost)

Distributions

Exp. Name R S C
NN GA NN GA NN GA
8 Target LBS-C 1189 1181 1039 1039 732 726
8 Target LBS-O 1189 1158 1159 1159 713 696
24 Target LBS-C 2777 2660 2918 2731 1715 1708
24 Target LBS-O 2704 2520 2864 2485 1638 1637

5.5.6. Results and Recommendations

In this study, the task sharing for robot, balanced load distribution, path plan
extraction, multiple TSP problem and the necessary methods have been discussed on
random, one side stacked and collective distributions with different target numbers.
The main focus of this study is distributing targets with a balanced manner. The
targets have been assigned to the robots efficiently in terms of both number and cost
with LBS. According to the obtained results, it has been observed that LBS improves

the default path plan in many different scenarios. LBS has produced efficient results
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in terms of multiple targets and task sharing across multiple robots. In terms of cost,
GA has showed more successful performance. In terms of speed, the NN method
performed much better than the GA method. The main reason of this situation is that
the GA method tries to improve the solutions obtained in each step by depending on
the number of iterations. Both methods have showed advantages and disadvantages
according to their usage areas and needs. A total of 12 different experiments have
been performed according to two different target numbers, three different

distributions and two different LBS status.
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6. CONCLUSION AND FUTURE WORKS

The WMR motions has been successfully characterized in each image frame and it
has reached to the target position with high accuracy. The developed control methods
ensure more robust, flexible and simple controlling process and eliminate systematic
and unsystematic errors. The designed control infrastructure is primarily suitable for
interior spaces. For instance; forklift trucks can be efficiently controlled in a
warehouse with VBC systems. Since external or internal distance sensors are not
necessary, system cost will decrease by using the proposed method. Modelling and

adapting it to any indoor environment are easy.

The developed method is the first method using parameters of detected objects to
form and operate a dynamic structured triangle or graph, directly on the robot.
Besides, as far as we know, this is the first study employing Gaussian function as a
default mobile robot controller by modifying several parameters in real time. This is
the first study which uses decision tree-based controller as a novel method in VBC
systems. Firstly, we modeled and designed only the go-to-goal control task which is
one of the major task components in robotic applications alongside the navigation,
obstacle avoidance etc. tasks. Then we have designed adaptive potential field method
for path planning and combined it with previously designed go-to-goal controllers.
Ultimately, the multi-camera infrastructure design is successfully harmonized with

proposed methods.

We plan to combine this study with a newly designed or available visual-based
control systems by comparing experiment parameters. Additionally, we will integrate
and test commonly known path planning approaches with our method. Ultimately, it

is aimed to apply this study to configuration spaces with obstacles and multi targets.

Visual based control presents design ideas in another level for robotic applications.
Eye-in-device (or internal sensor) applications generally requires calculation of
distance parameters from 2D images by considering depth information. Therefore, it
requires much complex processes as disadvantage. Eye-out-device (or external
sensor) requires distance information with a good calibrated camera as well. But this
configuration provides simple approaching to control process. The main disadvantage
is that the camera is generally placed to a fixed position. Therefore, there is a

coverage area for the camera.
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In this thesis study, a novel Gaussian/Decision tree controller, adaptive artificial
potential field methods and multi-camera configuration are proposed and they have
been combined for a visual based control. By using the proposed methods WMR has
reached to the target position for all configurations. A robot is admitted as a point
mass in many studies. However, the WMR is admitted with its whole dimensions in
both simulations and real implementations for this study. Moreover, we have touched

key issues extensively and have made a wide literature search.

In this thesis study, a multi-camera model is proposed for VBC. It provides an
expandable and scalable platform. Unlike the stereovision imaging, depth information
is not used and it does not provide any remarkable advantage for this configuration.
The mobile robot has successfully reached to the target position in each configuration.
It has been focused to multi-camera model and path planning in the scope of this
work. Therefore, we have used a basic color thresholding-based object detection
method. We plan to use and investigate learning based object detection methods in

our next studies. Ultimately, we will extensively focus these issues in later studies.

A model will be designed by preparing the necessary infrastructure to test an
alternative graph-based method in Fig. 122. It will used to determine the feasible
paths between the obstacles. After determining the obstacles in the obstacle-hosted
environment, the corner points of the obstacles are extracted with an algorithm like
Harris. Then circles whose diameter equal to the distance between these points are
created between the closest corner points or between the corner points and the
obstacle edges. The center points of these circles are found. Circles that are smaller in
diameter than the diameter of the robot are eliminated. Paths that do not intersect the
obstacles between the circles are drawn so that they coincide to the center of the
circle. Next, there is a diagram showing the routes on which the robot can proceed.
These paths between the circle centers are our edges and the centers of the circle are
our nodes. At the last stage, the cost of cross sections between these nodes is
calculated in length. Inter-node costs can be kept in an adjacency matrix. Ultimately,

this graph will be the input for path planning, it will be used to find the shortest path.

In Fig. 122, the robot can go to the green nodes. However, it cannot go to the red
nodes, which is mainly because the diameter of the circle around the node is smaller

than the diameter of the robot. The graph in the figure is illustrated as an example. It
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is aimed to make the path planning process steps more durable and smoother with

additional improvements, techniques and heuristic methods.

- - -~ - P

Fig. 122. Creating a graph-based path; The green nodes are the nodes to be gone, and the red nodes
are the blind nodes. BP: Initial Position, HP: Target Position
Despite all the problems, visual based robot control under multi-camera
surveillance is a young area which should be studied in-depth. According to the all
knowledge and expertise acquired within this study, it can be clearly said that both
eye-out-device and eye-in-device based visual control systems shows a promising

future.

113



[1]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin, Iterative feedback
tuning. Theory and applications, IEEE Control Syst. Mag., 18:4 (1998) 26—
41.

Z. Y. Zhao, M. Tomizuka, and S. Isaka, Fuzzy Gain Scheduling of PID
Controllers, IEEE Trans. Syst. Man Cybern., 23:5 (1993) 1392-1398.

P. Shah and S. Agashe, Review of fractional PID controller, 38 (2016) 29-41.

A. A. Voda and I. D. Landau, A method for the auto-calibration of PID
controllers, 31:1 (1995) 41-53.

P. S. Londhe, Y. Singh, M. Santhakumar, B. M. Patre, and L. M. Waghmare,
Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-
PPR) manipulator, ISA Trans., 63 (2016) 218-232.

H. Choset et al., Principles of Robot Motion, 2005 .

G. Dudek and M. Jenkin, Computational principles of mobile robotics,
Cambridge University Press, 2010 .

B. Siciliano and O. Khatib, Robotics and the Handbook, Springer Handbook
of Robotics. Cham: Springer International Publishing, pp. 1-10, 2016.

N. J. Cowan, J. D. Weingarten, and D. E. Koditschek, Visual servoing via
navigation functions, IEEE Trans. Robot. Autom., 18:4 (2002) 521-533.

F. Chaumette and S. Hutchinson, Visual servo control. 1. Basic approaches,
IEEE Robot. &amp;amp;amp; Autom. Mag., 13:4 (2006) 82-90.

F. Chaumette and S. Hutchinson, Visual servo control. II. Advanced
approaches [Tutorial], IEEE Robot. Autom. Mag., 14:1 (2007) 109-118.

A. J. Koivo and N. Houshangi, Real-time vision feedback for servoing robotic
manipulator with self-tuning controller, IEEE Trans. Syst. Man. Cybern.,
21:1 (1991) 134-142.

K. Hosoda and M. Asada, Versatile visual servoing without knowledge of true
Jacobian, Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’94), (1994) pp.186—193.

J. Wenger, Automotive radar - status and perspectives, IEEE Compound
Semiconductor Integrated Circuit Symposium, 2005. CSIC °05., (2005) pp.4
pp-

T. Bailey and H. Durrant-Whyte, Simultaneous localization and mapping
(SLAM): Part I, IEEE Robot. Autom. Mag., 13:3 (2006) 108-117.

A. Eidehall, J. Pohl, F. Gustafsson, and J. Ekmark, Toward Autonomous
Collision Avoidance by Steering, IEEE Trans. Intell. Transp. Syst., 8:1
(2007) 84-94.

H. Khalajzadeh, C. Dadkhah, and M. Mansouri, 4 review on applicability of
expert system in designing and control of autonomous cars, The Fourth

International Workshop on Advanced Computational Intelligence, (2011)
pp-280-285.

N. Cao and A. F. Lynch, Inner—Outer Loop Control for Quadrotor UAVs With

114



[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Input and State Constraints, IEEE Trans. Control Syst. Technol., 24:5
(2016) 1797-1804.

T. Ryan and H. J. Kim, Probabilistic Correspondence in Video Sequences for
Efficient State Estimation and Autonomous Flight, IEEE Trans. Robot., 32:1
(2016) 99-112.

V. Lippiello et al., Hybrid Visual Servoing With Hierarchical Task
Composition for Aerial Manipulation, IEEE Robot. Autom. Lett., 1:1
(2016) 259-266.

B. Siciliano and O. Khatib, Handsbook of Robotics, Springer-Verlag, 2008 .

S. M. LaValle and S. M., Planning algorithms, Cambridge University Press,
2006 .

J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE
Trans. Automat. Contr., 40:9 (1995) 1528-1538.

T. H. Cormen, T. H. Cormen, R. L. Rivest, and C. E. Leiserson, Introduction
to algorithms, MIT Press, 2001 .

P. Hart, N. Nilsson, and B. Raphael, 4 Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Trans. Syst. Sci. Cybern., 4:2
(1968) 100-107.

A. Stentz, Optimal and efficient path planning for partially-known
environments, Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, (1994) pp.3310-3317.

S. M. Lavalle and S. M. Lavalle, Rapidly-Exploring Random Trees: A New
Tool for Path Planning, (1998).

S. M. LaValle and J. J. Kuffner, Randomized kinodynamic planning,
Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C), (1999) pp.473-479.

C. Y. Lee, An Algorithm for Path Connections and Its Applications, IEEE
Trans. Electron. Comput., EC-10:3 (1961) 346-365.

J. Anderson and S. Mohan, Sequential Coding Algorithms: A Survey and Cost
Analysis, IEEE Trans. Commun., 32:2 (1984) 169-176.

E. Rimon and D. E. Koditschek, Exact robot navigation using artificial
potential functions, IEEE Trans. Robot. Autom., 8:5 (1992) 501-518.

Z. Ziaei, R. Oftadeh, and J. Mattila, Global path planning with obstacle
avoidance for omnidirectional mobile robot using overhead camera, 2014

IEEE International Conference on Mechatronics and Automation, (2014)
pp.697-704.

E. Johnson, E. Olson, and C. Boonthum-Denecke, Robot localization using
overhead camera and LEDs, Florida Artificial Intelligence Research Society
Conference, (2012) pp.524-526.

C.-H. L. Chen and M.-F. R. Lee, Global path planning in mobile robot using
omnidirectional camera, 2011 International Conference on Consumer
Electronics, Communications and Networks (CECNet), (2011) pp.4986—4989.

Y. Mezouar and F. Chaumette, Path planning for robust image-based control,

115



[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

IEEE Trans. Robot. Autom., 18:4 (2002) 534-549.

A. Breitenmoser, L. Kneip, and R. Siegwart, A monocular vision-based system
for 6D relative robot localization, 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, (2011) pp.79-85.

S. R. Bista, P. R. Giordano, and F. Chaumette, Appearance-Based Indoor
Navigation by IBVS Using Line Segments, IEEE Robot. Autom. Lett., 1:1
(2016) 423-430.

Q. Bateux and E. Marchand, Histograms-Based Visual Servoing, IEEE
Robot. Autom. Lett., 2:1 (2017) 80-87.

B. Espiau, F. Chaumette, and P. Rives, A New Approach to Visual Servoing
in Robotics, IEEE Transactions on Robotics and Automation, 8, :3. pp. 313—
326, 1992.

J. Pauli, Learning-Based Robot Vision, Springer Berlin Heidelberg, 2001 .

Y. Zhao, L. Gong, Y. Huang, and C. Liu, 4 review of key techniques of vision-
based control for harvesting robot, Comput. Electron. Agric., 127 (2016)
311-323.

E. Donmez, A. F. Kocamaz, and M. Dirik, Robot control with graph based
edge measure in real time image frames, 2016 24th Signal Processing and
Communication Application Conference (SIU), (2016) pp.1789-1792.

M. Dirik, A. F. Kocamaz, and E. Donmez, Vision-based decision tree
controller design method sensorless application by using angle knowledge,
2016 24th Signal Processing and Communication Application Conference
(SIU), (2016) pp.1849-1852.

F. Martinelli, 4 Robot Localization System Combining RSSI and Phase Shift in
UHF-RFID Signals, IEEE Trans. Control Syst. Technol., 23:5 (2015)
1782-1796.

E. A. Elsheikh, M. A. El-Bardini, and M. A. Fkirin, Practical path planning
and path following for a non-holonomic mobile robot based on visual

servoing, 2016 IEEE Information Technology, Networking, Electronic and
Automation Control Conference, (2016) pp.401-406.

Fujie Wang, Lulu Song, and Zhi Liu, Image-based visual servoing control for
robot manipulator with actuator backlash, 2016 3rd Int. Conf. Inf. Cybern.
Comput. Soc. Syst., :1 (2016) 272-276.

X. Zhang, Y. Fang, B. Li, and J. Wang, Visual Servoing of Nonholonomic
Mobile Robots With Uncalibrated Camera-to-Robot Parameters, 1EEE
Trans. Ind. Electron., 64:1 (2017) 390—400.

A. Elfes, Sonar-based real-world mapping and navigation, IEEE J. Robot.
Autom., 3:3 (1987) 249-265.

A. Elfes, Using occupancy grids for mobile robot perception and navigation,
Computer (Long. Beach. Calif)., 22:6 (1989) 46-57.

J. Borenstein and Y. Koren, Real-time obstacle avoidance for fast mobile
robots, IEEE Trans. Syst. Man. Cybern., 19:5 (1989) 1179-1187.

J. Borenstein and Y. Koren, The vector field histogram-fast obstacle

116



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

avoidance for mobile robots, IEEE Trans. Robot. Autom., 7:3 (1991) 278—
288.

R. M. Murray and S. S. Sastry, Nonholonomic motion planning: steering using
sinusoids, IEEE Trans. Automat. Contr., 38:5 (1993) 700-716.

J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, 4 motion planner for
nonholonomic mobile robots, IEEE Trans. Robot. Autom., 10:5 (1994)
577-593.

R. Fierro and F. L. Lewis, Control of a nonholonomic mobile robot using
neural networks, IEEE Trans. Neural Networks, 9:4 (1998) 589-600.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun, Monte Carlo localization for
mobile robots, Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C), (1999) pp.1322-1328.

J. J. Kuffner and S. M. LaValle, RRT-connect: An efficient approach to single-
query path planning, Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.OOCH37065), (2000) pp.995-1001.

F. Arambula Cosio and M. A. Padilla Castafieda, Autonomous robot
navigation using adaptive potential fields, Math. Comput. Model., 40:9-10
(2004) 1141-1156.

T. Bailey and H. Durrant-Whyte, Simultaneous localization and mapping
(SLAM): part 11, IEEE Robot. Autom. Mag., 13:3 (2006) 108-117.

Z. Xu, R. Hess, and K. Schilling, Constraints of Potential Field for Obstacle
Avoidance on Car-like Mobile Robots, IFAC Proc. Vol., 45:4 (2012) 169-
175.

B. Kovacs, G. Szayer, F. Tajti, M. Burdelis, and P. Korondi, 4 novel potential
field method for path planning of mobile robots by adapting animal motion
attributes, Rob. Auton. Syst., 82 (2016) 24-34.

M. Guerra, D. Efimov, G. Zheng, and W. Perruquetti, Avoiding local minima
in the potential field method using input-to-state stability, Control Eng.
Pract., 55 (2016) 174-184.

D. Jia, M. Wermelinger, R. Diethelm, P. Krusi, and M. Hutter, Coverage path
planning for legged robots in unknown environments, 2016 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), (2016) pp.68—
73.

D. J. Bennet and C. R. Mclnnes, Distributed control of multi-robot systems
using bifurcating potential fields, Rob. Auton. Syst., 58:3 (2010) 256-264.

R. A. F. Romero, E. Prestes, M. A. P. Idiart, and G. Faria, Locally oriented
potential field for controlling multi-robots, Commun. Nonlinear Sci. Numer.
Simul., 17:12 (2012) 4664-4671.

Y. Yan and Y. Li, Mobile robot autonomous path planning based on fuzzy
logic and filter smoothing in dynamic environment, 2016 12th World Congress
on Intelligent Control and Automation (WCICA), (2016) pp.1479—-1484.

P. K. Das, H. S. Behera, P. K. Jena, and B. K. Panigrahi, Multi-robot path
planning in a dynamic environment using improved gravitational search

117



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

algorithm, J. Electr. Syst. Inf. Technol., 3:2 (2016) 295-313.

O. Montiel, U. Orozco-Rosas, and R. Sepulveda, Path planning for mobile
robots using Bacterial Potential Field for avoiding static and dynamic
obstacles, Expert Syst. Appl., 42:12 (2015) 5177-5191.

D. H. Santos, A. P. F. Negreiros, J. E. A. Jacobo, L. M. G. Goncalves, A. G.
Silva Junior, and J. M. V. B. S. Silva, Short-Term Path Planning for High-
Level Navigation Control of N-Boat - The Sailboat Robot, 2016 XIII Latin
American Robotics Symposium and IV Brazilian Robotics Symposium
(LARS/SBR), (2016) pp.211-216.

J. Tan, L. Zhao, Y. Wang, Y. Zhang, and L. Li, The 3D Path Planning Based
on A* Algorithm and Artificial Potential Field for the Rotary-Wing Flying
Robot, 2016 8th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), (2016) pp.551-556.

E. Donmez, A. F. Kocamaz, and M. Dirik, Visual based path planning with
adaptive artificial potential field, 2017 25th Signal Processing and
Communications Applications Conference (SIU), (2017) pp.1-4.

M. Dirik, A. F. Kocamaz, and E. Donmez, Static path planning based on
visual servoing via fuzzy logic, 2017 25th Signal Processing and
Communications Applications Conference (SIU), (2017) pp.1-4.

E. Donmez, A. F. Kocamaz, and M. Dirik, Bi-RRT path extraction and curve
fitting smooth with visual based configuration space mapping, 2017
International Artificial Intelligence and Data Processing Symposium (IDAP),
(2017) pp.1-5.

M. Dirik, A. F. Kocamaz, and E. Donmez, Visual servoing based path
planning for wheeled mobile robot in obstacle environments, 2017
International Artificial Intelligence and Data Processing Symposium (IDAP),
(2017) pp.1-5.

S. Kamarry, L. Molina, E. A. N. Carvalho, and E. O. Freire, Compact RRT: A
New Approach for Guided Sampling Applied to Environment Representation
and Path Planning in Mobile Robotics, 2015 12th Latin American Robotics
Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR),
(2015) pp.259-264.

Kunwook Lee, Ja Choon Koo, Hyouk Ryeol Choi, and Hyungpil Moon, 4n
RRT* path planning for kinematically constrained hyper-redundant inpipe
robot, 2015 12th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), (2015) pp.121-128.

E. Shan, B. Dai, J. Song, and Z. Sun, A Dynamic RRT Path Planning
Algorithm Based on B-Spline, 2009 Second International Symposium on
Computational Intelligence and Design, (2009) pp.25-29.

N. A. Melchior and R. Simmons, Particle RRT for Path Planning with
Uncertainty, Proceedings 2007 IEEE International Conference on Robotics
and Automation, (2007) pp.1617-1624.

R. HeP, T. Lindeholz, D. Eck, and K. Schilling, RRTCAP * - RRT* Controller
and Planner - Simultaneous Motion and Planning, 48:10 (2015) 52-57.

P. Mufioz, M. D. R-Moreno, and B. Castafio, 3Dana: A path planning

118



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

algorithm for surface robotics, Eng. Appl. Artif. Intell., 60 (2017) 175-192.

E. Malis, F. Chaumette, and S. Boudet, Multi-cameras visual servoing,
Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), pp.3183-3188.

V. Lippiello, B. Siciliano, and L. Villani, Eye-in-Hand/Eye-to-Hand Multi-
Camera Visual Servoing, Proceedings of the 44th IEEE Conference on
Decision and Control, pp.5354-5359.

L. Qiu, Q. Song, J. Lei, Y. Yu, and Y. Ge, Multi-Camera Based Robot Visual
Servoing System, 2006 International Conference on Mechatronics and
Automation, (2006) pp.1509-1514.

Yuta Yoshihata, Kei Watanabe, and Yasushi Iwatani, Multi-camera visual
servoing of a micro helicopter under occlusions, 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, (2007) pp.2615-2620.

Y. Iwatani, Kohou, and K. Hashimoto, Multi-camera visual servoing of
multiple micro helicopters, 2008 SICE Annual Conference, (2008) pp.2432—
2435.

B. Weber and K. Kuhnlenz, Visual servoing using triangulation with an
omnidirectional multi-camera system, 2010 11th International Conference on
Control Automation Robotics & Vision, (2010) pp.1440-1445.

O. Kermorgant and F. Chaumette, Multi-sensor data fusion in sensor-based

control: Application to multi-camera visual servoing, 2011 IEEE International
Conference on Robotics and Automation, (2011) pp.4518—4523.

E. A. Elsheikh, M. A. El-Bardini, and M. A. Fkirin, Dynamic path planning
and decentralized FLC path following implementation for WMR based on

visual servoing, 2016 3rd MEC International Conference on Big Data and
Smart City (ICBDSC), (2016) pp.1-7.

H. Aliakbarpour, O. Tahri, and H. Araujo, Visual servoing of mobile robots
using non-central catadioptric cameras, Rob. Auton. Syst., 62:11 (2014)
1613-1622.

K. Ahlin, B. Joffe, A. P. Hu, G. McMurray, and N. Sadegh, Autonomous Leaf
Picking Using Deep Learning and Visual-Servoing, 49:16 (2016) 177-183.

J. P. Alepuz, M. R. Emami, and J. Pomares, Direct image-based visual
servoing of free-floating space manipulators, Aerosp. Sci. Technol., 55
(2016) 1-9.

I. Kolmanovsky and N. H. McClamroch, Developments in nonholonomic
control problems, IEEE Control Syst. Mag., 15:6 (1995) 20-36.

T. Weerakoon, K. Ishii, and A. A. F. Nassiraei, An Artificial Potential Field
Based Mobile Robot Navigation Method To Prevent From Deadlock, J. Artif.
Intell. Soft Comput. Res., 5:3 (2015) 189-203.

D. Scaramuzza, A. Martinelli, and R. Siegwart, A toolbox for easily
calibrating omnidirectional cameras, IEEE Int. Conf. Intell. Robot. Syst.,
(2006) 5695-5701.

R. C. Gonzalez and R. E. Woods, Digital image processing, Pearson Prentice

119



[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Hall, 2008 .

N. Paragios, Y. Chen, and O. Faugeras, Handbook of mathematical models in
computer vision, Springer, 2006 .

C. Mota, J. Gomes, and M. 1. A. Cavalcante, Optimal image quantization,
perception and the median cut algorithm, An. Acad. Bras. Cienc., 73:3
(2001).

G. Dudek and M. Jenkin, Computational principles of mobile robotics,
Cambridge University Press, 2010 .

F. Chaumette and S. Hutchinson, Visual servo control. 1. Basic approaches,
IEEE Robot. Autom. Mag., 13:4 (2006) 82-90.

F. Chaumette and S. Hutchinson, Visual servo control. II. Advanced
approaches [Tutorial], IEEE Robot. Autom. Mag., 14:1 (2007) 109-118.

M. Brown and D. G. Lowe, Recognising panoramas, Proceedings Ninth IEEE
International Conference on Computer Vision, (2003) pp.1218—-1225 vol.2.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, Speeded-Up Robust Features
(SURF), Comput. Vis. Image Underst., 110:3 (2008) 346-359.

G. Lowe, SIFT - The Scale Invariant Feature Transform, Int. J., 2 (2004) 91—
110.

120



CIRCULLAUM VITAE
Name, Family-Name: Emrah Donmez
Birthplace and Date: Malatya — 1987

Address: Inonii University Faculty of Engineering Computer Engineering

Department Robotic Laboratory!, Malatya Technopark Administrative Department’
E-Mail: emrah.donmez@inonu.edu.tr!, emrahdonmez@msn.com’
Undergraduate Degree: Computer Science — Suleyman Demirel University - 2009
Master Degree: Electronic-Computer Science —SDU - 2011

PhD Course Period: Computer Engineering Department — [TU

Professional Experience: Substitute Lecturer (2009-2010), Research Assistant
(2010-2016), Academic Expert (2017-2018), Academician (2018-Now) Project
Manager (2017-Now)

Publication List:

A. Articles published in internationally acclaimed journals

Donmez E., A. Kocamaz F., “Multi-Camera Configured Vision Based Mobile Robot
Control with Path Planning”, Arabian Journal for Science and Engineering, (2018).
(SCI-E) — Under Review

Donmez E., A. Kocamaz F., “Design of Mobile Robot Control Infrastructure Based
on Decision Trees and Adaptive Potential Area Methods”, Iranian Journal of Science
and Technology, Transactions of Electrical Engineering, (2018). (SCI-E) — Under
Review

Dénmez E., A. Kocamaz F., “Coklu Hedeflerin Coklu Robotlara Paylastirilmas: Igin
Bir Yik Dengeleme Sistemi”, BEU Fen Bilimleri Dergisi, (2018). (TR-Dizin,
ULAKBIM) — Under Review

Donmez E., A. Kocamaz F., and Dirik M., “A Vision-Based Real-Time Mobile
Robot Controller Design Based on Gaussian Function for Indoor Environment”,
Arab. J. Sci. Eng., (2017) 1-16. (SCI-E)

D. Emrah, Design of a Resource Management for GPGPU Supported Grid
Computing, Journal of Computer and Electrical Sciences (JCES), Vol./Is. 1(1)
(2016) pp. 39-48. ISSN: 2548-1304

Donmez E., Ozcan A., “Time Based Discovering Of Web User Patterns
(Extended)”. International Journal of Advance Computational Engineering and

Networking (IJACEN), 3(8), pp. 14-20, 2015

121



Aydogan T., Giil K., Dénmez E., “Ultrasonik Sensér ile Iki Boyutlu Haritalandirma
Sistemi”. SDU International Journal of Technologic Sciences, 1(1), pp. 1-9., 2009
(TUBITAK destekli lisans tezinden yapild1)

B. Articles published in nationally-respected journals

C. Papers presented at international scientific conferences

Donmez E. and Kocamaz A. F., "A Hog & Graph Based Human Segmentation from
Video Sequences," 2018 International Artificial Intelligence and Data Processing
Symp. (IDAP), Malatya, 2018, pp. 1-5.

Donmez E. and Kocamaz A. F., "Multi Target Task Distribution and Path Planning
for Multi-Agents," 2018 International Artificial Intelligence and Data Processing
Symp. (IDAP), Malatya, 2018, pp. 1-8.

Donmez E., Kocamaz A. F. and Dirik M., "Bi-RRT path extraction and curve fitting
smooth with visual based configuration space mapping," 2017 International
Artificial Intelligence and Data Processing Symp. (IDAP), Malatya, 2017, pp. 1-5.

Dirik M., Kocamaz A. F. and Dénmez E., "Visual servoing based path planning for
wheeled mobile robot in obstacle environments," 2017 International Artificial
Intelligence and Data Processing Symposium (IDAP), Malatya, 2017, pp. 1-5.

Toslak F., Kocamaz A.F. and Déonmez E., “Designing and Developing a Voice
Controlled Laser Printer to Code Microscope Slides Which is Used in Pathology
Laboratories”, International Conference on Research in Education and Science
(ICRES), Kusadasi/Aydin, Turkey, 2017, pp. 32-36.

Donmez E., Kocamaz A. F. and Dirik M., "Visual based path planning with adaptive
artificial potential field," 2017 25th Signal Processing and Communications
Applications Conference (SIU), Antalya, Turkey, 2017, pp. 1-4.

Dirik M., Kocamaz A. F. and Dénmez E., "Static path planning based on visual
servoing via fuzzy logic," 2017 25th Signal Processing and Communications
Applications Conference (SIU), Antalya, Turkey, 2017, pp. 1-4.

Donmez E., Kocamaz A. F., Karcti A. “Melez (Bulut Ve Goniilli) Kiiresel
Hesaplama I¢in Veri Gilivenligi Ve Hesaplama Sisteminin Incelenmesi”.

International Artificial Intelligence and Data Processing Symposium'l6 (IDAP), pp.
561-568., 2016

Dirik M., Kocamaz A. F., Donmez E., “Vision-Based Decision Tree Controller
Design Method Sensorless Application By Using Angle Knowledge”. 24th Signal
Processing and Communication Application Conference (SIU), pp. 1849-1852., 2016

Donmez E., Kocamaz A. F., Dirik M. “Robot Control With Graph Based Edge
Measure In Real Time Image Frames”. 24th Signal Processing and Communication
Application Conference (SIU), pp. 1789-1792., 2016

Donmez E., Kocamaz A. F., Dirik M. “Robotic Positioning Method Design Through
Image Based Virtual Path With Multi-Head Camera Infrastructure”. International
Conference on Natural Science and Engineering (ICNASE'16), pp. 2278-2285., 2016

122



Kocamaz A. F., Dirik M., Déonmez E. “Head Camera-Based Nearest Neighborhood
Relations Algorithm Optimization And The Application Of Collecting The Ping-
Pong Ball”. International Conference on Natural Science and Engineering
(ICNASE'16), 2385-2390., 2016

Doénmez E., Ozcan A. “Time Based Discovering Of Web User Patterns To Optimize
Web Sites And Hyperlinks”. ISERD - International Conference on Advances in
Business Management and Information Technology (ICABMIT), 2015

Donmez E. “Design Of Security And Privacy Issues For Cloud Computing”. 3rd
International Symposium on Innovative Technologies in Engineering and Science,
3(3), pp. 1840-1848., 2015

Donmez E., Zadeh P. V. “A Modified Graph Based Approach For Leaf
Segmentation With GPGPU Support”. 23nd Signal Processing and Communications
Applications Conference (SIU), pp. 1797-1800., 2015

Donmez E., Kutlu A. “A Data Security System Design For Hybrid (Cloud &
Volunteer) Global Computing”. 6th International Conference on Information
Security & Cryptology, 1(6), pp. 3-9., 2013

D. Papers and Posters presented at national scientific conferences

Dénmez E., Gil K., “Ultrasonik Sensér ve Servo Motor ile Iki Boyutlu (2D)
Haritalandirma Sistemi”, SDU Ulusal Ogrenci Sempozyumu, 2010

E. Projects

Doénmez E., vd., “Inénii Universitesi Girisimcilik Merkezi ve On-Kulucka Kurulumu
Projesi”, Kalkinma Bakanligi Cazibe Merkezleri Destekleme Programi (CMDP)
Proje Koordinatdrii, Proje Kodu: TRB1/2017/CMDP/001

Dirik M., Donmez E., Kocamaz A.F., “Engelli Ortamlarda Heterojen Dagilmig
Hedefler igin Isbirlikgi Coklu Robotlarin Vizyon Tabanli Gérev Paylasimh
Kontrolii”, TUBITAK 1002 Hizli Destek Projesi (Quick Support Project) Project
No: 116E568

Kocamaz A.F., Dénmez E., Bayer H., “Iplik Uretiminde Hata Kaynaklarinin RFID
Teknigi ile Belirlenmesi”, Katilimli Aragtirma Projesi (KAP) — 1, Project ID: 1331

Kocamaz A.F., Donmez E., Okumus F., “Yiiksek Yiik Kapasiteli Uriin Tastyici
Otonom Robot”, Katilimli Aragtirma Projesi (KAP) — 2

Darwish A., Dénmez E., Oren C. I., “Hiteroskopi Balonu”, Katilimli Arastirma
Projesi (KAP) — 3, Project ID: 1402

E. Reviews (Refereeing)

Journal of Intelligent & Robotic Systems (SCI-E), 16 Article

Intelligent Service Robotics (SCI-E), 5 Article

Journal of Parallel and Distributed Computing (SCI), 3 Article

Bitlis Eren University Journal of Science and Technology (National), 1 Article

Anatolian Science Journal (International), 1 Article

123



