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ABSTRACT 

Ph.D. Thesis 

DESIGNING CONTROLLERS FOR PATH PLANNING APPLICATIONS TO MOBILE ROBOTS 
WITH HEAD-CAMERAS 

İnönü University 
Graduate School of Science 

Computer Engineering Department 

123 + xv page 

2018 

Advisor: Ass. Prof. A. Fatih KOCAMAZ 

In this thesis study, two different visual based controllers and an adaptive potential field 
based on path planning methods are designed for a differential drive mobile robot. The designed 
methods are operated in a multi-camera environment with fixed head camera configuration. 
Configuration space hosts a number of static obstacles. The controller performs robot motions until a 
pre-defined target is reached. For each controller two different positioning models are utilized. A 
weighted graph and a triangle model have been proposed. This study is comprised of three stages. In 
first stage; a simple go-to-goal controller designed for an obstacle free configuration space. In second 
stage, designed controller has been fused with a modified path planning method (for obstacle 
avoidance) and a newly designed controller. In last stage; an expandable configuration space is 
created with multi-camera device and controllers have been adapted to this new configuration space.    

The camera(s) captures image frames in an interior space. A real-time system tracks the 
configuration space in consecutive frames to detect global positions of a mobile robot, target and 
obstacles. A graph structure is formed by assuming robot wheels and target as nodes in weighted 
graph positioning model. Distances between nodes are assigned as weights to the graph edges. A 
virtual triangle is formed between the robot wheels and target in triangle positioning model. The 
angles between edges are assigned as interior angles to the triangle corners. Both graph weights and 
triangle angles are input parameters according to the used positioning model for designed controllers.  

In first stage; go-to-goal behavior is modeled for the obstacle free environment. The general 
Gaussian function is utilized to determine the velocity of wheels in designed controller for both 
positioning models, separately. We compare outputs of controller with several conventional methods 
which are PID and Fuzzy-PID. Then it has been seen that the mobile robot control has been performed 
with high precision and accuracy by employing the developed visual-based Gaussian controller.  

In second stage; a decision tree based mobile robot control and an adaptive potential field-
based obstacle avoidance control have been developed for a static obstacle hosted environment. Then, 
we harmonized both control unit and performed a real-world experiment. Firstly, a path plan extracted 
by using adaptive potential field method. To calculate potentials virtual range sensors are used. 
Secondly, decision tree-based controller has advanced the wheeled mobile robot (WMR) on this 
reference trajectory path in real-time.  Experimental environment has included static obstacles and 
different configuration spaces.  Efficiency and robustness of potential field method has greatly 
improved by utilizing optimal parameters found with adaptive potential field design. We have 
acquired and evaluated both simulation and real-world experiment data from control process. 

Finally, all the designed controllers and models have been combined and a new control 
infrastructure has been developed to work with multi-camera device configuration in third stage. We 
proposed a new multi-camera operating model by stitching multi-images into one image. Developed 
path planning and path dividing methods are implemented on this stitched image. Experimental results 
show designed controllers and methods successfully characterize WMR motions for multi-camera 
model under different configuration spaces. 
 
Keywords: Visual based control, Path planning, Gaussian controller, Decision tree controller, 
Artificial potential field 
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ÖZET 

Doktora Tezi 

MOBİL ROBOTLARA YOL PLANLAMA UYGULAMALARI İÇİN TEPE KAMERALAR İLE 
KONTROLÖRLER TASARLAMA 

İnönü Üniversitesi 
Fen Bilimleri Enstitüsü 
Bilgisayar Mühendisliği 
Yazılım Anabilim Dalı 

123 + xv sayfa 

2018 

Danışman: Dr. Öğr. Üyesi A. Fatih KOCAMAZ 

Bu tez çalışmasında, diferansiyel tahrikli bir gezgin robot için iki farklı görü tabanlı kontrolör 
ve potansiyel alan yöntemine dayalı uyarlamalı yol planlama metodu tasarlanmıştır. Tasarlanan 
metotlar çoklu-kamera ortamında sabit tepe kamera konfigürasyonu ile çalıştırılmıştır. Konfigürasyon 
uzayı birden fazla statik engel barındırmaktadır. Kontrolör ön-tanımlı bir hedefe ulaşıncaya kadar 
robot hareketlerini yürütmektedir. Her bir kontrolör için iki farklı pozisyonlama yönteminden 
faydalanılmıştır. Bu kapsamda; bir ağırlıklı çizge ve bir de trigonometrik üçgen modelleri önerilmiştir. 
Bu tez çalışması üç aşamadan oluşmaktadır. İlk aşamada; engel içermeyen bir konfigürasyon uzayı 
için temel bir hedefe-gitme kontrolörü tasarlanmıştır. İkinci aşamada; yeni olarak tasarlanan bir 
hedefe-gitme kontrolörü ile yeni olarak tasarlanan bir hedeften kaçınma kontrolörü kaynaştırılmıştır. 
Son aşamada ise; çoklu-kamera cihazları ile genişletilebilir bir konfigürasyon uzayı oluşturulmuştur 
ve kontrolörler bu yeni konfigürasyon uzayına uyarlanmıştır.      

Kamera(lar) bir iç mekânda imge çerçevelerini yakalarlar. Robot, hedef ve engellerin global 
konumlarını tespit etmek amacıyla; konfigürasyon uzayı ardışık çerçevelerde gerçek zamanlı olarak 
izlenmektedir. Ağırlıklı çizge konumlandırma modelinde robot tekerleri ve hedef birer düğüm 
varsayılarak bir çizge yapısı oluşturulur. Düğümler arasındaki mesafe değerleri çizge kenarlarına 
ağırlık olarak atanmaktadır. Üçgen konumlandırma modelinde robot tekerleri ve hedef arasında sanal 
bir üçgen yapısı oluşturulur. Üçgenin kenarları arasındaki iç açılar üçgen köşelerine açı değerleri 
olarak atanmaktadır. Hem çizge ağırlıkları hem de üçgen iç açıları kullanılan konumlandırma 
modeline göre tasarlanmış kontrolörler için giriş parametreleri olarak kullanılmaktadır.  

İlk aşamada; engel içermeyen bir ortam için hedefe-gitme davranışı modellemiştir. Gaussian 
fonksiyonu her iki konumlandırma modeli için teker hız değerlerini belirlemek amacıyla varsayılan 
kontrolör içerisinde kullanılmıştır. Bu kontrolörden elde edilen çıktılar ise iki geleneksel kontrol 
yöntemleri olan PID ve Fuzzy-PID ile karşılaştırılmıştır. Tasarlanan görü tabanlı Gaussian kontrolörü 
kullanarak mobil robot kontrolünün yüksek hassasiyet ve doğruluk ile gerçekleştirildiği görülmüştür.  

İkinci aşamada; statik bir ortam için karar ağacı tabanlı bir gezgin robot kontrolü ve 
uyarlanabilir potansiyel alan tabanlı engel kaçınma kontrolü geliştirilmiştir. Daha sonra, her iki 
kontrol birimi uyumlu hale getirilmiş ve gerçek bir dünya deneyi gerçekleştirilmiştir. İlk olarak, 
uyarlamalı potansiyel alan yöntemi kullanarak bir yol planı çıkartılmıştır. İkinci olarak, karar ağacı 
tabanlı kontrolör tekerlekli gezgin robotu (TMR) bu referans yörünge yolu üzerinde ilerletmeye 
başlamıştır. Deneysel ortam statik engeller ve farklı konfigürasyon uzayları içermektedir. Uyarlamalı 
potansiyel alan yöntemi ile bulunan optimum parametrelerden yararlanarak potansiyel alan 
yönteminin verimi ve dayanıklılığı büyük ölçüde iyileştirilmiştir. Kontrol işleminden simülasyon ve 
gerçek dünya deneysel verileri elde edilmiş ve değerlendirilmiştir.  

Nihai olan üçüncü aşamada ise tasarlanan tüm kontrolörler ve modeller birleştirilmiş ve 
çoklu-kamera cihaz konfigürasyonu ile çalışabilecek şekilde yeni bir kontrol altyapısı geliştirilmiştir. 
Çok görüntüyü dikişleme yöntemiyle tek bir görüntüde birleştirerek yeni bir çoklu kamera işletim 
modeli önerilmiştir. Bu dikişli görüntü üzerinde geliştirilen yol planlama ve yol bölütleme yöntemleri 
uygulanmıştır. Deneysel sonuçlar, tasarlanan kontrolörlerin çoklu kamera konfigürasyonu için de 
TMR hareketlerini farklı konfigürasyon uzayları başarılı bir şekilde karakterize ettiğini göstermiştir. 

 
Anahtar Kelimeler: Görü tabanlı kontrol, Yol planlama, Gaussian kontrolör, Karar ağacı kontrolör, 
Yapay potansiyel alan 
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1. INTRODUCTION 

The control process is a challenging topic in robotics. There are significant 

number of researches mostly concerning with in-device sensor control with 

conventional methods which are PID, Fuzzy Control, Fuzzy PI, heuristics etc. [1], 

[2], [3], [4], [5]. The control process is mostly implemented by using global position 

and directional angular data with the controller functions [6], [7]. The general 

controller tasks are executed with data obtained from in-device (or internal) sensors 

such as encoders, gyroscope, accelerometer and out-device (or external) sensors such 

as infrared, thermal camera, proximity sensors. By utilizing several sensor 

information, the angular data are computed and input parameters controller functions 

are updated to create next robot motion.   

Minimizing the error is a critical issue in robotic control for industrial and non-

industrial robotics. There are two types of errors in robotic systems; non-systematic 

and systematic errors. Non-systematic errors are generally caused by falling, hitting, 

and sliding etc. On the other hand, systematic errors are generally caused by the 

erroneous sensor data, encoder and physical form of the robot parts. The general 

purpose of control methods is compensating these errors until the assigned task(s) are 

completed [8]. 

Visual based control (VBC) systems are used to model a dynamic or static 

system by employing visual features obtained from images provided by camera(s) 

[9], [10], [11]. It can be said that a robot controlling process can be modeled by using 

an image perception system. This process is performed by analyzing each of the 

image frames obtained through the imaging sensor. Similarly, to conventional 

controllers, the aim of VBCs is eliminating errors and decreasing cost of the motion 

to an acceptable level. The main benefits of the VBC (or visual servoing) are that it 

requires small amount of data from sensor(s), appropriate to control multiple agents 

and internal or external sensors on the robots usually are not required. In terms of 

expandability of configuration space, it ensures more working field by increasing 

number of imaging device(s).  

Visual servoing is broadly implemented in robotic researches. In early researches, 

controllers for robotic arm manipulators have been modeled by using Jacobean-based 

methods and visual features generally with eye-in-hand configuration [12], [13]. In 



2 
 

later researches, control tasks for humanoid robots, mobile robots, autonomous (or 

self-driving) vehicles etc. have been carried out by image-based visual controllers 

[14], [15], [16], [17]. In recent researches, the real time robotic systems, multitasking 

robotics and unmanned aerial vehicles have been developed by utilizing mostly 

estimation-based methods with image sensor hardware [18], [19], [20].     

There are two camera configurations used in most of the VBC studies; firstly, the 

camera(s) can be equipped onto the robot with eye-in-device configuration. Robot 

determines its global position according to the object detection, measured depth 

information from the images and distance data from the encoder values. Secondly, 

camera can be equipped to a fixed position with eye-out-device configuration. Robot 

determines its global position according to only the measured distance information 

calculated on the images. Additional data like encoder values can be used in this 

configuration as well. In both configurations, WMR control procedure highly 

depends on the processing acquired images from the cameras and extract information 

about the resided environment. Therefore, compared to the classical robot control 

methods, it can be said that VBC is next phase of robot control models. Because 

information about environment are obtained not only with sensors (range, altitude, 

balance etc.) but also with imaging sensors. This study focuses on eye-out-device 

camera configuration to control a WMR. Locomotion of a mobile robot with eye-out-

device configuration resembles that a child plays with his wheeled toy car with his 

hands by looking car from the above. 

Whether a controller infrastructure is built on visual or non-visual data, the 

primary issues are accuracy, robustness and speed of the methods [7]. A general 

control model should provide both speed and accuracy to enhance robustness. A 

simple control model having low complexity is a good option for real time 

applications. Therefore, the design of controller chunks and complexity change 

according to the aim of application. E.g. a service robot requires less precision 

compare to a surgical robot which requires high precision. In addition, the 

configuration space contains several factors like ground form, light level, friction 

coefficient, humidity, temperature, atmospheric pressure etc. [6]. A control system 

can be non-sensitive or sensitive to these factors according to the specifications in the 

working environment.  
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According to the specified tasks, a mobile robot controller is generally created as 

module(s)/chunk(s). Main tasks for a mobile robot are;  

I. Reaching to an unknown or a specific target,  

II. Tracking a pre-defined path plan,  

III. Static and dynamic obstacle(s) avoidance  

The first introduced task “reaching a target” is known as go-to-goal behavior. 

This behavior is modeled as the most basic control module of a mobile robot. The 

second mentioned task “tracking a trajectory” corresponds to following a 

detected/pre-defined path. This behavior can be considered as a collection of go-to-

goal behaviors rather than go to a single target position. In other words, a trajectory 

actually consists a series of points and each point in this trajectory can be considered 

as a target point. Therefore, it can be said that this behavior is sequential iteration of 

a group go-to-goal control tasks. The last pointed out task “avoiding obstacles” refers 

the performing go-to-goal behavior without crashing to any object. This means that 

go-to-goal and obstacle avoidance behaviors are fused to perform a given task. In a 

static environment, obstacle avoidance can be performed with two methods. In first 

method; since obstacles are static, a path plan can be extracted from environment 

before starting the motion process of robot. After creating a path plan mobile robot 

simply tracks this path until reaching to the target position. In other words, go-to-

goal behavior is converted to a trajectory tracking behavior. In second method; the 

mobile robot is starting with simply go-to-goal behavior. When an obstacle is 

detected on the path, motion behavior is changed to obstacle avoidance from go-to-

goal and mobile robot simply avoids obstacle with minimum additional movements. 

In a dynamic environment if a robot has to perform a continuous locomotion, there is 

only one option; the robot should perform go-to-goal behavior and instant obstacle 

avoidance behavior together. Because the dynamic obstacles (other robots, humans, 

vehicles etc.) can appear on the path in any time. So, we can’t model it with a 

trajectory tracking behavior after an offline path extraction. If continuous locomotion 

is not an issue, then robot can be stopped when a dynamic obstacle appears on the 

path. After this obstacle leaves from the path robot is triggered to continue its 

previous motion model. Except from these three main tasks, there can be sub-tasks 

and other environment specific tasks. For example; an autonomous car tracking only 



4 
 

specific targets such as traffic signs and make a movement decision with respect to 

meaning of these signs. 

Path planning is one of the basic components of the robot control process. It 

simply concerns modelling a path between an initial position configuration and a 

final position configuration. Path plan have to be extracted from an operating 

environment by considering obstacles (wall, door, any object etc.). The key elements 

in path planning are admissible path cost (or efficiency), path safety and robustness 

[21]. Path planning is made according to the problem structure. There are two 

approaches; global and local used to extract a path plan from a given environment or 

configuration space [22]. Global approaches are divided into two categories; 

retraction methods and decomposition methods. The retraction methods recursively 

reduce the initial problem dimension by considering sub-part of the configuration 

space. Decomposition methods characterize the obstacle free regions of a given 

configuration space. On the other hand, local approaches are mainly use the distance 

parameter to the target while avoiding obstacles in motion state. This distance value 

(gradient of the cost function) is generally guide the local method. Local approaches 

are more efficient to overcome the complex robots. Moreover, path planning can be 

made with randomized methods or stochastic which considers building a graph and 

find a local minimum at each iteration. In addition to configuration space, path 

planning can be considered in trajectory space. In this space a straight line is created 

between initial and final configuration while all of the obstacles in the environment 

are neglected. In the next step this path progressively reshaped by reducing improper 

parts (e.g. intersecting with an obstacle) of the acquired path.  

There are a number of commonly known path planning methods. Each method 

aims to find a convenient path with minimum cost.  Each method aims to find a 

convenient path with minimum cost. Dijkstra method [23], [24] finds shortest path 

between given two points (nodes). A* [25] is a heuristic contributed version of 

Dijkstra method. It uses an additional cost function that estimates cheapest path from 

actual node to the target node in each step. D* [26] is dynamic version of A*. In an 

unknown environment, method starting to work like A*, when a previously unknown 

obstacle is detected, this information is added to map as a new map information. 

Then, if it is necessary shortest path is updated according to this new map. There are 

several common methods using random branching by starting a defined initial point 
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to a target point. The rapidly exploring random tree (RRT) [27] aims to find a path 

between predefined start and finish coordinates in an unknown configuration space. 

As its name emphasize it starts by branching randomly without crashing an obstacle 

at each iteration until reaching to the final/desired position. The other type of RRT 

method is Bi-RRT (Bidirectional-RRT) [28], it starts to branch from both starting 

and finishing positions. Two trees approximate to each other in each iteration step. 

The method stops the searching process, when any two branches of trees intersect at 

an undefined position. To search a given position tree based BFS (Breadth First 

Search) [29] and DFS (Depth First Search) [30] searching methods are also widely 

used in a remarkable number of studies. There are probabilistic and statistical path 

planning methods which are used learning-based methods.     

Except from graph-based methods a path planning can be extracted from working 

space by using a potential field inspired method which is known as APF – Artificial 

Potential Fields. APF is firstly introduced by [31], it is a commonly used method to 

create a path plan between an initial position and final position in an obstacle-hosted 

environment. If potential field is considered as electrical field, then robot and 

obstacles have same charges and target has opposite charge. Main idea is based that 

robot configuration is treated as an electron which is attracted by target and repulsed 

by obstacles. The resulting trajectory of this electron (robot) is the obstacle free path 

in configuration space. However, there are several problems which causes to electron 

(robot) can be trapped in a local minima or unstable oscillation for pure APF. 

In this study, we design and experiment a Gaussian and decision tree inspired 

WMR go-to-goal behavior controllers based on visual servoing by using two simple 

graph or triangle positioning models separately. Then, we created a path planning 

design with adaptive potential field approach and developed the decision tree based 

visual controller to navigate the robot on this formed path. Lastly, a multi-camera 

configured environment is utilized as a testbed. A load balancing system developed 

for multi target and multi robot model as an additional experiment. The designed 

methods have experimented with several configuration spaces. The designed 

methods work with great accuracy and speed. In section 2 we touch existing studies. 

Problem definition is given in section 3. We focus on theories, materials and methods 

in section 4. Test results are demonstrated in section 5. Ultimately, conclusion and 

future works are handled in section 6. 
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2. RELATED LITERATURE WORKS 

2.1. Visual Based Control (VBC) Studies 

Ziaei et al [32] form a global path plan for an omni-directional mobile robot by 

utilizing a single CCD imaging device. To avoid obstacles, the APF (Artificial 

Potential Field) method is executed in the configuration space. The obstacles are 

static objects and borders of image obtained from camera. The robot 3D CAD model 

is used to perform kinematic control assignments to physical servo interface. 

Johnson et al [33] proposed a multi-robot model to detect position of mobile robots 

by tracking color LEDs on the robots from a camera, simultaneously. They underline 

that the false positive LED lights are an explicit challenging in the system. Chen and 

Lee [34] have performed calibration of a fish-eye camera. The camera captures 

images of the configuration space to implement a visual servoing control. The 

obstacles detection is performed with image processing. A rectangle is used to frame 

the objects. If there are no intersections in the image, then each corner of these 

rectangles is connected. Eventually a connected graph is formed. The Dijkstra 

method is used to discover a shortest and safe path to the target position in the graph. 

It is said that the dilation of the detected objects cause to losing of safe paths. 

Mezouar and Chaumette [35] have studied on a visual-based feedback control 

system. It is claimed that an image-based control and a path plan extracted from 

image space are pieced together. They said that proposed feedback control system 

demonstrates robustness against the modeling errors. The robot has been tracked 

with a single camera and errors are calculated in formed path trajectories. The 

camera calibration and irregular shape information have been defined as main 

problems in their study. Breitenmoser et al [36] have introduced a localization 

method for robot-robot systems. It is aimed to obtain relative position of tracked 

robot in 3D configuration space. In their proposed system A regression-based 

estimation method is used to model position. Bista et al [37] have developed an 

visual-based method for navigation by employing line segmentations for indoor 

applications. They use only the 2D image information acquired from an internal 

imaging device on the robot. It is said that accurate localization and mapping 

processes are not required for a well-structured navigation system. Bateux and 

Marchand [38] have proposed a visual servoing system based on histogram for 

indoor/outdoor environments. In their study, the visual features are the histograms. 
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They said that without disturbing control laws, their proposed system can be applied 

on any kind of histograms. Espiau et al [39] introduced a novel method to vision-

based control systems. The vision system is considered as a specific sensor assigned 

to a task and included in a servo control loop in their basic motive. They defined two 

key issues in vision-based control task, designing the efficient controllers and 

performing the definition-specification. Pauli [40] investigated learning based robot 

vision with details. He emphasized that it is desired to develop new-generation robots 

demonstrating higher degrees of autonomy for fulfilling high-level purposeful tasks 

in natural and dynamic environments. Zhao et al [41] performed a review on image-

based control methods used for agricultural robots in harvesting process. They 

explored object detection in tree canopies and picking objects utilizing visual data as 

major visual-based control methods and potential applications of these methods in 

vegetable/fruit harvesting robots. They specified object recognition and coordination 

of eye-hand as the most significant key issues. Donmez et al [42] performed an 

visual-based control for a mobile robot. They used graph-based velocity control with 

a basic branching algorithm design. Dirik et al [43] implemented a visual-based 

WMR control in real time acquired images, similarly. It is claimed that the path 

tracking error is reduced to a smaller value in each control loop. 

In addition to these works, there are different control systems types that based on 

RFID devices to identify real position of the mobile robot. The RFID devices placed 

to a number of position in configuration space. Similar to the GPS (Global 

Positioning System) infrastructure by utilizing signal values of RFID, the robot 

position is identified. Several other researches place the camera on mobile robot 

vertically, so that the imaging device detects the ceiling surface. This surface of the 

ceiling is covered with physical markers like shapes, colors etc., then the robot 

position is detected by using the markers, Martinelli [44]. Elsheikh et al [45], 

designed a real-time path planner and navigation method for a non-holonomic mobile 

robot depend on visual based control. Multi-Stencils Fast Marching as being first part 

is used to obtain path plan. It is said that if the acquired path plans of fast marching 

are directly utilized, then safe and smooth path is not guaranteed. Wang et al [46], 

touches upon the adaptive visual-based control for a robotic manipulator. The 

manipulator is placed under an uncalibrated eye-in-device form with uncertain 

actuator backlash. It is said that the actuator backlash constraint for control to visual-
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based manipulator is not to considered in existing methods. This constraint is 

inevitable for the robot and effect the dynamic performance, remarkably. Zhang et 

al [47], developed a monocular visual control approach for non-holonomic mobile 

robots. It is said that the presented method operates well even with both unknown 

extrinsic camera-to-robot and unknown depth parameters. It is said that the 

stabilization problem is a challenging issue and still unsolved. They claimed that by 

utilizing adaptive control and back-stepping method a novel two-stage controller is 

developed. 

2.2. Fundamental Path Planning Studies 

Elfes [48] introduced a sonar based real-world mapping and navigation 

system. An autonomous mobile robot was operated in unknown and unstructured 

environment. The introduced system utilized sonar range data to establish a 

multileveled description of the robot’s surroundings. It has been said that practical 

real-world stereo vision navigation systems simply form sparse depth maps of their 

surroundings. He claimed that the proposed system ensures a sufficiently rich 

definition of the robot’s environment to invoke for more complicated tasks. Elfes 

[49] reviewed occupancy grids which utilizes a probabilistic tessellated 

representation of spatial information for perception of robot and world modeling, as a 

new approach. In the real-world experiments, obstacle avoidance was ensured by 

using potential fields and A* search algorithm. It is claimed that the occupancy grid 

infrastructure assures a robust and combined approach to a variety of issues in spatial 

robot perception and navigation. Borenstein and Koren [50] designed a new 

approach titled as virtual force field which associates accuracy grids for obstacle 

representation and potential fields for navigation. The robot avoided traps like dead-

ends or ‘U’ shaped obstacles by using wall following mechanism in their study. They 

claimed that their navigation algorithm also takes cognizance of the dynamic 

behavior of a fast-mobile robot and overcomes the local minimum problem. By 

inspiring their previous work, Borenstein and Koren [51] introduced a new 

approach referred as vector field histogram that provides the detection of unknown 

obstacles and avoids collisions while simultaneously steering the mobile robot 

toward the target. The method utilizes Cartesian histogram grid as a 2D world model. 

This world model is updated continually with distance data sampled by internal 

distance sensors. They claimed that vector field histogram method is computationally 
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efficient, robust, and eliminates misreading(s). It was said that it permits continuous 

and fast motion of, the mobile robot without stopping for the obstacles. Murray and 

Sastry [52] investigated methods for steering forms with nonholonomic limitations 

between various configurations. They derived suboptimal trajectories which are not 

in canonical form.  A class of systems which steerable using sinusoids were 

described in the study. They claimed that building of a trajectory for systems with 

drift is still an explicit problem. Laumond et al [53] presented a fast and precise 

path planning method based on recursive subdivision of a obstacle-free path 

produced by a geometric planner neglecting the limitations of motion for their 

mobile robot. They claimed that the acquired trajectory is improved to yield a path 

which is of near minimal length in its homotopy class. It is emphasized that   the 

existence of an obstacle-free trajectory is formed by an open connected domain of 

the acceptable configuration space. Fierro and Lewis [54] introduced a controller 

which provides the combination of a neural network (NN) computed-torque 

controller and a kinematic controller for the nonholonomic mobile robots. Stability in 

control is provided by using Lyapunov theory. They claimed that their method does 

not need information about the cart dynamics generated utilizing an NN back-

stepping method. It is said that an NN dynamic controller and a fine-designed 

kinematic controller may improve the performance of the mobile robot remarkably. 

Dellaert et al [55] introduced a robot localization method with the Monte Carlo 

Localization (MLC) method, where density of the probability included by 

maintaining a group of instances which are randomly taken from it is presented. It is 

said that by employing a sampling-based representation a localization method that 

can exemplify arbitrary distributions was acquired. They defined sample 

impoverishment: in the resampling stage, high weighted samples will be chosen 

multiple times, resulting in a loss of ’variety’ as a major problem. Kuffner and 

Lavalle [56] introduced an efficient and simple randomized algorithm for 

overcoming single-query problems of the path planning in high-dimensional 

configuration spaces. Their method operates by progressively forming two Rapidly-

exploring Random Trees (RRTs) rooted at the initial and the target positions. They 

defined several performance issues to improve RRT even further. Cosio and 

Castaneda [57] is introduced a novel layout for a mobile robot autonomous 

navigation, depending on genetic algorithm and artificial potential fields. Genetic 

algorithm is responsible for automatically determining the specifications of the 
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optimal potential field. Intermediate targets have been utilized to guide the robot 

through corridor corners and the door of the suitable room in their method. Whyte 

and Bailey [15], [58] provided a broad introduction to Simultaneous Localization 

and Mapping (SLAM) problem. They presented the structure of the SLAM problem 

in standard Bayesian form, and clarifies the SLAM process evolution. They touched 

several unresolved issues especially for unstructured and dynamic environments.  

2.3. Recent Path Planning Studies 

Xu et al [59] discussed the commonly known potential field approach for 

obstacle avoidance in the scope of mobile robots. They indicate the requirement of 

applying a motion planner for nonholonomic robots and recommend some additions 

to other potential field-based models to deal with the limitations of car-type robots. 

The curvature and point mass limitations from car-like mobile robots explained in 

detail as practical constraints. Kovacs et al [60] presented a scheme for mobile robot 

path planning task in household environments. They extended conventional artificial 

potential field (APF) method by inspiring motion characteristics of household 

animals. Mobile robot behaviors are modeled according to possible animal attributes 

for path planning and goal is assumed as owner or a meal. Actually, they combine 

APF and Bug Algorithm. It is claimed that by modelling natural motion attributes of 

animals into the robot, the human–robot interaction transforms to much more natural 

and intuitive. Guerra et al [61] introduced a new method to overcome local minima 

which occurs in potential field method. It is said that unsteady equilibriums are 

evaded capitalizing on the built Input-to-State Stability (ISS). Although the robot 

controlled on extracted trajectory with success, oscillations have emerged while 

moving in narrow passages. Jia et al [62] presented a novel coverage path planning 

(CPP) algorithm for autonomous exploration robots. The proposed algorithm 

decomposes the region of interest into cells by discovering landmarks in the 

environment. Each cell is covered utilizing a zig-zag motion pattern. They claimed 

that the developed landmark detection is robust to incomplete perception and can be 

applied to any random shape obstacles. Bennet and Mclnnes [63] considered pattern 

formation and re-configurability in a multi-agent strategy employing a new control 

method developed over bifurcating potential fields. They claim that the various 

patterns can be accomplished autonomously through a simple free parameter 

exchange. It is said that APF method is suitable to implement multi-robot systems. 
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Romero et al [64] presented an extension for the boundary value problem path 

planner (BVP PP) to manage multiple robots in a soccer activity. This extension is 

known as Locally Oriented Potential Field (LOPF) and computes a potential field 

from the numerical solution of a BVP utilizing local relaxations in different parts of 

the solution space. This process ensures to manage multiple robots simultaneously, 

where each robot has different behaviors. Yan and Li [65] proposed a fuzzy logic 

and filter smoothing by using the data from the laser scanning sensor. It is claimed 

that in a dynamic environment, this algorithm can automatically extract the best path 

according to the position and size of gaps between the obstacles. They said that fuzzy 

algorithm and filter smoothing are appropriate to real time systems because of their 

simplicity and fast response. Das et al [66] proposed a novel approach to improve 

the path plan for multi-agents utilizing gravitational search algorithm (GSA) for a 

dynamic configuration space. GSA has been improved based on memory data and 

cognitive parameter of PSO (particle swarm optimization). The algorithm finds 

obstacle free optimal path from predefined starting position to finishing position for 

each robot in the environment. It is emphasized that both the obstacles and 

environment are static relative to the robots. Montiel et al [67] introduced a new 

method that computed optimum paths in environments including dynamic and static 

obstacles with a WMR for path planning task. The developed method called as 

Bacterial Potential Field (BPF) and they claimed that it provides an optimal, feasible 

and safe path. They utilize from both Bacterial Evolutionary Algorithm (BEA) and 

Artificial Potential Field (APF) to acquire an enhanced flexible path planning 

method. They emphasize that method takes all the benefits of APF method and 

reduce its deficiencies. BPF utilizes a WMR model that is generic but realistic. This 

model takes into account the physical size of WMR and direction in the plane. 

Santos et al [68] proposed a short-term path planner approach for self-driven 

sailboats which has capability of dealing with upwind situations. In order to achieve 

this, an initial path is geometrically formed and an optimization is performed over 

this path, utilizing genetic algorithm. It is claimed that when compared to the brute 

force approach, the optimization of the model is able to generate similar or better 

results. Tan et al [69] presented an efficient fusion algorithm for the rotary-wing 

flying robot for solving path planning problem in the 3D mountain environment. This 

fusion algorithm integrates A* algorithm with artificial potential field method. Both 

methods improved and optimized for 3D environment. It is emphasized that APF 
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algorithm is used to smooth the trajectory to improve the performance of path 

smoothness and traceability. Donmez et al [70] have proposed an adaptive artificial 

path planning (A-APF) method to extract path plan in an obstacle hosted 

environment. They conducted experiments in real-time. They claimed that A-APF 

method provides feasible and fast solutions compare to default APF method. Dirik et 

al [71] have proposed a fuzzy-logic decision cluster method for path planning in 

visual based control systems. They extract fuzzy rules and implemented simulation 

tests. It is said that the presented method enhances accurate and sensitive mobile 

robot control procedure. Donmez et al  [72] have proposed curve smoothing 

methods on bidirectional rapidly grown random tree (Bi-RRT) path planning method. 

They used Polynomial, Fourier and Gaussian curve smoothing methods with LAR 

(Least Absolute Residuals) and Bi-Square weights to reduce path errors. They 

claimed that the curve smoothing increases the path safety and decreases the path 

errors and cost, significantly. Dirik et al [73] have developed a visual based control 

system with fuzzy-PID method and creates rule table. They claimed that proposed 

method is specialized for visual based systems and provides fast and accurate mobile 

robot control process.    

Kamarry et al [74] introduced a novel method to increase the distribution of the 

nodes in the RRT. This approach enables a compact representation of the working 

environment by decreasing the nodes redundancy. It is said that the presented biasing 

method has low computational cost and it is easy to apply. Kunwook et al [75] offer 

an efficient RRT* path planner for hyper-redundant in-pipe robot. They use sliding 

windows for random sampling in the configuration space to acquire pipeline 

topology advantages. It is said that the presented method explores applicable paths 

more efficiently than the conventional methods. Shan et al [76] proposed an 

improved D-RRT (Dynamic – Rapidly exploring Random Trees) path planning 

method for the application of ALV (Automatic Land Vehicle) working in a dynamic 

environment. It is said that nonholonomic constraints of the vehicle are combined 

with three order B-Spline based functions. They claimed that the algorithm 

guarantees the trackability of the path at the same time. Melchior and Simmons [77] 

defines a novel modification to the default RRT path planning method. The Particle 

RRT method explicitly consider uncertainty in its working space, similar to the 

executing of a particle filter. Each extension to the search tree is behaved as a 
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stochastic process and these extensions are simulated several times. Heb et al [78] 

proposed a trajectory planning approach named as the RRT Controller and Planner 

(RRTCAP*), assembling the planning stage of a RRT*-based algorithm with the 

application stage on a physical robot. It is claimed that the presented RRTCAP* is 

superior to the conventional RRT and RRT*-based path planning methods. Muñoz 

et al [79] introduces two contributions: a mathematical formulation for any DTM 

that can be used by heuristic search algorithms, and a path planning approach that 

generates candidate paths which is safer than the ones obtained by previous methods. 

Developed algorithm, named 3Dana, and it is claimed that the method considers 

distinct parameters to enhance the quality of path: the maximum permitted slope by 

the robot and the direction changes through the path tracking procedure. 

2.4. Multi-Camera Studies 

Visual based robot control is commonly researched in significant number of 

studies. The main focusing point in these studies are generally; decreasing errors and 

increasing speed and robustness. There are a number of configurations to implement 

a visual based robot control infrastructure. Multi-camera configuration is one of 

them. Malis et al [80] have expanded the conventional visual-based control methods 

to the utilize of multiple imaging devices tracking several segment of an object. The 

visual based control with the multi-camera has been developed as a chunk of the task 

cluster method. They claimed that the specific selection of the task module permits 

them to facilitate the control design and the stability analysis. Lippello et al [81] has 

presented visual servoing method with position information utilizing a mixed eye-in-

device multi-camera infrastructure in their study. It is claimed that depending on a 

modified Kalman filter. This method utilizes the information ensured by all the 

imaging device without “a priori” distinction, permitting real-time estimation of 

object position. Qiu et al [82] have proposed a robot visual servoing system using 

multi-camera configuration. The designed system uses switching the vision system 

between eye-in-device camera and the stereo cameras with voting process. They 

claimed that the multi-camera infrastructure enable process in a more comprehensive 

variety of situation than that of either eye-in-hand or stereo camera single 

configuration. Yoshitata et al [83] proposed a visual control design that allows a 

mini helicopter to hover under local and temporal occlusions. Two fixed and upward-

looking imaging devices observe four black balls fixated to rods attached to the 



14 
 

lower side of the helicopter. They have said that the designed structure can hold the 

helicopter in a resolute hover. Iwatani et al [84] presented a visual servo control 

system using multi-camera for unmanned micro aerial vehicles. The cameras are 

placed on the floor, and they are connected through a network. They claimed that the 

controller is durable against to occlusion, and the helicopters can move easily and 

freely in field of view of the camera. Weber and Kühnlenz [85] have utilized 

triangulation of images obtained by multi-cameras pointing in different directions to 

control a robot with position based visual servoing (PBVS). They have said that the 

triangulation is implemented by an iterative linear method which provides high 

accuracy and real-time operating. Kermorgant and Chaumette [86] has offered a 

basic sensor fusion design for multi-sensor robot positioning. To realize an image-

based visual servoing task, two cameras are used in eye-in-device and eye-out-device 

configuration. It is claimed that this configuration enables a comprehensive 

comparison of the suggested fusion design of sensor data. Elsheikh et al [87] has 

recommended an application and practical results of dynamic path planning and 

robot navigation by using visual servoing for a mobile robot in indoor environment. 

It is said that short locomotion distances for the robot are anticipated, energy 

consumption is balanced and consequently increase the overall traveling time. 

Aliakbarpour et al [88] have presented a number of contributions to a visual-based 

mobile robot control by utilizing a general camera model. They said that by utilizing 

a basic radial model, the suggested visual servoing approach can be employed for a 

large type of general cameras, both central and non-central. Ahlin et al [89] have 

proposed a leaf grasping system using a robotic manipulator in an unstructured 

environment by using deep learning and visual servoing. They said that Monoscopic 

Depth Analysis (MDA) enables for a random number of features in unknown 

geometric characteristics. Alepuz et al [90] have exhibited an visual-based controller 

to fulfill a robot manipulator guidance. The eye-in-device camera configuration is 

used for the manipulator and it is placed to a base satellite. The base is entirely 

independent and floating in space without attitude control. They said that by 

considering kinematics and dynamics, controller allows the robot to accomplish a 

input position from an initial one and implement the tracking of a desired trajectory. 

Previous studies are generally implemented with internal imaging devices. We 

mainly focus hybrid utilization of visual features acquired from external imaging 
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devices and controller method. There are commonly known control methods like 

PID, Fuzzy controls etc. However, there are no specialized controllers for visual-

based control systems. Moreover, most of these researches are usually implemented 

with only experimental simulations. In addition, all these studies are generally 

implemented without considering camera scalability in the configuration space. 

There are no detailed studies about eye-out-device camera configuration. They 

generally focus stereovision systems with double cameras. Multi camera systems are 

modeled with PBVS (Position based visual servoing) method commonly. 

Additionally, the number of studies on eye-in-device are more than the number of 

eye-out-device studies in the literature. In this thesis study, the eye-out-device multi-

camera configuration is investigated. The positioning scheme models for kinematics 

are designed. The visual based control methods are modeled by using the Gaussian 

and decision tree methods separately with two (graph and triangle) positioning 

schemes. All the advantages and drawbacks of the visual based control system with 

multi eye-out-device camera configuration are presented.  We use four cameras for 

proposed system. However, number of the cameras can be increased. Image stitching 

process is used only once to create whole map of the configuration space. The path 

plan is made on this map with A-APF. The path plan is divided according to the 

relevant cameras. The divided path plans are tracked in each camera separately. The 

mobile robot motion control is provided depending on the divided path plan under 

the relevant camera. By this way, multi-image processing problem has been 

overcome for the mobile robot motion. 
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3. PRELIMINARY DEFINITIONS 

The control of a differential drive WMR is generally performed according to the 

local and global positions of the robot. A large stream of sensor-based information 

and encoder data are continuously transferred between the robot and control system. 

The received sensor data are processed to acquire input for the control model. 

Therefore, such non-visual robot control systems use a number of resources to 

implement the dynamic control of the robot [6], [91]. On the other hand, visual-based 

control process needs less internal/external sensor data on robot, when it is compared 

to the non-visual control systems. Besides, the position and distance calculation tasks 

can be carried out by a camera(s) as imaging sensors in VBC systems.   

Visual-based control for a WMR hosts a couple of important issues which are 

camera calibration, object detection and tracking, controlling (real time or offline) 

and imaging device - robot synchronization [40]. Camera calibration is generally 

required to scale real-world objects to a 2D plane. If the camera lens is a fish-eye, 

pin-cushion type than a distortion process may be required for good calibration. 

Object (robot, obstacles and target) detection is needed to calculate position 

information of these objects. Tracking objects in real time bounds up with 

robustness, fastness and efficiency of object detection. Therefore, object detection is 

a major pillar for the tracking process. Controlling of WMR generally depends on 

encoder and sensor data in classical methods. However, visual based control heavily 

depends on momentary image information about its surroundings; thus, image 

processing techniques are required. By using position information extracted from 

image frames robot motions/behaviors are modeled. Synchronization means 

coordination between imaging device and robot. After image device takes a frame, 

this frame has to be processed before robot makes a motion for a while. Because 

there will be a time gap between parameter calculation and robot motion.       

Except from defined issues; the main problem in visual based approaches with a 

fixed head camera configuration is that the mobile robot can go out from viewing 

area of the camera because of an obstacle, etc. Even if it disappears from viewing 

area, an additional estimation-based method (Kalman etc.) can be utilized to detect 

the position of robot. A fixed head camera configured visual control system 

minimizes the errors, because the position of robot is continuously tracked and 

updated according to obtained information from the taken images. The visual-based 
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control can ensure significantly stable and accurate results in moving and positioning 

tasks of the robot control. The specialized control methods for VBC environments 

are needed. Since, there are no detailed studies for eye-out-device camera 

configuration modules like positioning scheme, experiment environments etc. 

The obstacle avoidance should be considered carefully to create an efficient path 

plan. The extracted path trajectory has to ensure reaching to the target position 

without any collision and friction to the obstacles. In other words, there have to be a 

safe path. The second issue is that the WMR shouldn’t fall into a trap in any position 

at the configuration space. The WMR can exhibit faulty motion behaviors like 

redundant spinning, oscillation, no motion etc. The third issue is path cost which is a 

significant issue in terms of energy and time efficiency. If there is a suitable path 

providing minimum cost, then it should be selected. A path plan is extracted by 

taking cognizance of these three issues together. Therefore, a safe path with minimal 

cost and without traps will handle these problematic issues. 

Two types of problems may cause to extracting the path plan inadequately in 

potential field method [92]. Firstly, local minimum problem; when all the attractive 

and repulsive forces are balanced, the robot falls into a trap and generally motionless. 

The robot simply doesn’t make any progress. Second problem is known as unstable 

oscillation stemming from high velocity, narrow passages, sudden changes and etc. 

problems. Because of this problem, the path trajectory is generated with too much 

swinging. The most basic solutions to these problems are that defining a minimum 

attractive force on any point in configuration space and creating rotational force 

fields around the obstacles so that these forces guide moving object. In this study, 

these problems have been eliminated with adaptive design.       

In this study, the mobile robot only fulfills given commands to adjust velocity of 

wheels. Because the whole control processes are implemented on an external 

computer system. Therefore, the internal processing device may not be required in 

mobile robot. Besides, such hardware are generally increases the cost of the system 

and consume high energy. In this case, a simple command interpreter and a wireless 

communication infrastructure like Bluetooth or Wi-Fi is enough for eye-out-device 

configured VBC. Ultimately, the developed methods ensure remarkable performance 

in aspect of the cost and energy efficiency. 
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4. MATERIAL AND METHOD 

The presented control infrastructure includes several components. Physical 

environment for experiments, hardware (robot, image processing and computation 

unit and cameras) and controller software are the primary components. Image 

stitching, object detection and tracking, parameter acquisition and calculation, path 

planning and control functions are the main modules of controller software 

component. Acquired images from the multi-cameras are stitched and environment 

map is created. The method initially detects and tracks robot control markers and 

target on this map. A path plan is extracted by considering obstacle positions. Then, 

the input variables are computed by utilizing positioning scheme model. The velocity 

parameters are calculated with the developed Gaussian/Decision tree-based control 

functions. The obtained parameters are transferred to the mobile robot to trigger 

motion. The controller navigates the robot until final target position is reached. 

This thesis study has been implemented in three stages. In first stage; a go-to-

goal behavior controller is designed by using Gaussian and Decision Tree methods 

for an obstacle free configuration space. Two different positioning models have also 

been developed for the designed controllers. These models provide accurate, fast and 

smooth controlling process. Each controller-model combination has tested in a real 

environment with a differential drive mobile robot (or WMR). In second stage; 

obstacles have been added to the configuration space. Therefore, a path planning 

strategy is required as well. Artificial potential field (APF) method is modified to 

design an adaptive path planning method working with dynamic parameters. The 

adaptive designs have provided suitable parameters to path plan task. The Gaussian 

or Decision tree-based controllers have been fused with adaptive-APF method to 

create a novel real-time motion navigation. This new design has been tested with 

positioning models in an obstacle hosted configuration space. In third and last stage; 

multi-camera environment has been prepared and mid-controllers (path dividing, 

path distribution, controller modifications etc.) for this configuration space have been 

modified/developed. Multi-camera model is used to provide a scalable configuration 

space. In this way, working space can be expanded. All previous controllers, models 

and path planners have been tested in multi-camera configuration space as well. The 

stages are illustrated in Fig. 1. 
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Fig. 1. Stages for the thesis study 

4.1. STAGE-1: Go-to-goal Controller 

In this stage, a Gaussian based visual controller designed and two positioning 

models developed for WMR. The controller method has been employed to perform 

go-to-goal behavior for a differential drive mobile robot. The configuration space is 

obstacle free and there is one target. This stage includes operating environment, 

camera calibration, object tracking, general kinematics of WMR and controller 

method. All these mentioned structures are common for three stages. It can be said 

that the main base of this thesis study has been formed in this section. The utilized 

controllers and models are specifically emphasized with details in the stages.  

4.1.1. Operating environment of Stage-1 

Configuration space consists of four main components; a mobile robot with 

differential drive feature (or WMR), a target, obstacle free configuration space and a 

camera with fixed observing (bird's eye view) configuration. The visual-based 

control task is implemented on a floor with plain color covering under variable light 

intensity values. The vertically hanged fixed camera is placed 180 cm above from the 

floor. The camera has 3.2 MP resolution and its lens has 0.3 mm focal length. SVGA 

(Super VGA: 800x600; 4:3) resolution is used. MATLAB R2016a is used for both 

image processing and robot controlling process. Communication with the camera is 

performed through USB 3.0 interface. The mobile robot and computer system 

communication is carried out over Bluetooth 2.0 standards. Experiments have been 

implemented on Intel i3-3217U 1.80 GHz CPU with 6GB DDR3 1600 MHz Memory 

and 5400 Rpm HDD.  Operating environment (configuration space) is demonstrated 

in Fig. 2.   
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Fig. 2. Operating environment for proposed control system 

4.1.2. Camera Adjustment and Image Distortion 

A general perspective of projection model for a camera is shown in Fig. 3. 

Velocity screw of the image frame is defined in (4.1) and (4.2). The 𝑤 is rotational 

velocity and 𝑣ሺ𝑂ሻ is translational velocity in this equation [93]. If it is assumed that 

the focal length of the imaging device is equal to one – ‘1’ , then a point with 𝑥⃗ ൌ

ሺ𝑥 𝑦 𝑧ሻ் coordinates is projected to a plane on the input image as a point with 𝑋⃗ ൌ

ሺ𝑋 𝑌 1ሻ் by utilizing (Hata! Başvuru kaynağı bulunamadı.). 

 

Fig. 3. General perspective of projection model for a camera 

 𝐹௦ሺ𝑂, 𝑥⃗, 𝑦⃗, 𝑧ሻ → 𝑇 ൌ ሺ𝑣ሺ𝑂ሻ, 𝑤ሻ (4.1)

 𝑋⃗ ൌ
1
𝑧

𝑥⃗ (4.2)

Camera calibration is required to scale and fit image frames to the 2D plane. A 

fish eye lens is used. It transfers images to the imaging device sensor as barrel type. 

Therefore, a distortion process is required to extract visual information from images 

properly. Image planes are demonstrated with I-Barrel type, II-Pincushion type and 
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III-Distorted in Fig. 4. In barrel type images; the magnification of image declines 

with distance from the optical axis that stem from the focal length of camera lens 

[93]. Model for radial image distortion is expressed with (4.3), (4.4), (4.5) and (4.6) 

used to project images to two dimensional plane. The distorted Cartesian coordinates 

𝑥ௗ and 𝑦ௗ, distortion parameter is 𝜅, actual image coordinates are 𝑥௔ and 𝑦௔, 𝑓௫ and 

𝑓௬ are focal length (mm), image center (principal point) are 𝑐௫ and 𝑐௬. 

 

Fig. 4. Image planes (I. Barrel, II. Pin-Cushion, III. Distorted) 

 𝑥ௗ ൌ 𝑥ሺ1 ൅ 𝜅ଵ𝑟ଶ ൅ 𝜅ଶ𝑟ସ ൅ 𝜅ଷ𝑟଺ሻ (4.3)

  𝑦ௗ ൌ 𝑦ሺ1 ൅ 𝜅ଵ𝑟ଶ ൅ 𝜅ଶ𝑟ସ ൅ 𝜅ଷ𝑟଺ሻ (4.4)

  𝑟ଶ ൌ 𝑥ଶ ൅ 𝑦ଶ (4.5)

  𝑥௔ ൌ 𝑓௫𝑥ௗ ൅ 𝑐௫ , 𝑦௔ ൌ 𝑓௬𝑦ௗ ൅ 𝑐௬ (4.6)

4.1.3. Object Tracking 

Performing a good visual based control depends on performing a good object 

detection and tracking. Because quality of this detection and tracking are decisive 

factors for success of visual based control process. After detecting the obstacles and 

target point in first frame, it is not needed to detect these components anymore for a 

static environment (there are no dynamic objects). Therefore, only the robot is 

detected and tracked in following image frames. Quantization and color thresholding 

is used to perform detection process of labeled target, obstacles and robot. At first 

step, an image frame is acquired with the fixed camera. Secondly, color space of this 

image is transformed from the RGB space to the HSV space. Then a color mask filter 

is executed to segment the related objects. Maximum and minimum range of the 

Hue, Saturation, and Value channels are used in this mask function. HSV separates 

the luminosity (or the image intensity), from the chrominance (or the color 

information). This is very efficient in remarkable number of applications [94]. 

Therefore, if it is wanted to separate the color components from the intensity for 

various reasons, then HSV is a good choice against these issues in computer vision. 
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These reasons are robustness to illumination (changes in light level), get rid of 

shadows etc. In next step, colors of image frame are quantized by decreasing color 

depth 8 bit to 256. Then objects are detected by using color thresholding process. 

Each acquired frame is exposed to the color thresholding process. After detecting the 

position information of each object, the new velocity parameters for the WMR are 

calculated. 

The thresholding process is implemented with several steps: Each cell of the whole 

image matrix is controlled. The cells having threshold values in these three-channel 

transmuted to ‘1’ and the remaining cells transmuted to ‘0’. It simply filters the color 

values by controlling the predefined threshold ranges. This procedure known as 

“binary image acquisition” [95]. Equation (4.7) is utilized to identify range of color 

channels defined in mask function. The ℎሺ𝑝௜ሻ corresponds to the color channel 

histograms in this equation. 𝑝௞ expresses the kth channel level and M corresponds to 

the total level of the channel.  To purify image from noisy parts which have pixel 

value below the defined threshold, an elimination method converts these noises to 

‘0’. Coordinate values of detected object centroids are computed. Then, coordinate 

values are recorded to storage unit and marked on the related image frame. The 

detection steps are demonstrated in Fig. 5. The image processing and controlling 

scheme is given in Fig. 6.  

 𝑓ሺ𝑝௞ሻ ൌ
1
𝑀

෍ ℎሺ𝑝௜ሻ𝐾ఙሺ𝑝௞ െ 𝑝௜ሻ, 𝑝𝜖ሼ𝐻, 𝑆, 𝑉ሽ

ெ

௜ୀଵ

 (4.7)

 

Fig. 5. (a1-b1) Real time image frames from different experiments, (a2-b2) Centroid detection of 

object components 
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Fig. 6. Image processing and controlling diagram of visual-based control  

Color quantization is a kind of clustering method that groups similar colors within a 

threshold value [96]. It is used to dissociate color values and sharpen similarities 

between color information of objects and other components in the image. It simply 

facilitates the tasks of color thresholding masks before detection. Because of any 

adaptive color-based thresholding method has not been used, there can be faulty 

detections for objects when illumination changes remarkably. In other words, light 

changes affect the luminosity value of each image frame. Therefore, quantization 

process has been used to decrease the negative effects of this sudden light changes. 

By assuming that the quantization levels of 𝑄 as 𝑞௝, 𝑗 ൌ  1, . . . , 𝑛, the quantization 

cells can be computed. Suppose that in the Voronoi diagram for 𝑄, the 𝐶௜ are the 

cells, then following the term (4.8) equation is formed to minimize expected error. In 

this equation, the distortion parameter is 𝑑 and the quantizer is 𝑞. By assuming 

having the 𝐶௝ quantization cells, the optimal value for 𝑞௝ is defined by using (4.9). 

 𝐸ሺ𝑑, 𝑞ሻ ൌ න𝑑൫𝑥, 𝑞ሺ𝑥ሻ൯𝑑𝜇
௖

ൌ ෍ න 𝑑൫𝑥, 𝑞ሺ𝑥ሻ൯𝑑𝜇
௖ೕ

൒ ෍ න 𝑑൫𝑥, 𝑞௝൯𝑑𝜇
௖ೕ

 (4.8)

  𝑞௝ ൌ arg min
௖∈஼,௫∈஼ೕ

𝐸ሺ𝑑ሺ𝑥, 𝑐ሻሻ ൌ arg min
௖∈஼

න 𝑑ሺ𝑥, 𝑐ሻ𝑑𝜇
஼ೕ

 (4.9)
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The mobile robot tracking is a key issue to collect information about the global 

position of the robot, accurately. Since this information is utilized to calculate wheel 

velocities input parameters. Instead of processing entire image frame as an input to 

segmentation method; local frames (LF) covering the robot has been formed to 

enhance the performance of segmentation. This structure is created according to the 

dimensions of robot. The local frame creation process is demonstrated in Fig. 7. The 

coordinates of local frame are calculated between certain numbers of image frames 

according to a pre-defined threshold parameter. The (4.10) and (4.11) equations are 

employed to implement this process. In these equations; the 𝑛 represents the frame 

numbers acquired. The global coordinates of the robot are 𝑥௟ and 𝑦௟ (P1 point). The 

global coordinates of local frame are 𝐿𝐹௫ and 𝐿𝐹௬ and equal to 𝑥௟ and 𝑦௟ initially. So, 

the robot center node is also utilized to ensconce local frame around the robot in 

specific image frames. The new global coordinates for the robot are 𝑥௟೙
 and 𝑦௟೙

. LF 

coordinates are only updated in every 15 image frames. The LF is created by starting 

from a position (P2 point) calculated with the pre-defined distances. The LF covers 

the area starting from 𝑥௟ െ 90 and 𝑦௟ െ 90 (red point) to a constant equal length for 

two axes. 

 𝐿𝐹௫ ൌ ൜
𝑥௟೙

, 𝑖𝑓 𝑛%15 ൌ 0 𝑎𝑛𝑑 𝑛 ൐ 0
𝑥௟, 𝑖𝑓 𝑛%15 ് 0 𝑎𝑛𝑑 𝑛 ൐ 0

 (4.10)

 𝐿𝐹௬ ൌ ൜
𝑦௟೙

, 𝑖𝑓 𝑛%15 ൌ 0 𝑎𝑛𝑑 𝑛 ൐ 0
𝑦௟, 𝑖𝑓 𝑛%15 ് 0 𝑎𝑛𝑑 𝑛 ൐ 0

 (4.11)

 

Fig. 7. Local frame demonstration on a real image frame 
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4.1.4. General Kinematics of WMR 

Before touching the control scheme in thesis study, it is suitable to give an idea 

about general control scheme of a WMR. The general kinematics are simply 

emphasized in [97]. Assume that the position of a WMR is selected as (𝑥ௗ, 𝑦ௗ) 

according to the center of the target position (𝑥௥, 𝑦௥ሻ. The 𝐿 distance and 𝜑 angle can 

be set to be simply constant parameters. Then the position parameters of the robot-

target can be explicated with following equations (4.12) and (4.13). 

 𝑥ௗ ൌ 𝑥௥ ൅ 𝐿 cosሺ𝜃௥ ൅ 𝜑ሻ (4.12)

  𝑦ௗ ൌ 𝑦௥ ൅ 𝐿 sinሺ𝜃௥ ൅ 𝜑ሻ (4.13)

The 𝑣௖ (𝑣௫, 𝑣௬) velocity and 𝜔௖ (𝜔௟, 𝜔௥) angular velocity are directly bound up 

with to the velocities of the right and left wheels of the mobile robot. Angular velocity 

values 𝜔௟ሺ𝑡ሻ and 𝜔௥ሺ𝑡ሻ are calculated by using equation (4.14). In this equation 𝑟 

represents the wheel radius and 𝑙 represents the distance between the two wheels 

(wheelbase). 

 ቎
𝑣௫ሺ𝑡ሻ
𝑣௬ሺ𝑡ሻ

𝜃ሶ
቏ ൌ ൥

𝑟/2 𝑟/2
0 0

െ𝑟/𝑙 𝑟/𝑙
൩ ൤

𝜔௟ሺ𝑡ሻ
𝜔௥ሺ𝑡ሻ൨ (4.14)

To make compatible the kinematic models to the real-world pattern following 

equations (4.15) and (4.16) are used. These equations characterize velocity and 

angular velocity parameters for the mobile robot. In this equation 𝑅 parameter is 

instantaneous curvature radius of the robot trajectory relative to the mid-point axis. 

 𝑣ሺ𝑡ሻ ൌ 𝜔ሺ𝑡ሻ𝑅 ൌ
1
2

ሺ𝑣௥ሺ𝑡ሻ ൅ 𝑣௟ሺ𝑡ሻሻ (4.15)

 𝜔ሺ𝑡ሻ ൌ
𝑣௥ሺ𝑡ሻ െ 𝑣௟ሺ𝑡ሻ

𝑙
 (4.16)

A general expression can be put forth for velocity (𝑣) and angular velocity (𝜔) 

parameters. By this way, we can simply generate following final equations (4.17) and 

(4.18) for a two-wheeled differential drive mobile robot. 

 𝑣 ൌ
𝑅
2

ሺ𝑣௥ ൅ 𝑣௟ሻ →
2𝑣
𝑅

ൌ 𝑣௥ ൅ 𝑣௟ (4.17)
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  𝜔 ൌ
𝑅
𝐿

ሺ𝑣௥ െ 𝑣௟ሻ →
𝜔𝐿
𝑅

ൌ 𝑣௥ െ 𝑣௟ (4.18)

The general kinematics of the differential drive mobile robot can be characterized 

with the following equation (4.19). The 𝑣௖ is linear forward velocity and 𝜔௖ is angular 

velocity for the WMR in this equation. 

 ቎
𝑥ሶ௖
𝑦ሶ௖
𝜃ሶ௖

቏ ൌ ൥
𝑣௖ cos 𝜃௖
𝑣௖ sin 𝜃௖

𝜔௖

൩ (4.19)

Similarly, the kinematics for the target reference can be modeled with the 

following equation (4.20). 

 ቎
𝑥ሶ௥
𝑦ሶ௥
𝜃ሶ௥

቏ ൌ ൥
𝑣௥ cos 𝜃௥
𝑣௥ sin 𝜃௥

𝜔௥

൩ (4.20)

By fusing previous statements, we can extract control variables with the following 

equation (4.21). Then the control parameters are defined with the equation (4.22) 

statement. 

 ቎
𝑥ሶሺ𝑡ሻ
𝑦ሶ ሺ𝑡ሻ
𝜃ሶሺ𝑡ሻ

቏ ൌ ൥
cos 𝜃ሺ𝑡ሻ 0
sin 𝜃ሺ𝑡ሻ 0

0 1
൩ ൤

𝑣ሺ𝑡ሻ
𝜔ሺ𝑡ሻ൨ (4.21)

  𝑞ሶ ሺ𝑡ሻ ൌ 𝑆ሺ𝑞ሻ𝜉ሺ𝑡ሻ (4.22)

4.1.5. Vision Based Control 

 Visual based control is one of the popular research area in robotics. It is also 

known as visual servoing. It simply concerns about controlling a robot by using visual 

information around its environment. In other words; visual based control methods aim 

to manage a dynamic system by using visual features obtained from images provided 

by one or multiple cameras [9], [98], [99]. Except from conventional sensors visual 

based information is a necessity for robotics. For instance, real-time robotic systems, 

human-robot interaction, autonomous vehicles, indoor and outdoor robotics etc. are 

almost all utilize the visual information to make a decision. It is the major part of 

human/animal inspired control theory. Since most of the livings utilize their visual 

sensory organs predominantly besides their other sensory organs. Of course, simple 
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tasks, repetitive works, trajectory tracking etc. simply can be done by using non-

visual sensors (encoders, odometry, altitude, gyro, accelerometer, velocity sensors and 

so on) alone. But when a recognition process is an inevitable situation then visual 

based control task becomes imperative partially or totally.       

In Fig. 8, the main steps for image processing until the controlling process of the 

mobile robot are shown as layered structures. It simply shows; image acquisition (a), 

object detection (b), the graph/triangle construction (c), tracking of local frame (d), 

parameter calculation for dynamics (e), and motion of mobile robot (f).   

 

Fig. 8. Main image processing steps in control process 

4.1.6. Positioning Models of Kinematics for Proposed Models 

Detected objects from the segmentation process are expressed as base components 

in the binary image. Each centroid of these base components represents control points 

for the mobile robot control models. These control points are connected to each other 

with line parts. The control points and lines are utilized as nodes and edges for graph-

based positioning model as the first approach. Distance values of the lines have been 

computed and appointed as edge weights. These values are input to the control 

process for graph-based positioning model. In second positioning model, triangle 

structure is formed by utilizing these control points and lines. Interior angle values are 

computed between line intersections. These values are used as input to the control 

process for the triangle-based model. Details of the positioning models are given 

separately in following section.  

A. Weighted graph-based model  

Positioning Scheme for Kinematics 

In Fig. 9 (a), graph-based positioning model for the control method is shown. In 

this figure, the node ‘t’ corresponds to the target, ‘r’ and ‘l’ nodes represent right and 
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left circular labels (control points of wheels), the ‘c’ node expresses the centroid of 

red triangle label. ‘D1’, ‘D2’, ‘DT’ and ‘DW’ specify edges between nodes and they 

have distance values. The distance value of ‘DT’ is the length of the shortest path from 

initial position to the target position. These distances are weights of each edges in the 

graph. They have been used as inputs to perform control task for mobile robot. Each 

node has 2D Cartesian coordinates and except for target node ‘t’, coordinates of other 

nodes change as the motion is performed. The ‘𝑙𝑤’ and ‘𝑟𝑤’ represents orientation of 

the robot wheels. Segmented base components (graph nodes) of a real image frame 

are demonstrated in Fig. 9 (b). RGB labels correspond to the distance values (weights) 

of each edge. For example, the distance value between the target (t) and left node (l) 

on the robot is ‘771px’. The obtained graph parameters are updated in each image 

frame with respect to the new values of the node coordinates. The velocity of left and 

right wheels are successfully set in each updating process in real time.  

 

Fig. 9. (a) Distance based positioning scheme, (b) A real image frame 

 Distance Input Calculation 

Euclidian Distance Value (EDV) is computed and assigned as a weight value to 

each edge between the nodes (t, l, r and c) in the graph by using (4.23). EDV of the 

DT edge expresses the distance from robot to the target. EDVs are assigned to D1, D2, 

DT and DW in each control loop. The EDV values are utilized to characterize the input 

parameters of the controller algorithms/functions.  
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 𝑑ሺ𝑝, 𝑞ሻ ൌ ඩ෍ሺ𝑞௜ െ 𝑝௜ሻଶ

௡

௜ୀଵ

 (4.23)

B. Triangle Based Model  

Positioning Scheme for Kinematics 

The triangle-based positioning model for control method is shown in Fig. 10 (a). 

The ‘t’ point corresponds to the position of target, ‘l’ and ‘r’ locations express the left 

and right wheel labels, the ‘c’ point of the triangle component represents the centroid 

of directional label in this figure. ‘AL – Angle of Left Wheel’, ‘AR – Angle of Right 

Wheel’ and ‘AT – Angle of Target’ specify the angles between edges. These angle 

values are simply interior angles of a polygonal shape (triangle). They are primary 

input variables to implement mobile robot control process. Each corner point of 

triangle has coordinates in 2D space and these coordinates and angle’s values change 

while robot moves. The robot direction is modeled according to the changing AL and 

AR difference in each control cycle. An example real-world image frame for detected 

objects and triangle positioning is shown in Fig. 10 (b). The degree values of each 

angles have been shown with the color labels. For instance, degree at the left label is 

‘85.33˚’. The angle values at target and wheel labels are calculated and updated in 

each control cycle. The velocities of wheels are accurately calculated by using these 

angle values in control process.  

 

Fig. 10. (a) Angle based positioning model scheme, (b) A real image frame 
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Angle Input Calculation 

Each intersectional edge has an angle value in triangle structure. These angle 

parameters are determined by utilizing (4.24) and (4.25). The ∆௫, ∆௬ and ∆௭ are 

distance vectors between ‘t’, ‘l’ and ‘r’ coordinates of discovered objects. The 𝑎𝑛𝑔௥ is 

the radian value of related angle. The 𝐴ଷ଺଴ corresponds to the degree equivalent of the 

radian value. Velocities for both wheels are calculated by using these angle values for 

triangle-based approach. 

 𝑎𝑛𝑔௥ ൌ 𝑎𝑐𝑜𝑠 ቆ
∆௫

ଶ െ ∆௬
ଶ െ ∆௭

ଶ

െ2 ∗ ∆௬ ∗ ∆௭
ቇ (4.24)

  𝐴ଷ଺଴ ൌ 𝑎𝑛𝑔௥ ∗
180
𝑝𝑖

 (4.25)

C. Unit Transformations for Velocity of Wheel 

The pulse values are sent to the robot to control velocity of wheels. The received 

pulse values are converted to mm/s unit with (4.26). The 𝑉௪ represents velocity of the 

left-right robot wheels in mm/s. The 𝑣௣ represents pulse value sent to the wheels. The 

𝑡௥ corresponds to the refresh time (a constant value). The Ø௪ express the diameter of 

the wheel. The 𝑁𝑏௣ represents the cycle resolution.  

 𝑉ௐ ቂ
𝑚𝑚

𝑠
ቃ ൌ

𝑣௣

𝑡௥
∗

Ø௪ ∗ 𝜋
𝑁𝑏௣

 (4.26)

4.1.7. Gaussian Control Model Kinematics 

Gaussian function is a smoothing method which is commonly used in a great 

number of studies. The general Gaussian function with single dimension (𝑓 ) is 

defined in (4.27). The parameter 𝑥 is the difference of input parameters (𝐷ଵ – 𝐷ଶ or 

𝐴௅ – 𝐴ோ). The 𝜋 value (~3.14) is a constant parameter in 𝑓 . The σ is standard 

deviation, variance is 𝜎ଶ and mean or expectation of the distribution is μ. The value of 

𝜎 is empirically adjusted to ‘0.41’. The 𝜇 value is set to ‘0’. Since the optimal 𝑥 value 

is ‘0’, it means that both D1 and D2 or AL and AR are equal or the robot direction is 

straight toward the target. The controller input 𝑥 is the absolute difference value 

between D1 and D2 distances for graph approach (4.28). Moreover, this 𝑥 input is the 

absolute difference value between AL and AR angles for triangle approach (4.29). The 
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𝜆 and 𝜑 parameters are used as smoothing factors. If 𝑥 value approximates to ‘0’, then 

𝑓  approximates to ‘1’ and if 𝑥 value approximates to ‘∞’, then 𝑓  approximates to 

‘0’. Therefore, 𝑆஼ – “Speed Coefficient” is computed by multiplying 𝑆௠௔௫ – 

“maximum speed of wheel” with the subtraction of the 𝑓  value of related wheel from 

‘1’ by using (4.30). Equations (4.31), (4.32) and (4.33) are used to find 𝑆௅ - ‘Speed of 

Left Wheel’ and 𝑆ோ – ‘Speed of Right Wheel’. The S୫ୟ୶ is the pulse value. It can be 

set to ‘1200’ for utilized mobile robot as maximum tick value. The ‘𝜏’ is a constant 

scaling coefficient. Acquired value of 𝑓  function provides addition to the velocity 

value of one wheel and subtraction from the velocity value of the other wheel 

according to sign of 𝑥. The 𝑓  is employed to characterize velocities of the robot 

wheels with a single function. It is used to handle control of a differential drive 

mobile robot. The 𝑓  is adapted to the configuration space to perform real time go-to-

goal control in a static environment. 

 𝑓 ሺ𝑥ሻ ൌ
1

𝜎√2𝜋
𝑒ି

ሺ௫ିఓሻమ

ଶఙమ  (4.27)

  𝑥 ൌ ฬ
𝐷ଵ െ 𝐷ଶ

𝜆
ฬ (4.28)

  𝑥 ൌ ฬ
𝐴௅ െ 𝐴ோ

𝜑
ฬ (4.29)

  𝑆஼ ൌ 𝑆௠௔௫ ∗ ሺ1 െ 𝑓 ሻ (4.30)

    𝑆௅ ൌ ൜
𝑆௠௔௫ ∗ 𝜏 ൅ 𝑆஼, 𝐷ଵ ൏ 𝐷ଶ
𝑆௠௔௫ ∗ 𝜏 െ 𝑆஼, 𝐷ଵ ൐ 𝐷ଶ

 (4.31)

   𝑆ோ ൌ ൜
𝑆௠௔௫ ∗ 𝜏 ൅ 𝑆஼, 𝐷ଵ ൐ 𝐷ଶ
𝑆௠௔௫ ∗ 𝜏 െ 𝑆஼, 𝐷ଵ ൏ 𝐷ଶ

 (4.32)

  𝑆௅,ோ ൌ 𝑆௠௔௫ ∗ 𝜏 ൅ 𝑆஼, 𝐷ଵ ≅ 𝐷ଶ (4.33)

The advantage is that a single 𝑓  model is adequate to set velocity parameters for 

mobile robot wheels in every control process cycle. It ensures a fast and efficient 

processing performance in real time. The output of this 𝑓  model is added to the 

velocity of the behindhand wheel and subtracted from the velocity of the leading 

wheel of the mobile robot. This means that the behind wheel according to target 

position, takes positive 𝑓  value for its velocity calculation.  In this way, velocity 
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values of wheels are affected from position values. Fig. 11 shows our 𝑓  curves. The 

red line indicates the 𝑥 input velocity when the robot is in motion state and the blue 

line indicates the stopping process with 𝑓 ൌ 1.         

 

Fig. 11. Gaussian curve graphics for designed control 

A. Calculation of Path Cost Difference 

The path cost difference is generated between the linear 𝐷் path and the real path 

created by the robot motions.  The path cost difference is simply calculated by using 

(4.34). This value shows how much difference occurs between these paths. The 𝐷் 

represents the linear path distance and the 𝐷஺ corresponds to the actual path distance. 

The sampled coordinates on the formed path are the 𝑥ଵ𝑦ଵ … 𝑥௡𝑦௡. The actual point is 

𝑞௫ and the next sampled point is 𝑝௫.  

 
𝐷்

𝐷஺
ൌ

ඥ∑ ሺ𝑞௜ െ 𝑝௜ሻଶ௡
௜ୀଵ

∑ ට∑ ൫𝑞௝ െ 𝑝௝൯
ଶ௠

௝ୀଵ
௫೙௬೙
௫భ௬భ

 (4.34)

B. Procedures of Stopping Process for Kinematics 

The stopping task is performed when a predefined threshold is reached. This 

threshold parameter is the distance value 𝐷ௐ between r and l coordinates on the robot 

label in graph approach. When the distance between robot and target (𝐷்) equal to or 

below this threshold by reducing gradually, ‘0’ signal pulse is transmitted to the robot 

with 𝑆௅,ோ calculation by changing parameter to start the stopping process of the robot. 

The 𝐷் is controlled in each control loop. This threshold parameter is controlled 

according to the target angle value 𝐴் at the target position in triangle approach. 
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When the 𝐴் value is equal to or exceeds the ‘60௢’ by increasing gradually, ‘0’ signal 

pulse is transmitted to the robot with 𝑆௅,ோ calculation by changing parameter to start 

the stopping process of the robot. Similarly, the 𝐴் is controlled in each control loop. 

In experiments, the mobile robot has stopped according to the target and robot 

positions. The 𝑓  parameter value σ is reassigned in the end of the execution time 

passed to complete given task. This reassigning process of σ parameter is performed 

to stop the robot in a certain stage when previously mentioned threshold value(s) is 

reached. The robot motion is stopped with ‘𝑓 ൌ 1’ value by changing value of 𝑥 to 

‘0’ and value of 𝜎 to ‘1/√2𝜋’. This means that 𝑆௅,ோ takes the ‘0’ value and so the 

stopping process of the robot is triggered with (4.35) for the graph and (4.36) for the 

triangle approaches. 

 𝑆௅,ோ ൌ 𝑆௠௔௫ ∗ 𝑆஼, 𝐷் ൑ 𝐷ௐ െ 30 (4.35)

  𝑆௅,ோ ൌ 𝑆௠௔௫ ∗ 𝑆஼, 𝐴் ൒ 60 (4.36)

If this threshold condition is not met for the utilized control approach, then the 

calculation of velocity is proceeded with the previously defined (4.31), (4.32) and 

(4.33) equations. The computed velocity values are converted to the tick/pulse type 

with the parameter transformations and then transmitted to the robot. 

C. Control Scheme for Visual Control System 

The entire control stages for controller models is demonstrated in Fig. 12. An 

image frame captured from the fixed head camera in real-time. Object detection tasks 

have been executed in the captured image frame. A weighted graph or triangle 

structure is formed according to the utilized model approach by using identified 

objects. The weight values (distances) of edges for graph model and the degree values 

(angles) of edge intersections for triangle model are calculated. The Gaussian function 

is operated by giving ‘𝑥’ difference value (𝐷ଵ-𝐷ଶ or 𝐴௅-𝐴ோ) as input variable. The 

output of the Gaussian is added/subtracted from wheel velocity values according to 

this ‘𝑥’ value sign (െ or ൅). The (൅, െ) signs means that the velocity of the left wheel 

increased and the right wheel is decreased. Similarly, (െ, ൅) signifies the vice versa. 

Besides, (~, ~) corresponds that the wheels are affected by same rate. The threshold 

of stopping process is controlled, if the threshold is satisfied, then the control 

procedure stops. Otherwise, control processes continue by taking next image frame 
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from the initial phase. These entire tasks are performed by utilizing only the visual 

features without any information from the sensors. 

 

Fig. 12. General working phases for designed control method 

4.2. STAGE-2: Path Planning 

4.2.1. Operating environment of Stage-2 

As distinct from Stage-1, the operating environment includes obstacles for Stage-2. 

Therefore, a path planning method have to be used to extract a proper trajectory for 

WMR. The camera position and system hardware are all have same parameters as in 

previous stage. The obstacles are placed with the several different configurations to 

see performance of the control infrastructure in simple and extreme conditions. The 

operating environment for Stage-2 is demonstrated in Fig. 13 

 

Fig. 13. Operating environment (Left – Representative, Right – Real) 
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Fig. 14 shows the object detection task for this stage. There are three kind of object 

that have to be detected. These objects are used to perform tracking process in mobile 

robot control process. To detect obstacles, a suitable threshold mask is used. Because 

of static nature of the configuration space, obstacles are detected for once at the start 

of the control process. After that only the mobile robot is tracked to detect its new 

position. The target and obstacles are static, so it is not necessary to track them. Their 

positions have been simply stored for further usages.   

 

Fig. 14. Object Detection; I. Acquired image, II. Thresholded image, III. Detected objects, IV. 

Calculated angles 

 Local frame method is utilized exactly same as in previous stage. Local frame 

coordinates are updated when a threshold limit for processed image frames is reached. 

Fig. 15 demonstrates local frame detection in configuration space. 

 

Fig. 15. Local frame demonstration on a real image frame 

4.2.2. Fundamentals of Potential Fields 

Potential field is a term used to define vectors array representing a certain space. 

Typically, a vector consists of magnitude (m) and direction (d) parameters, Fig. 16. A 

vector represents a force in potential fields. Length of the vector corresponds to the 
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magnitude and angle of the vector corresponds to the direction. All these vectors in 

potential fields can be resembled offline local compasses giving the needed direction 

with a distance weight at different points. Therefore, the Artificial Potential Field 

(APF) can be utilized to model go-to-goal and avoiding obstacles behaviors together. 

Two kinds of force are used to steer and advance the object (robot) in APF method. 

These forces are attractive field and repulsive field forces. Potential field structures 

are illustrated in Fig. 17 for an electrical potential field; (a) represents attractive field 

between opposite poles and (b) represents repulsive field between same poles.   

 

Fig. 16. Vector parameters 

 

Fig. 17. Potential field structure (Electrical) 

Attractive Potential Field (𝑃௔௧௧): It has attractive forces used to attract/pull the 

object to the target position according to the given configuration space. Magnitude of 

this force generally proceeds with same value until the moving robot reaches to the 

target position. According to design this attractive force can be increased or decreased 

under certain circumstances. It can be linearly increased or decreased or dynamically 

changed according to configuration space parameters. Repulsive Potential Field 

(𝑃௥௘௣): It has forces pushing object at a certain rate to overcome obstacles and unseen 

locations. Magnitude of this force can generally show variability according to size of 

the obstacles and distance values between object and obstacles. In other words, this 

force demonstrates a dynamic variability until robot reaches to the target position. 

Gradient vector structures are utilized while these forces are specified as magnitude 

and direction. These forces are demonstrated in Fig. 18 for a representative 

configuration space. 𝐹௔௧௧ is the attractive force, 𝐹௥௘௣ is the repulsive force and 𝐹௧௢௧௔௟ 

is the resultant sum of these two forces.  
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Fig. 18. Potential field forces 

In some cases, a vector field is gradient of a 𝑃ሺ𝑥, 𝑦ሻ potential function expressed 

as following (4.37); 

 ሺΔ𝑥, Δ𝑦ሻ ൌ ∇𝑃ሺ𝑥, 𝑦ሻ ൌ ൬
𝜕𝑃
𝜕𝑥

,
𝜕𝑃
𝜕𝑦

൰ (4.37)

If the potential area is defined mathematically, 𝑞 ൌ ሺ𝑥, 𝑦ሻ் to be the robot 

coordinates, then it is basically computed by utilizing (4.38). 𝑃௧௢௧௔௟ሺ𝑞ሻ is total 

potential field in configuration space. 𝑃௔௧௧ሺ𝑞ሻ is attractive filed and 𝑃௥௘௣ሺ𝑞ሻ is the 

repulsive field in this equation.   

 𝑃௧௢௧௔௟ሺ𝑞ሻ ൌ 𝑃௔௧௧ሺ𝑞ሻ ൅ 𝑃௥௘௣ሺ𝑞ሻ (4.38)

Attractive force is the negative gradient of attraction field and repulsive force is the 

negative gradient of repulsion field. 𝐹ሺ𝑞ሻ is to be gradient of artificial force vector 

field, then it is found by using (4.39).   

 𝐹ሺ𝑞ሻ ൌ െ∇𝑃௔௧௧ሺ𝑞ሻ െ ∇𝑃௥௘௣ሺ𝑞ሻ ൌ 𝐹௔௧௧ሺ𝑞ሻ ൅ 𝐹௥௘௣ሺ𝑞ሻ (4.39)

In this equation, ∇𝑃 expresses 𝑃 gradient vector. 𝐹௔௧௧ሺ𝑞ሻ is the artificial attractive 

force and 𝐹௥௘௣ሺ𝑞ሻ is the artificial repulsive force. Robot position is shown with 

𝑞ሺ𝑥, 𝑦ሻ. Thus, the following equality (4.40) is found.  

 𝐹௔௧௧ሺ𝑞ሻ ൌ െ∇𝑃௔௧௧ሺ𝑞ሻ and 𝐹௔௧௧ሺ𝑞ሻ ൌ െ∇𝑃௥௘௣ሺ𝑞ሻ (4.40)

Attractive field between target and robot is built to attract robot to the target 

position. Attractive potential field created by target is found with (4.41). 



38 
 

 𝑃௔௧௧ሺ𝑞ሻ ൌ ൞

1
2

𝜁𝑑ଶሺ𝑞, 𝑞௛ሻ, 𝑑ሺ𝑞, 𝑞௛ሻ ൑ 𝑑 ∗௛,

𝑑 ∗௛ 𝜁𝑑ሺ𝑞, 𝑞௛ሻ െ
1
2

𝜁𝑑 ∗௛
ଶ, 𝑑ሺ𝑞, 𝑞௛ሻ ൐ 𝑑 ∗௛,

 (4.41)

𝑑ሺ𝑞, 𝑞௛ሻ is current distance value of robot to the 𝑞௛ target. 𝜁 is attraction gain and 

𝑑 ∗௛ threshold value being next value of conical form of second-order function.   

𝑞௚ ൌ ൫𝑥௚, 𝑦௚൯
்
 to be location of target vector. 𝜌௚௢௔௟ሺ𝑞ሻ ൌ ฮ𝑞 െ 𝑞௚ฮ is the 

Euclidean distance from the position of robot to the position of target. Attractive force 

on the robot is computed as negative gradient of attractive potential field and gets the 

form (4.42) given below. 

 𝐹௔௧௧ሺ𝑞ሻ ൌ െ∇𝑃௔௧௧ሺ𝑞ሻ ൌ െ
1
2

𝜁∇𝜌௚௢௔௟
ଶ ሺ𝑞ሻ ൌ െ𝜁൫𝑞 െ 𝑞௚൯ (4.42)

𝐹௔௧௧ሺ𝑞ሻ is a vector which head toward 𝑞௚ point (target/goal). It has linearly related 

magnitude to distance from 𝑞 to 𝑞௚. The 𝐹௔௧௧ሺ𝑞ሻ components are negative directional 

derivatives of the attractive field throughout 𝑥 and 𝑦 directions in 2D coordinate 

space. Therefore, when influencing of attractive potential field starts, components can 

be expressed as (4.43) and (4.44);  

 𝐹௔௧௧ି௫ሺ𝑞ሻ ൌ െ𝜁ሺ𝑥 െ 𝑥௚ሻ (4.43)

  𝐹௔௧௧ି௬ሺ𝑞ሻ ൌ െ𝜁ሺ𝑦 െ 𝑦௚ሻ (4.44)

In these equations, 𝐹௔௧௧ି௫ is attractive force in 𝑥 direction and 𝐹௔௧௧ି௬ is attractive 

force in 𝑦 direction. The mobile robot has to be pushed from the obstacles. The 

influence on the robot by obstacles is not wanted when robot is far away from these 

obstacles. Then, repulsive potential field (4.45) can be formed as following.  

 𝑃௥௘௣ሺ𝑞ሻ ൌ ቐ
1
2

𝜂 ൬
1

𝜌ሺ𝑞ሻ
െ

1
𝑄∗൰

ଶ

, 𝜌ሺ𝑞ሻ ൑ 𝑄∗

0 , 𝜌ሺ𝑞ሻ ൐ 𝑄∗
 (4.45)

In this equation, η is repulsion gain, 𝑄∗ is the distance threshold value that will 

create a repulsive force on robot for an obstacle. 𝑞௖ ൌ ሺ𝑥௖, 𝑦௖ሻ to be a unique 

configuration for the nearest obstacle to 𝑞. The shortest path between the robot and 

obstacle is 𝜌ሺ𝑞ሻ ൌ ‖𝑞 െ 𝑞௖‖. When distance between obstacle and robot is larger than 

𝑄∗; there is no influence for robot. Note that, ζ and η gain parameters and d* and 𝑄∗ 
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threshold parameters are set empirically. Similarly, repulsive force is the gradient of 

repulsive potential function given as following (4.46) and (4.47). 

 𝐹௥௘௣ሺ𝑞ሻ ൌ െ∇𝑃௥௘௣ሺ𝑞ሻ ൌ ቐ
0, 𝜌ሺ𝑞ሻ ൒ 𝜌଴

𝜂 ൬
1

𝜌ሺ𝑞ሻ
െ

1
𝜌଴

൰ ൬
1

𝜌ଶሺ𝑞ሻ
൰ ∇𝜌ሺ𝑞ሻ, 𝜌ሺ𝑞ሻ ൑ 𝜌଴

 (4.46)

  𝐹௥௘௣ሺ𝑞ሻ ൌ ቐ
0, 𝜌ሺ𝑞ሻ ൒ 𝜌଴

𝜂 ൬
1

𝜌ሺ𝑞ሻ
െ

1
𝜌଴

൰ ൬
1

𝜌ଶሺ𝑞ሻ
൰ ൬

q െ qୡ

‖𝑞 െ 𝑞௖‖
൰ , 𝜌ሺ𝑞ሻ ൑ 𝜌଴

 (4.47)

𝐹௥௘௣ି௫ሺ𝑞ሻ and 𝐹௥௘௣ି௬ሺ𝑞ሻ are the repulsive forces Cartesian components. When the 

repulsive field become effective on the robot, the components can be expressed as 

(4.48) and (4.49). 

 𝐹௥௘௣ି௫ሺ𝑞ሻ ൌ ቐ
0, 𝜌ሺ𝑞ሻ ൒ 𝜌଴

𝜂 ൬
1

𝜌ሺ𝑞ሻ
െ

1
𝜌଴

൰ ൬
1

𝜌ଶሺ𝑞ሻ
൰ ൬

x െ xୡ

‖𝑦 െ 𝑦௖‖
൰ , 𝜌ሺ𝑞ሻ ൑ 𝜌଴

 (4.48)

  𝐹௥௘௣ି௬ሺ𝑞ሻ ൌ ቐ
0, 𝜌ሺ𝑞ሻ ൒ 𝜌଴

𝜂 ൬
1

𝜌ሺ𝑞ሻ
െ

1
𝜌଴

൰ ൬
1

𝜌ଶሺ𝑞ሻ
൰ ൬

𝑦 െ 𝑦௖

‖𝑦 െ 𝑦௖‖
൰ , 𝜌ሺ𝑞ሻ ൑ 𝜌଴

 (4.49)

Although there are a great number of obstacles, repulsive potential field in total is 

sum of repulsive potential fields of all obstacles. The potential field in total can be 

signified with following equality (4.50); 

 𝑃ሺ𝑞ሻ ൌ 𝑃௔௧௧ሺ𝑞ሻ ൅ ෍ 𝑃௥௘௣ሺ𝑞ሻ

௡

௜ୀଵ

 (4.50)

In this equation, n corresponds to the number of obstacles. Then, total artificial 

force can be formed as following (4.51); 

 𝐹ሺ𝑞ሻ ൌ 𝐹௔௧௧ሺ𝑞ሻ ൅ ෍ 𝐹௥௘௣ሺ𝑞ሻ

௡

௜ୀଵ

 (4.51)

On the other hand, there are several issues which cause that the method not to work 

properly in potential field. The moving object cannot make any progress because of 

local minimum or it makes excessive swinging in its movements due to unstable 

oscillation. In Fig. 19, local minimum (I, II) and unstable oscillation (III) problems 

are demonstrated. As seen in figure, local minimum problem stems from balanced 
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repulsive and attractive forces. Because of this balancing situation robot cannot make 

any progress, so it cannot reach to the desired position. Unstable oscillation problem 

stems from narrow passages or unsuitable parameters. The robot makes excessive and 

unnecessary swinging movements, so it reaches to the target very late and wastes 

energy.      

 

Fig. 19. Main APF problems (Local minima and unstable oscillation) 

4.2.3. Adaptive Artificial Potential Field (A-APF) 

These mentioned parameters are dynamically changed in proposed adaptive 

artificial potential field method. Parameters are readjusted depending on magnitude of 

potential forces from the obstacle, global positions of obstacles and distance to target 

parameters in each new path coordinate assignment and control iteration step. Objects 

and environment variables are demonstrated in Fig. 20. Blue arrows represent 

attractive force and red arrows represents repulsive force. The equation (4.52); 

𝑑ሺ𝑞, 𝑞௢ሻௗೌ೑
, 𝑑ሺ𝑞, 𝑞௢ሻௗ೑೗భ

 and 𝑑ሺ𝑞, 𝑞௢ሻௗ೑ೝభ
 terms express the distance measurements 

taken from front, front-left which is between front and front-left-diagonal and front-

right which is between front and front-right-diagonal. Repulsion gain ‘η’ is increased 

(4.53) as approaching to the obstacle (𝑑௢ distance) in configuration space. The 

distance from robot to target is 𝑑ሺ𝑞, 𝑞௛ሻ. Similarly, attraction gain ‘ζ’ is increased 

(4.54) as approaching to the target (𝑑௧ distance) in configuration space. Distance 

sensors are 𝑛 ൌ ሼ1, 2, … , 𝑝𝑛ሽ around the robot and measurement taken by them are 

expressed with 𝑑ሺ𝑞, 𝑞௢ሻௗభ
, 𝑑ሺ𝑞, 𝑞௢ሻௗమ

, … , 𝑑ሺ𝑞, 𝑞௢ሻௗ೛೙
. The average value of the total 

measurement taken from sensors around the robot is expressed with 𝑑ሺ𝑞, 𝑞௢ሻௗೌ೟
. The 

total number of distance preceptor is 𝑝𝑛. Potential calculation order factor ‘𝑘’ (or 

𝑑 ∗௛)  value which is a critical parameter is also raised (4.55) with small rates as 
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approaching to the obstacle (𝑑௢ distance). It has been changed between the 2.85-3.20 

value ranges. The ‘γ’, ‘δ’ and ‘ε’ parameters are positive constant factors. The 

minimum attractive potential threshold ‘𝑎𝑝௠௜௡’ in any point on the entire 

configuration space is assigned to partly overcome the local minima issue. This 

minimum potential force value is decreased (4.56) dynamically with small rates as 

approaching to the target (𝑑௧ distance). ‘ϑ’ parameter is also a constant scaling factor. 

 

Fig. 20. Objects and variables in working environment 

 𝑑ሺ𝑞, 𝑞௢ሻௗೌ೑
ൌ 𝑎𝑣𝑔 ቀ𝑑ሺ𝑞, 𝑞௢ሻௗ೑

൅ 𝑑ሺ𝑞, 𝑞௢ሻௗ೑೗భ
൅ 𝑑ሺ𝑞, 𝑞௢ሻௗ೑ೝభ

ቁ (4.52)

  η ൌ η ൅ η ∗ γ

⎝

⎛ 1

ට𝑑ሺ𝑞, 𝑞௢ሻௗೌ೑⎠

⎞ ⇒ 𝑑௢ ↓ (4.53)

  ζ ൌ ζ ൅ ζ ∗ δ ቆ
1

ඥ𝑑ሺ𝑞, 𝑞௛ሻ
ቇ ⇒ 𝑑௧ ↓ (4.54)

  𝑘 ൌ 𝑘 ൅ 𝑘 ∗ ε

⎝

⎜
⎜
⎛ 1

ඨ
∑ 𝑑ሺ𝑞, 𝑞௢ሻௗ೙

௣௡
௡ୀଵ

𝑝𝑛 ⎠

⎟
⎟
⎞

⇒ 𝑑௢ ↓ (4.55)

  𝑎𝑝௠௜௡ ൌ 𝑎𝑝௠௜௡ ൅ 𝑎𝑝௠௜௡ ∗ ϑ ቀඥ𝑑ሺ𝑞, 𝑞௛ሻర ቁ ⇒ 𝑑௧ ↓ (4.56)

Some key points detected between obstacles are generally accepted as node in 

graph-based methods. Path planning is implemented on these nodes. Therefore, 

finding these key points (nodes) is an additional task besides path planning. However, 

in APF method; total resultant force is found by taking resultant of total repulsion 
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force created by obstacles and total attraction force created by the target on the robot. 

This vector force provides readjusting the position needed to be arrived, velocity and 

direction parameters in every step.  

Before the main experiments, to show advantages of the A-APF; default and 

adaptive APF methods have been executed on two different configurations. The 

simulation results of these pre-experiments have been demonstrated in Fig. 21. 

Default APF has reached to the solution in 972 steps (or frames) for conf-a, on the 

other hand, A-APF has reached to the solution in 76 steps. For second configuration 

conf-b, default APF has reached to the solution in 290 steps, whereas A-APF has 

reached to the solution in 64 steps. It is clearly seen that A-APF is far more superior 

in terms of performance.    

 

Fig. 21. Simulation instances for several configurations 

Table 1 demonstrates the path cost for default and adaptive methods. A-APF has 

provided more efficient path extraction compare to default one. Although default APF 

seems to be extract smooth looking path for conf-a, there are excessive amount of 

unstable oscillations. It completely confused the path trajectory for conf-b. In 

addition, A-APF has completed the given configuration in less time,  

Table 2. These excessive time periods mainly stemming from oscillations; so, from 

the constant parameters. Ultimately, A-APF has overcome these issues, since it 

continually updates its parameters in each iteration.  

Table 1. Path costs 

Method conf-a conf-b 

D-APF 625.60px 1015.89px 

A-APF 568.98px 559.73px 
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Table 2. Path extraction times 

Method conf-a conf-b 

D-APF 315.237s 129.622s 

A-APF 8.236s 7.407s 

Fig. 22 shows (a) 𝑘 – potential calculation order factor ‘K’, 𝑎𝑝௠௜௡ – minimum 

attractive potential ‘MAP’ and (b) η – repulsive potential scaling ‘RPS’ and ζ – 

attractive potential scaling ‘APS’ parameter changes for conf-a configuration. 

Similarly, Fig. 23 shows these parameter changes for conf-b configuration. 𝑘 

parameter has been shown with blue color and 𝑎𝑝௠௜௡ has been shown with red color 

in (a). η parameter has been shown with red color and ζ parameter has been shown 

with blue color in (b). Parameter changes are more evident at some points where robot 

approaches to an obstacle or to the target. After passing an obstacle, it can be seen that 

the parameters changes in a smoother way.  

 

Fig. 22. A-APF parameter changes – conf-a 

 

Fig. 23. A-APF parameter changes – conf-b 

4.2.4. Decision Tree and Visual Based Control 

Decision tree (DT) is a tree-like graph that represents model of decisions and 

generate new decisions according to possible inputs. It is used to create a suitable 

decision by branching new levels until the given input is satisfied. In decision tree, 
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each internal node expresses a "test" on an attribute, each branch signifies the result of 

the test and each leaf node corresponds label of a class. The paths from root to leaf 

means classification rules. It is also used to model expert systems as well. It is simple, 

flexible and provides fast outcome acquiring.  

Decision tree is used to model a specialized controller for VBC. It determines 

WMR control parameters by using available input parameter(s) in this study. Decision 

tree structure produces suitable velocity parameters in control process according to 

angle values of triangle. The structure of the tree to generate control parameters is 

illustrated in Fig. 24. After calculating control parameters, velocity assignment is 

performed according to decision tree shown in Fig. 25. This second decision tree 

takes difference of angle values on the mobile robot wheels.  

𝐴ௗ value is the absolute value of difference between 𝐴௅ and 𝐴ோ angle values. 

Branching from this node to below tree layer is made according to the predefined 

value ranges. For example; assume that 𝐴ௗ value is ‘8௢’, then branching actualizes 

from the first node to the leftmost node in the second layer. The third layer contains 𝛼 

and 𝛽 values that are coefficient parameters. As the angle difference increases the 

difference between these coefficients also increases. Tree branches include branching 

conditions.       

 

Fig. 24. Angle difference – Control parameters decision tree 

Equation (4.57) express general branching condition. 𝛼 and 𝛽 parameters take new 

values (𝛼௡ and 𝛽௡) according to 𝐴ௗ value within the defined range. If 𝐴ௗ does not 

match to the defined range, it is controlled whether it matches or not to next range 

condition (NRC) and this process proceeds in this way. 

 𝐴௡ ൏ |Aௗ| ൏ 𝐴௠ ? 𝛼 ൌ 𝛼௡, 𝛽 ൌ 𝛽௡ ∶ 𝛼, 𝛽 ൌ 𝑁𝑅𝐶 (4.57)

After gaining the 𝛼 and 𝛽 control parameters second decision tree takes sign value 

of 𝐴ௗ and acquired control parameters to calculate required velocities for mobile 

robot wheels. The 𝐴௩ parameter represents sign or magnitude of the difference value. 
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There are three possible signs ‘െ, 0, ൅’; so, decision tree has three nodes in second 

layer. If the sign is negative, branching occurs to the left and 𝑉௅ and 𝑉ோ calculated 

with -/+ additional values respectively. If the sign is positive, then 𝑉௅ and 𝑉ோ 

calculated with -/+ additional values. If the sign is neutral/zero, then 𝑉௅ and 𝑉ோ 

calculated with same +/+ additional values.        

 

Fig. 25. Angle magnitude – Velocity assignment decision tree 

Velocity parameters of WMR are characterized by using following equations. In 

equation (4.58) 𝑉௠௔௫ is the maximum velocity limit that the mobile robot can achieve. 

𝑉௖ parameter is a constant velocity coefficient parameter. The Δ் is the first distance 

value between WMR and target positions. The first distance value means that the 

distance calculated in initial starting configuration space. The Δ
೙்
 is the new distance 

value between WMR and target positions in configuration space. It means that the 

actual distance value after starting mobile robot motion. The 𝐴஺ parameter in (4.59) is 

the average value of 𝐴௅ and 𝐴ோ sum. The 𝛾 in (4.60) is the average value of total 

scaling factors. The 𝑉௅ represents the velocity of left wheel and the 𝑉ோ represents the 

velocity of right wheel. The 𝐴௅, 𝐴ோ and 𝐴் are the interior angle values of the triangle 

structure as indicated before. The 𝛼 and 𝛽 are the constant scaling factors. The 𝐴ௗ 

parameter is the absolute value of difference between 𝐴௅ and 𝐴ோ. Velocity values are 

calculated by using (4.61), (4.62) and (4.63) equations. Velocity computation of a 

wheel is performed by depending on opposite corner angle value according to wheel 

position. The scaling factors 𝛼 and 𝛽 affects the velocity magnitude with different 

rates as angle values change. This dynamic parameter changing operation provides 

smoother motions instead of sharp motions for WMR.        

 𝑉௠௔௫ ൌ 𝑉௖ ൅ 𝑉௖ ∗
Δ

೙்

Δ்
ൌ 𝑉௖ ൬

Δ் ൅ Δ
೙்

Δ்
൰ (4.58)

  𝐴஺ ൌ
𝐴௅ ൅ 𝐴ோ

2
 (4.59)
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  𝛾 ൌ
𝛼 ൅ 𝛽

2
 (4.60)

  𝑉௅ ൌ ሺ𝑉௠௔௫ ൅ 𝐴ோሻ ∗ 𝛼 ∓ ඨሺ𝐴ௗ ൅ 1ሻ ∗
1

𝐴் ൅ 1
 (4.61)

  𝑉ோ ൌ ሺ𝑉௠௔௫ ൅ 𝐴௅ሻ ∗ 𝛽 ∓ ඨሺ𝐴ௗ ൅ 1ሻ ∗
1

𝐴் ൅ 1
 (4.62)

  𝑉ோ,௅ ൌ ሺ𝑉௠௔௫ ൅ 𝐴஺ሻ ∗ 𝛾 ൅ ඨሺ𝐴ௗ ൅ 1ሻ ∗
1

𝐴் ൅ 1
 (4.63)

A. Calculation of Path Cost Difference 

𝐷ௌ and 𝐷஺ path is used to calculate the proportion of the path cost between the 

simulation path and real path formed by robot motions until arriving the target 

position.  Path cost difference (PDC) is simply computed by employing (4.64). This 

value provides to see how much difference occurs between these paths. In this 

equation, 𝐷ௌ corresponds to distance of simulated path acquired from path planning 

process and 𝐷஺ stands for distance of real path shaped by WMR. 

 𝑃𝐷𝐶 →
𝐷ௌ

𝐷஺
ൌ

ඥ∑ ሺ𝑞௜ െ 𝑝௜ሻଶ௡
௜ୀଵ

∑ ට∑ ൫𝑞௝ െ 𝑝௝൯
ଶ௠

௝ୀଵ
௫೙௬೙
௫భ௬భ

 (4.64)

 B. Procedures of Stopping Process for Kinematics 

Stopping procedure is performed when a predefined threshold parameter is 

satisfied. This threshold parameter is the angle value between edges at the target 

position (𝐴்) for triangle approach. When 𝐴் value reaches to or exceeds the ‘60௢’ 

by increasing gradually, the ‘0’ pulse values are transmitted from 𝑉௅,ோ calculation to 

the wheels with parameter changing to stop the robot. According to current 𝐴் value, 

robot velocity is decreased in each iteration step as approaching to the target location, 

progressively. 𝐴் is controlled for each image frame in real-time. 𝑉௅,ோ takes value ‘0’ 

when the target position is reached. The stopping process of robot starts with (4.65) 

for this control infrastructure. 

   𝑉௅ ൌ 0 & 𝑉ோ ൌ 0 𝑖𝑓𝑓 A୘ ൒ 60  (4.65)



47 
 

If this condition is not satisfied, then the velocity calculation is proceeded as it has 

been done previously in (4.61), (4.62) and (4.63). Calculated speed values are 

converted to the tick/pulse type with required intermediate processes and then the 

values are transmitted to the robot with ordinary procedures. 

C. Control Scheme for Visual Control System 

The entire working scheme for designed control model is demonstrated in Fig. 26. 

In each control process, an image frame is captured from fixed head camera in real 

time. Object detection task has been executed on this image frame. A path plan is 

extracted by using adaptive potential field method (A-APF). This path plan is created 

at first control loop. After this first step, same path plan is used throughout the all 

control process. According to the used model approach a triangle structure is formed 

by utilizing detected objects. This triangle is formed between wheel labels and a 

middle-point located on the extracted path. This middle-point is selected by using a 

pre-defined skip-factor in path matrix. For triangle model degree values (angles) and 

of edge intersections are calculated. Decision tree function is employed by getting ‘𝑥’ 

difference (𝐴௅-𝐴ோ) as input value. Result of this function is added to/subtracted from 

wheel velocity values according to sign of this ‘𝑥’ value. In velocity computation 

step, the signs (൅, െ) express that velocity of left wheel increased and right wheel is 

decreased by decision tree. Similarly, (െ, ൅) express vice versa. In addition, (~, ~) 

expresses that the velocities of both wheels are influenced with the same rate. 

Ultimately, threshold (𝐴் ൒ 60) is controlled. The control process is stopped, if 

condition is met. Otherwise, control loop proceeds from initial step with next frame. 

 

Fig. 26. General working phases for designed control method 
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Using Cartesian coordinates on detected objects and path plan; a triangular 

positioning scheme is created to generate the control input. This triangle is formed 

between the wheel labels and a threshold point (intermediate target) on the obtained 

path. The inputs obtained from this scheme are given to the decision tree controller 

and the WMR velocity parameters are calculated. The threshold is selected using a 

predefined jump factor in the path matrix. In each iteration, the threshold point is 

updated according to the jump factor value, depending on the angle 𝐴் at the target. 

The update process of this threshold point ends when the final target which is the last 

position of the path is selected. Fig. 27 shows the threshold point representation on a 

path plan. These threshold points can be defined as intermediate targets. 

 

Fig. 27. Path plan threshold point representation 

The operating layers of the whole system is demonstrated in Fig. 28. Image frame 

is taken from the fixed head imaging device (a), threshold process is carried out (b), 

object detection and geometric parameters are calculated (c), taking local frame 

around the robot within defined threshold value (d), according to object positions 

simulate and extract a path plan with A-APF (e), calculate input parameters according 

to path plan and robot position (f), velocity parameters for both wheels are calculated 

(g), convert and send parameters to the physical mobile robot (h).    

 

Fig. 28. Operating layers of the designed system 
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4.3. STAGE-3: Multi-Camera Extension 

The multi-camera configured control system has four sub-stages: In first stage, 

physical environment including configuration space, camera positions and 

connection/cabling are prepared. In second stage, image-based tasks; image stitching 

and object detection are implemented, then environment map is created. In third stage, 

path plan is extracted and divided. In last stage, the WMR motion control is 

implemented. The stages are illustrated in Fig. 29. The system modules and 

configuration space are given in Fig. 30. 

 

Fig. 29. Stages for the multi-camera control model 

 

Fig. 30. System modules and configuration space 

4.3.1. Operating environment of Stage-3 

Operating environment includes all Stage-2 properties. Besides, configuration 

space observed through four cameras that have same specifications. All cameras are 

placed a fixed position with same heights from the ground. They have been hanged 

210 cm above from the floor. Their lenses are perpendicular to the floor. The cameras 

are connected to the computer with USB 2.0 ports. Each camera covers an area 
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including two axes labels according to camera position. Experiments have been 

performed on Intel i3-3217U 1.80 GHz CPU with 6GB DDR3 1600 MHz Memory 

and 5400 Rpm HDD. The utilized mobile robot steering wheels are quite thin and ball 

caster wheels are small. Therefore, plastic yellow layer is used to prevent wheel 

jamming to suture area of the floor tiles. The brown rectangle objects are obstacles 

and blue circular object is the main target. Different colored and shaped labels have 

been placed to the floor as distinctive properties for feature detector. Fig. 31 

demonstrates working space representatively. Cameras are expressed with C1, C2, C3 

and C4. Viewing area for C1 is the multiplication of C1_x and C1_y. Intersections of 

two camera viewing areas are C1-C2, C1-C3, C2-C4 and C3-C4. There is one more 

intersection area where all camera can see and it is C1-C2-C3-C4. This means that 

there are several areas tracked by different cameras. The remaining areas are observed 

with only one camera in environment. Blue objects (T1, T2) represent the target 

position. Red objects (I1, I2) represent boundary positions where robot starts to enter 

viewing area of two cameras at the same time on the path. Rp1, Rp2 and Rp3 are 

reference points between two obstacles. They are used to show path skeleton which 

resembles the shortest path between given two positions.    

 

Fig. 31. Working environment for designed control system (Representative) 

4.3.2. Image Stitching 

Image Stitching is one of the particular studying fields that is commonly 

researched. It hosts a number of problems needed to be overcome. Generally, there 

are two basic goals; overlapping the images taken from same position and different 
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angles, on top of each other and fusing common intersection points in the best 

possible way. Basic matters needed to be considered in image stitching are as 

following; 

 Density of variables across the whole scene 

 Variable density and contrast values between frames 

 Lens distortion 

- Pin cushion, Barrel/Bucket and Fisheye 

- Setting the lens profile at the selected focal length 

- Use of available lens profiles 

 Dynamics / movements in the scene 

- Shadowing / Ghosting 

- When the images are aligned, basically one of them is selected 

 Alignment error (Axis misalignment) 

- Shadowing / ghosting again 

- Better control points should be selected 

 Visually satisfactory results 

- Super wide panoramas may not always be satisfactory 

- Gold ratio, 10: 3 or other satisfactory scale trimming 

The main problem with image stitching is the difference in the component size 

between the 𝑥 and 𝑥’ regions due to the angle difference as shown in Fig. 32. In the 

equations (4.66), (4.67), (4.68) and (4.69) below, the components to which x is 

connected are given [100]; 

 

Fig. 32. Parameter changes due to panoramic shooting angle 

 𝑥 ൌ 𝐾ሾ𝑟𝑡ሿ𝑋 (4.66)

  𝑥′ ൌ 𝐾′ሾ𝑟′𝑡′ሿ𝑋′ (4.67)
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  𝑡 ൌ 𝑡ᇱ ൌ 0 (4.68)

  𝐻 ൌ 𝐾′𝑅′𝑅ିଵ𝐾ିଵ to be, 𝑥ᇱ ൌ 𝐻𝑥 (4.69)

Typically, only 𝑅 and 𝑓 (4 parameters) will change, but usually there are 8 

parameters of 𝐻 (homography). In there, the 𝐾 and 𝐾′ are the measurement 

(calibration) matrices. The 𝑋 is the actual location of the object. The 𝑥 and 𝑥′ 

represent the position of the same objects taken from different angles at the same 

focal length. The 𝑅 and 𝑅′ are rotation matrices. The 𝑡 and 𝑡ᇱ are translation matrices. 

Fig. 33 shows the distance difference between the components in the region 

originating from the camera angle with the same red dot common to both images. A 

component, which is only the second image, is indicated by a green dot. 

 

Fig. 33. Images taken from a camera made return motion (Photo: Russell J. Hewett) 

The ‘𝑛’ images will be taken from the ‘𝑛’ head cameras for image stitching. These 

images are placed horizontally or vertically relative to the camera positions by 

superimposing common areas with the next intersection of the image. Although it is 

similar to creating a panoramic image, it is different from each other in terms of the 

location in which the image is taken. Images obtained for a panoramic image are 

taken at different angles with a single camera from the same point. On the other hand, 

images are obtained from different points but from the same angle (perpendicular to 

the surface) in the multi camera configuration. Generally, creating a panoramic image 

with source images taken from the same spot is more prone to distortions in the 

image. This is the difficulty of matching the intersection points of the images because 

of the fact that the input source images are taken from different angles. If the feature 

matchings at these intersections are not sufficient, the stitching success at the relevant 

region will be low and visible distortions will occur. The presence of common 

intersection areas closest to each other due to the shooting angle is an enhancement 
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factor in the images taken consecutively from the central view. Fig. 34 shows two 

image frames superimposed on top of each other. 

 

Fig. 34. Two superimposed images 

In multi head-cameras, the performance will be higher because the images are 

taken from the same angle. Since the matching ratio of inter-view intersections is very 

high, the panorama can be started from the desired image. The key-points can be 

detected with SURF [101] or SIFT [102] feature detectors to extract image properties. 

This work will use SURF. The pseudo-code of the image stitching is given in Table 3. 

Table 3. Image stitching process 

1. Take two images as parameters, G (n) and G (n-1) 

2. Make feature extraction on both images with SURF 

3. Calculate the set of matching points (Feature-Match) 

4. Apply RANSAC to estimate a homography transforming the image that 

overlaps the spots, T (n) 

5. Convert images using this homography 

6. Stitch the images together 

7. Repeat the process steps to stitch the next image with these blended images 

 Image properties are detected and matched from 𝐺ሺ𝑛ሻ to 𝐺ሺ𝑛 െ 1ሻ – (common 

intersection regions are determined). The SURF features are extracted from the black-

and-white form of the first image. Because the images are close enough to the camera, 

a projective conversion is used. If pictures are farther away, affine transformation is 

used. Then, in the iteration, the SURF properties of the 𝐺ሺ𝑛ሻ image are extracted. 

Matching of these extracted properties between 𝐺ሺ𝑛ሻ and 𝐺ሺ𝑛 െ 1ሻ is made. The 

geometric transformation of 𝑇ሺ𝑛ሻ mapped from 𝐺ሺ𝑛ሻ to 𝐺ሺ𝑛 െ 1ሻ is calculated by the 
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RANSAC method using property mappings and taking the previous property 

mappings as parameters.  

 Transformations mapped from 𝐺ሺ𝑛ሻ into panaroma image/view 𝑇ሺ1ሻ ∗ ⋯ ∗ 𝑇ሺ𝑛 െ

1ሻ ∗ 𝑇ሺ𝑛ሻ are calculated. It is obtained by multiplying itself and the previous 

transform together. Moving from the situation that "the center of the captured scene 

exhibits the least distortion", a good panorama can be obtained by changing the 

transformations. The change process is done by inverting the transform for the central 

image and applying this transform to all the other. This case can be neglected in this 

study, since multiple head-cameras all receive images from the same vertical angle 

and from different positions. Therefore, angle-induced distortions hardly ever occur. 

Similar to the previous stages; the object detection process is performed with color 

segmentation and quantization. 

 

Fig. 35. (I) Images obtained at the same angle from different camera positions (II) stitched state of 
four-images 

In Fig. 35, four images (a, b, c, d) taken from the cameras are shown. The cameras 

have same specifications. The images taken from different positions and same angles 

are stitched on common intersection points, (I). The opacity values have been changed 

so that the stitched areas in the images look clear, (II). 

4.3.3. Robot Control in Multi-Camera Configuration   

All designed controllers and positioning models are generally used with a fixed 

single head-camera configuration in the literature. In this study, number of cameras is 

increased to create an expandable/scalable configuration space. Four cameras are used 

to acquire image frames from configuration space as shown in Fig. 36. These acquired 

images are stitched and fused to get one bigger image. After this stage, the object 

detection is performed on this fused image, so that the binary map is obtained. Next 
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step, the path plan is extracted from the binary map with A-APF (Adaptive Artificial 

Potential Field). Then the controller method drives mobile robot throughout this path 

in real time until it reaches to the target position. 

 

Fig. 36. Multi-camera – Computer connection and configuration space 

Acquired path from the stitched image is expressed with the 𝑆௣௔௧௛. This path 

variable contains coordinates of the path which are obtained from the A-APF path 

planning process. In the next stage, 𝑆௣௔௧௛ is divided (4.70) according to each related 

camera viewing area (CVA). The 𝑆௫೛ೌ೟೓
 represents the path fragment under the 

camera 𝑥 (𝐶௫) and it is called sub-path. The 𝑆௣௔௧௛ can be divided to one sub-path, 

several sub-paths or maximum four sub-paths. The 𝑆௣௔௧௛ does not be divided if the 

mobile robot, target are under the same camera and target is reachable from there. The 

divided paths assigned to a path tracking queue (𝑃௧௤) according to the path tracking 

order (𝑃௧௢). For instance, if the 𝑆௣௔௧௛ is pass through 𝐶ଶ and 𝐶ସ then it divided as 

𝑆ଶ೛ೌ೟೓
 and 𝑆ସ೛ೌ೟೓

 and these sub-paths are added to 𝑃௧௤ with 𝑃௧௢ ൌ ሺ2,4ሻ. This means 

that the mobile robot reaches to the target by using 𝐶ଶ and 𝐶ସ cameras. Sub-paths 

have one sub start point (𝑆௫ೄು
) and one sub target point (𝑆௫೅ು

). For instance, the 

mobile robot starts to move from a 𝑆ଶೄು
 towards 𝑆ଶ೅ು

 under the 𝐶ଶ CVA. When it 

reaches to the 𝑆௫೅ು
, its current position is assigned as 𝑆௫ೄು

 of the next path in 𝑃௧௤. 

This iterative process continues until the all sub-paths in 𝑃௧௤ are processed.  

The 𝑆௣௔௧௛ coordinates are distributed to the path hosted CVAs with rescaling 

process by using (4.71). 𝑥௡௘௪ and 𝑦௡௘௪ are the new (𝑥, 𝑦) path coordinates that are 
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desired to calculate in undistorted image space. 𝑋௨௡ௗ and 𝑌௨௡ௗ are the width and 

height of the undistorted image. 𝑥௢௟ௗ and 𝑦௢௟ௗ are the path coordinates in stitched 

image. 𝑋ௗ௜௦ and 𝑌ௗ௜௦ are the width and height of the distorted image. To detect 

whether the robot appeared in the intersection area or not; this area on the path is 

controlled by using (4.72) and (4.73) conditional statements. 𝐼௡௠ is the intersection 

area; it takes 1 or 0 value; 1 value means that robot is in 𝐼௡௠ intersection area. 𝐶௔௖௧ is 

the active camera. If robot is not in the intersection area then 𝐶௔௖௧ is equal to the 

currently working camera (𝐶௣௥௘). 𝐼௔௟௟ represents the intersection area of all four 

cameras. The 𝑡௫೔,௬೔
 is the main target position in 2D image space. If robot is detected 

under 𝐼௔௟௟, then the 𝐶௫, which holds 𝑡௫೔,௬೔
 in its CVA, is activated.      

 𝑆௣௔௧௛ ⇒ 𝑃௧௤ ൌ ቀ𝑆௫ሺଵሻ೛ೌ೟೓
, 𝑆௫ሺଶሻ೛ೌ೟೓

, … ቁ ∧ ∀𝑥ሺ𝑚ሻ ൌ 𝑛, 1 ൑ 𝑛 ൑ 4 ∧ 𝑛 ∈ 𝕫 (4.70)

  𝑥௡௘௪ ൌ
𝑥௢௟ௗ ∗ 𝑋௨௡ௗ

𝑋ௗ௜௦
∧ 𝑦௡௘௪ ൌ

𝑦௢௟ௗ ∗ 𝑌௨௡ௗ

𝑌ௗ௜௦
, ∀ሺ𝑥௢௟ௗ, 𝑦௢௟ௗሻ ∈ 𝑆௣௔௧௛ (4.71)

  𝐼௡௠ ൌ 1 ? 𝐶௔௖௧ ൌ 𝐶௫ ∶ 𝐶௔௖௧ ൌ 𝐶௣௥௘ (4.72)

  𝐼௔௟௟ ൌ 1 ? 𝐶௔௖௧ ൌ 𝐶௡ ⇔ ∃ 𝑡௫೔,௬೔
∈ 𝐶௡ ∶ 𝐶௔௖௧ ൌ 𝐶௣௥௘ (4.73)

The 𝑆௫೛ೌ೟೓
 is tracked according to its path coordinates. Firstly, a sub-target 𝑆௫ೞ೟

 is 

determined in these coordinates according to a pre-defined threshold. In each control 

iteration, the next path coordinate which is after threshold position is assigned to the 

𝑆௫ೞ೟
. In each 𝑆௫೛ೌ೟೓

, 𝑆௫ೞ೟
 starts from threshold position according to 𝑆௫ೄು

 and updated 

continually until 𝑆௫೅ು
 is assigned to 𝑆௫ೞ೟

. When the robot reaches the last 𝑆௫ೞ೟
 the next 

𝐶௫ takeover the tracking process for related 𝑆௫೛ೌ೟೓
. As a result, the motion is modeled 

according to progressively updated 𝑆௫ೞ೟
 sub-target. This process provides smooth 

motion especially in sharp turns in sub-path plan. Fig. 37 illustrates the sub-target 

tracking process. 



57 
 

 

Fig. 37. Sub-path and path tracking under 𝐶௫ 

The entire multi camera-based control process flow is demonstrated in Fig. 38. 

Unlike the single head-camera configuration, designed infrastructure works a bit 

different for multi head-camera configuration. Acquired image frames are stitched 

and object detection is made on this stitched image; so, the binary map of the 

environment is obtained. A path plan is formed on this map. After acquiring the path 

plan, path is divided and distributed to the required regions on the map. The robot is 

tracked with related camera where it is in the field of view. In other words, the 

overhead camera which can cover the robot starts tracking process. The controller 

triggers the motion of mobile robot. When robot move towards to the field of view of 

another camera; firstly, control process is proceeded until robot fully appears in the 

intersection region. According to related camera(s) of this intersection region, the next 

head camera is activated with respect to view field of other camera where the next 

part of extracted path is located. When this second camera is activated, the first 

camera is deactivated instantly. This means that only one camera is activated at a 

time. This process continues until the mobile robot reaches to the main target (𝑡௫೔,௬೔
) 

position. At each intersection point suitable camera take over the tracking process and 

control task is proceeded in this local configuration space. Suitable camera means that 

path is in field of view from last intersection region where robot reaches to the next 

intersection region or target position. The extracted path from whole map can be in 

one or more camera field of view. This situation changes according to target distance, 
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obstacle positions and robot position and direction. In each camera region, the 

controller is executed normally without any additional workload. The controller is 

only stopped or actuated when there is an intermediate or main target. Summary of 

the multi camera-based control system is illustrated in Fig. 39.   

 

Fig. 38. Multi camera-based control process flow of designed system 

 

Fig. 39. Summary of the multi camera-based control system: (I) Simultaneously acquired images 

from all cameras (II) Stitched image (III) Detected obstacles (IV) Extracted path plan between robot 

and target (V) Calculation of controller inputs (VI) Robot implementation 
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5. EXPERIMENTS  

5.1. STAGE-1: Obstacle Free Experiments 

5.1.1. Experiment Configurations 

Velocity of wheels are calculated by processing image frames; the input 

parameters of controller are fluently calculated until the mobile robot arrives to the 

target position in an indoor environment. The distance from starting to the target 

positions is set to 100cm in experiments. The S୫ୟ୶ value is adjusted to ’80 tick/ps’ in 

all experiments. The starting direction (heading) of the WMR is set to two different 

directions; ‘0˚’ and ‘180˚’ according to the position of target. The direction statuses 

are adjusted to test position of simple and extreme conditions in both positioning 

models. Because the angle value between the target and mobile robot changes in the 

range of minimum 0˚ to maximum 180˚, we have selected and used these two angle 

directions.  There are four different conditions for experiments;  

- Distance of 100 cm and angle of 0˚ implementation for the graph-based 

model; it is named as 100_0_G 

- Distance of 100 cm and angle of 180˚ implementation for the graph-based 

model; it is named as 100_180_G 

- Distance of 100 cm and angle of 0˚ implementation for the triangle-based 

model; it is named as 100_0_T 

- Distance of 100 cm and angle of 180˚ implementation for the triangle-based 

model; it is named as 100_180_T 

These four experiment conditions have been implemented three times in the 

configuration spaces. Therefore, 12 experiments have been performed with three 

repeats and the average values of the repeated experiments are computed to obtain 

accurate results for these four experiment conditions. The robot is gradually fitted to a 

smooth trajectory after a period of motion. The obtained information from control 

model processes are stored to hard drive for additional comparisons. 
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5.1.2. Graph Based Control Model  

A. Control Model Experiments  

In Fig. 40 and Fig. 41; the starting positions of the WMR are shown with (a) frame 

and finishing positions are shown with (b) frame. The small frames at the bottom 

demonstrate the robot positions during processing time. It should be said that the 

black line is the power cord shown behind the robot. The 100_0_G experiment is 

given in Fig. 40. The red, green, blue and white labels represent the 𝐷ଵ, 𝐷ଶ, 𝐷ௐ and 

𝐷், respectively. The path trajectory followed by the robot is demonstrated with red 

path in (b) frame. When 𝐷் ൑ 𝐷ௐ െ 30 conditional statement is true, the robot has 

been stopped. The path trajectory has been fluctuated at some sections. These 

fluctuations stem from the unsystematic errors. Preventing them is a challenging 

issue, but the control system successfully manages these errors. The 100_180_G 

experiment is demonstrated in Fig. 41. According to the target position the robot is 

placed in the reverse direction. Trajectory is illustrated with the red path in the (b) 

frame. All initial and final control parameters are given in Table 4. 

 

Fig. 40. (a) Starting position of mobile robot (b) Finishing position of mobile robot        

 

Fig. 41. (a) Starting position of mobile robot (b) Finishing position of mobile robot 
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Table 4. Graph based control model experiments 

Experiment 
Initial (px) Final (px) 

𝐷ଵ 𝐷ଶ 𝐷ௐ 𝐷் 𝐷ଵ 𝐷ଵ 𝐷ௐ 𝐷் 

100_0_G 494 493 73 463 64 80 71 36 

100_180_G 491 489 72 517 75 81 72 41 

B. Control Model Observations 

100_0_G Experiment    

Fig. 42 (a) represents weight changes for the experiment of 100_0_G. The 𝐷ଵ and 

𝐷ଶ parameters approximate to each other in some frames. There are several 

disruptions in distance value by starting 30th frame. The sudden distances disruptions 

stem from irregularity of floor plane or a foreign object on the path. By starting 62nd 

frame, the difference between 𝐷ଵ and 𝐷ଶ increases within several frames. According 

to several experiments, the frame loss causes this parameter differentiation. 

Fig. 42 (b) demonstrates the velocity variations of robot wheels for the 100_0_G 

experiment. The 𝑓  function gives sensitive responses to changing in distance until 

the 55th frame. The WMR has been tried to be kept in the path trajectory, continually. 

The deviation from the target may be caused by irregularity of the floor. The velocity 

variables are stable after that point.  

The 77 images are processed in 9.08s. So, 8.480 image frames per second are 

achieved and it takes 0.117s to be processed for each image frame. If storing and 

displaying is inactive for this experiment; then 14.745 images per second are 

achieved. These performance rates are admissible for a real time VBC system. 

 

Fig. 42. (a) Distance changes of mobile robot (b) Velocity changes of mobile robot 
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100_180_G Experiment    

Fig. 43 (a) represents weight changes for the experiment of 100_180_G. The 

parameters 𝐷ଵ and 𝐷ଶ are nearly equal in some image frames as from the starting 

position. The difference between 𝐷ଵ and 𝐷ଶ parameters increases until the direction of 

robot has 90˚ or below value according to the target position after several frames. 

That motion behavior proceeds to the 20th frame, after this frame; these two-distance 

values approach to each other. The 𝐷ௐ value changes between 71px and 74px and its 

average is 72px. The 𝐷் declines stably until the 𝐷ௐ െ 30 condition is satisfied.   

Fig. 43 (b) shows velocity variations of the robot wheels for the 100_180_G 

experiment. The 𝑆ோ has drastically increased and the 𝑆௅ has drastically decreased at 

19th frame. The 𝑆௅ is amplified and 𝑆ோ is minified until the direction of robot fits to 

the linear path trajectory towards the target after several frames. The 𝑆௅ and 𝑆ோ have 

changed with low rates suddenly at some points until the last image frame. This 

means that controller has tried to keep the WMR in the path trajectory. 

The 86 images are processed in 10.06s. Therefore, 8.548 image frames per second 

are achieved and it takes 0.116s to be processed for each image frame. If storing and 

displaying is inactive for this experiment; then 14.915 images per second can be 

processed with the system.      

 

Fig. 43. (a) Distance changes of mobile robot (b) Velocity changes of mobile robot 

5.1.3. Triangle Based Control Model 

A. Control Model Experiments 

In Fig. 44 and Fig. 45; starting positions of the robot are shown with (a) frame and 

finishing positions are demonstrated with (b) frame. The 100_0_T experiment is 
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demonstrated in Fig. 44. The blue, green, red and black labels represent the 𝐴௅, 𝐴ோ, 

𝐴் and total angle in (a) frame, respectively. The red path represents the trajectory in 

(b) frame. When 𝐴் ൐ൌ 60 condition is met, the robot motion has been stopped. The 

path trajectory is emerged almost linearly. The path has been disturbed at some 

points. The main reasons behind these fluctuations are touched in previous section., 

The 100_180_T experiment is given in Fig. 45. It implies that according to the target 

position the robot is placed in the reverse direction. All initial and final values are 

presented in Table 5. 

 

Fig. 44. (a) Starting position of mobile robot (b) Finishing position of mobile robot 

 

Fig. 45. Starting position of mobile robot (b) Finishing position of mobile robot 

Table 5. Triangle based control model experiments 

Experiment 
Initial (px) Final (px) 

𝐴௅ 𝐴ோ 𝐴் 𝐴௅ 𝐴ோ 𝐴் 

100_0_T 87.32˚ 84.19˚ 8.49˚ 57.26˚ 61.37˚ 61.37˚ 

100_180_T 86.61˚ 85.02˚ 8.37˚ 54.98˚ 57.66˚ 67.36˚ 
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B. Control Model Observations 

100_0_T Experiment    

Fig. 46 (a) demonstrates angle changes for 100_0_T experiment. The 𝐴௅ and 𝐴ோ 

are approximate to each other in several image frames. There are sudden fluctuations 

in distance value by starting from the 10th frame. If these angle variations are too big, 

then according to the observations the main reason is several frames loss. The values 

approximate to each other with small rate of differences by starting the 64th frame. 

When 𝐴் is equal or greater than 60°, the WMR has been stopped.  

Fig. 46 (b) shows changes in velocity of robot wheels for the 100_0_T experiment. 

The 𝑓  function exhibits sensitive responses to angle variations. The WMR has been 

precisely tried to be kept in path trajectory towards the position of target. The floor 

irregularity may give rise to a deflection from the target. But the velocity values are 

stable except several frame points.  

The 77 images are processed in 10.84s. It signifies that 7.103 images per second 

are processed and it takes 0.140s to be processed for each image frame. If storing and 

displaying is inactive for this experiment; then 12.236 images per second can be 

processed with the system. 

 

Fig. 46. (a) Angle changes of mobile robot (b) Velocity changes of mobile robot 

100_180_T Experiment    

Fig. 47 (a) represents angle variations for the 100_180_T experiment. The 

parameters 𝐴௅ and 𝐴ோ values are almost equal in several frames. After several frames, 

the difference between 𝐴௅ and 𝐴ோ increases until the robot direction has 90˚ or small 

value according to the target position. That motion characteristic proceeds to the 22nd 
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frame. These two angle parameters approach to each other after this frame. The 𝐴் 

parameter decreases to ‘0’ value until the 22nd frame. In later frames, the 𝐴் increases 

consistently to the 𝐴் ൒ 60 threshold limit.  

Fig. 47 (b) demonstrates changes in velocity of robot wheels for the 100_180_T 

experiment. The robot performs a rotation motion until 22nd frame where the direction 

of robot decreases below the 90˚. The 𝑆ோ has increased drastically, the 𝑆௅ has 

decreased drastically at this frame. The 𝑆௅ is amplified and 𝑆ோ is minified until the 

direction of robot fit to the linear path trajectory towards the target position after 

several frames. The 𝑆௅ and 𝑆ோ parameters have changed with small rates in following 

frames. It means that the controller has tried to keep the robot in fitted path trajectory. 

The 92 images are processed in 12.54s. This means that 7.336 images per second 

are processed and it takes 0.136s to be processed for each image frame. If storing and 

displaying is inactive for this experiment, then 12.941 images per second can be 

processed with the system. 

 

Fig. 47. (a) Angle changes of mobile robot (b) Velocity changes of mobile robot 

5.1.4. Additional Experiments 

Four additional experiments are conducted except from previous experiments. Two 

distinct directions as 45˚ and 90˚ have been experimented. They are the starting robot 

directions. These experiments are shown in Fig. 48 and Fig. 49 for triangle and graph-

based positioning models, respectively. The (a1-a2) demonstrates the initial positions 

and (b1-b2) demonstrates the final positions for the robot in both experiments. The 

robot has been arrived to the target successfully by the developed controller in both 

directions. The experiment details are only exhibited as table results. The name 

additional experiments are coded in the same way as the previous experiments. 



66 
 

 

Fig. 48. (a1-a2) Starting and (b1-b2) Finishing position of mobile robot 

 

 

Fig. 49. (a1-a2) Starting and (b1-b2) Finishing position of mobile robot 

5.1.5. Comparison of Controller Models 

Average experiment results are given in Table 6, Table 7, Table 8 and Table 9. 

“Total frame” are processed frames from initial to the final position. The “FPS” is 

frames processed per second. The “Elapsed time” is total time that is emerged due to 

the control process. The “P. Cost rate” represents the path cost rate that is the 

difference of percentile rates between the cost of the shortest path and the physical 

path. The “Energy Cons.” represents to rate of consumption for energy. We have 

performed two non-visual control models to manage the WMR. These commonly 

known control models are PID and Fuzzy-PID. The default parameters are used in 

both controllers. It is aimed to see the performance and efficiency issues by 

comparing both visual and non-visual controllers.  

Table 6. ‘0’ degree experiments for controllers 

Experiment 
Total 

Frame 
FPS* 

Elapsed 
Time** 

P. Cost 
Rate 

Energy 
Cons. 

100_0_G 77 8.480 9.08s 0.891% 1.12% 
100_0_T 77 7.103 10.84s 0.822% 1.35% 
PID - - 13.11s 3.283% 2.82% 
FUZZY-PID - - 11.93s 2.037% 2.51% 

Table 7. ‘180’ degree experiments for controllers 

Experiment 
Total 

Frame 
FPS* 

Elapsed 
Time** 

P. Cost 
Rate 

Energy 
Cons. 

100_180_G 86 8.548 10.06s 5.760% 1.47% 
100_180_T 92 7.336 12.54s 7.348% 1.84% 

PID - - 16.34s 10.783% 3.46% 
FUZZY-PID - - 15.56s 9.545% 3.29% 
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Table 8. ‘45’ degree experiments for controllers 

Experiment 
Total 

Frame 
FPS* 

Elapsed 
Time** 

P. Cost 
Rate 

Energy 
Cons. 

100_45_G 77 8.521 9.03s 2.708% 1.28% 
100_45_T 75 7.217 10.39s 3.324% 1.52% 
PID - - 14.05s 5.013% 3.16% 
FUZZY-PID - - 13.44s 4.222% 3.08% 

Table 9. ‘90’ degree experiments for controllers 

Experiment 
Total 

Frame 
FPS* 

Elapsed 
Time** 

P. Cost 
Rate 

Energy 
Cons. 

100_90_G 75 8.528 8.79s 3.980% 1.22% 
100_90_T 76 7.292 10.42s 5.832% 1.63% 
PID - - 14.79s 7.425% 3.32% 
FUZZY-PID - - 14.02s 6.004 % 3.17% 

It can be expressed that the graph-based model has better performance than the 

triangle-based model and non-visual models in aspect of time. It primarily stems from 

excessive computation processes in triangle-based model. Since calculation of degree 

values of angles are more complex. Moreover, the triangle-based model has better 

cost values in the experiments of ‘100_0_X˚’ compare to others. However, situation 

in the experiments of ‘100_180_X’ is exact opposite; graph-based model minimizes 

the cost more feasibly. The major reason is the simple structure of the graph model. 

The path cost rate of proposed method is discovered less than the conventional 

methods. In terms of the energy efficiency proposed method is better than other 

methods. It should be emphasized that the designed methods are superior to the 

conventional methods and in terms of efficiency and cost. 

Table 10 shows the frame loss in experiments. Main reason of the loss is high 

level illumination changes. Average frame loss rate has occurred as 1.26%. By 

designing more efficient image processing methods detection, the performance rate 

can be improved to the better levels. For example; machine learning methods like 

ELM, deep learning and other artificial intelligence methods ensure better recognition 

process compare to primitive methods like shape or color-based detection approaches. 

Table 10. Frame loss rates in control process 

Experiment Average 
Frame 

Average 
FPS* 

Frame Loss 

100_0_G/T 77 7.791 1 –  (1.30%) 
100_180_G/T 89 7.942 2 – (2.25%) 
100_45_G/T 76 7.869 1 – (1.32%) 
100_90_G/T 75.5 7.910 0 – (0.00%) 
Average 79.375 7.878 1 – (1.26%) 
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5.2. STAGE-2: Path Planning Experiments 

Experiments have been conducted as both simulation and real-world 

implementation. Firstly, a configuration space map with position parameters are 

acquired by processing image of real working environment. Then A-APF simulation 

has been performed this obtained map and a path plan is extracted. Acquired plan is 

used to perform WMR motion with decision tree controller in the path trajectory. 

There are three different configuration spaces in experiments. For each configuration, 

initial movement direction of WMR is set to ‘0௢’ and ‘180௢’ relative to the position 

of target. These both directions are selected to see the effect of simple and extreme 

position conditions. The WMR is located to 110 cm away from the target.     

5.2.1. Configuration-1 

A. Experiment Conf-1_0 

WMR has been positioned towards to the target position approximately with 0௢ 

value. Obstacles have been distributed randomly. Simulation result is demonstrated in 

Fig. 50. The robot has reached to the target successfully and it takes about 5.692s. 

Extracted path seems to be safe and efficient. There are several little fluctuations in 

path, but in fact, they have no remarkable effect on cost. Distance data and potential 

force changes have been shown in Fig. 51. When distance data shows balanced 

changes, potential forces have also settled down. Real experiment has taken about 

19.762s and it has been demonstrated in Fig. 52. Angle and velocity changes have 

been given in Fig. 53. Because of velocity is affected by angle values, output of the 

velocity has demonstrated similar pattern to the angle changes. 

 

Fig. 50. Simulation result of experiment Conf-1_0 
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Fig. 51. (a) Sensor data vs. (b) Potential forces 

 

Fig. 52. Real implementation of experiment Conf-1_0 

 

Fig. 53. (a) Angle change vs. (b) Velocity change 

B. Experiment Conf-1_180 

WMR has been positioned contrary to the target position approximately with 180௢ 

value by previous configuration. The simulation result is demonstrated in Fig. 54. The 

robot has successfully reached to the target position and it takes about 6.748s. The 

path has been created safely and efficiently. The acquired distance data and potential 

force changes have been shown in Fig. 55. As the robot approaches to the obstacle, 

rapid changes have occurred in potential forces. Real experiment takes 23.799s and it 

has been demonstrated in Fig. 56. Angle and velocity changes have been given in Fig. 
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57. Because of velocity is affected by angle values, output of the velocity has 

demonstrated similar pattern to the angle changes. 

 

Fig. 54. Simulation result of experiment Conf-1_180 

 

Fig. 55. (a) Sensor data vs. (b) Potential forces 

 

Fig. 56. Real implementation of experiment Conf-1_180 

 

Fig. 57. (a) Angle change vs. (b) Velocity change 
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5.2.2. Configuration-2 

A. Experiment Conf-2_0 

WMR has been positioned towards to the target position approximately 0௢ with a 

single obstacle configuration. Simulation result is demonstrated in Fig. 58. The robot 

has reached to the target and it takes about 6.508s. The path has been formed safely 

and efficiently. The distance data and potential force changes have been shown in Fig. 

59. Potential field have created major forces when moving object approximate to an 

obstacle. After 24th frame potential forces have exhibited more stable patterns. Real 

implementation takes about 26.104s and it has been demonstrated in Fig. 60. Angle 

and velocity changes have been shown in Fig. 61. There is an unexpected angle 

output and velocity response in 44th frame. This momentary change stems from a 

miscalculated centroid due to high amplitude of light variation. 

 

Fig. 58. Simulation result of experiment Conf-2_0 

 

Fig. 59. (a) Sensor data vs. (b) Potential forces 
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Fig. 60. Real implementation of experiment Conf-2_0 

 

Fig. 61. (a) Angle change vs. (b) Velocity change 

B. Experiment Conf-2_180 

WMR has been positioned contrary to the target position approximately by 180௢ 

with previous configuration. Simulation outcome is demonstrated in Fig. 62. The 

robot has reached to the target position and it takes about 7.725s. The path has been 

emerged as safe and efficient. The distance and potential force changes have been 

given in Fig. 63. Potential field have generated large forces when the moving object 

approximate to an obstacle. Stable patterns have been achieved by starting 42nd frame 

for potential forces. Real implementation takes about 29.520s and it has been given in 

Fig. 64. Angle and velocity changes have been shown in Fig. 65. As implied before, 

output pattern of velocity is similar to the output of angle variations.  

 

Fig. 62. Simulation result of experiment Conf-2_180 
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Fig. 63. (a) Sensor data vs. (b) Potential forces 

 

Fig. 64. Real implementation of experiment Conf-2_180 

 

Fig. 65. (a) Angle change vs. (b) Velocity change 

5.2.3. Configuration-3 

A. Experiment Conf-3_0 

WMR has been positioned towards to the target position approximately with 0௢ 

value. The ‘U’ shaped obstacle has been placed to space. After performing obstacle 

detection, convex-hull method is used to transform concave object to convex object. 

The simulation result is demonstrated in Fig. 66. The robot has arrived to the target 

successfully and it takes about 8.283s. The extracted path is safe and efficient. The 

distance data and potential force changes have been shown in Fig. 67. Real 

experiment takes about 32.664s and it has been demonstrated in Fig. 68. Although 
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simulated path is safe, there is a risky approximation to the obstacle in real 

implementation. The angle and velocity changes have been given in Fig. 69.  

 

Fig. 66. Simulation result of experiment Conf-3_0 

 

Fig. 67. (a) Sensor data vs. (b) Potential forces 

 

Fig. 68. Real implementation of experiment Conf-3_0 

 

Fig. 69. (a) Angle change vs. (b) Velocity change 



75 
 

B. Experiment Conf-3_180 

WMR has been positioned contrary to the target position approximately by 180௢ 

value with previous configuration. Similarly, convex-hull method is used to convert 

concave object to convex object with minimum edge boundaries. Simulation result is 

demonstrated in Fig. 70. The robot has arrived to the target position successfully and 

it takes about 9.566s. The path is extracted safely and efficiently. The distance data 

and potential force changes have been given in Fig. 71. Real implementation takes 

about 34.895s and it has been shown in Fig. 72. The previously mentioned risky 

approach to the obstacle is eliminated by using object dilation. By this way path 

safety is increased. Angle and velocity changes have been given in Fig. 73. 

 

Fig. 70. Simulation result of experiment Conf-3_180 

 

Fig. 71. (a) Sensor data vs. (b) Potential forces 
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Fig. 72. Real implementation of experiment Conf-3_180 

 

Fig. 73. (a) Angle change vs. (b) Velocity change 

5.2.4. Experiment Comparisons 

The experiments have been repeated three times for each configuration. Average 

values of these experiments data are given in Table 11. If the configuration 

complexity has been increased for potential fields, arriving time to the target has also 

increased in both simulation and implementation, generally. Similarly, path cost has 

also increased by depending on complexity of configuration space. When the robot is 

positioned contrary to the target position, the path cost is expected to increasing. In 

Conf-1 experiment path cost did not remarkably change. In Conf-2 experiment, path 

cost is increased with contrary direction. However, in Conf-3 experiment path cost 

decreased with contrary direction; this is because, sometimes turning around to the 

target help decreasing the path cost. Since, the WMR did not go toward the middle of 

obstacle directly. On the other hand, the implementation path cost is always less than 

simulation path cost for all experiments. Because, the decision tree controller drives 

WMR to the continually updated positions of middle-targets (or local targets) by 

minimizing the errors. It smooths sharp turns stemming from APF path planning. In 

other words, the local solutions give better results than global solutions. By this way, 

path cost has decreased. The simulation speed is set to larger than implementation 
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speed. Because we want to extract path plan as fast as possible. Average path cost 

gain actualized about 11.335%. 

Table 11. Simulation and Real Implementation Comparison 

Experiment 

Configuration 

Simulation 

Time 

Implementation 

Time 

Simulation Path 

Cost (px) 

Implementation 

Path Cost (px) 

Conf-1_000 5.692s 19.762s 486.268 442.356 

Conf-1_180 6.748s 23.799s 485.874 439.145 

Conf-2_000 6.508s 26.104s 619.761 548.210 

Conf-2_180 7.725s 29.520s 644.236 562.661 

Conf-3_000 8.283s 32.664s 753.703 656.506 

Conf-3_180 9.566s 34.895s 730.276 640.700 

5.2.5. General Observations 

The path plan has extracted with a simple adaptive APF. The decision tree-based 

control has been successfully operated in different configuration spaces. The control 

method does not produce any remarkable bottleneck to entire control process. The 

robot has accurately arrived to the target position for each configuration. As the robot 

approaches to an obstacle, distance values measured around the robot are decreased, 

so the potential forces give sensitive responses. Potential forces have stabilized as 

WMR move away from the obstacle. Eventually, path plan is extracted with A-APF 

method successfully. Method success has been investigated under different 

circumstances like obstacle positions, variable ambient light. After gaining a suitable 

path from initial position to the target position, this path has been given to the real-

time control process as trajectory input. Decision tree-based controller successfully 

manages the WMR with acquired obstacle-free path plan in real-time. Angle values 

have been correctly calculated. Therefore, velocity have been acquired smoothly in 

each control iteration.   

5.3. STAGE- 3: Multi-Camera Experiments 

5.3.1. Experiment Configurations 

Multi-camera experiment has been performed with four webcam cameras. In single 

camera tests, a single CCD camera is used as emphasized before. The CCD camera 

provides more color depth compare to webcam, but it is very expensive. Therefore, 

this cost is needed to be reduced for a multi-camera configuration. On the other hand, 

webcams are easy to use, platform independent in terms of software and hardware, 
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adaptable to any environment with proper configuration. Of course, the CCD cameras 

have their specific advantages. However, such properties do not be required for this 

WMR control configuration.  

Each webcam is adjusted to SVGA resolution. Cameras have been hanged to the 

ceiling in a way that their lenses have been located as perpendicular to the floor with 

aluminum support profiles. Cameras have been placed about 210cm from the floor. 

According to this camera position each camera covers about 3.05 m2, so in total 

approximately 12.20 m2 area should be processed for this configuration.  It should be 

noted that all the webcams are same models and they have same specifications. Each 

camera is connected to the computer through USB 2.0 ports, separately. This physical 

configuration has been demonstrated in Fig. 74.    

 

Fig. 74. Real multi-camera based WMR control operating environment 

Several different colored and shaped labels have been placed to the floor as 

distinctive properties for SURF detector. Because the SURF detector searches and 

locates similar properties according to given input image. The size and color of shapes 

have been randomly determined. The only important factor is position of these labels. 

Each camera covers a single plain area including two axes labels according to camera 

position as shown in Fig. 75.  
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Fig. 75. Colored and randomly shaped labels on the operating floor 

The webcams (Logitech C920) used for multi-camera configuration is shown in 

Fig. 76. They are attached to aluminum profiles with plastic clips. It has 3.2MP 

maximum video resolution and 15MP image resolution. However, SVGA (800x600) 

is used for visual servoing task. Therefore, even more basic webcams will be enough 

to deal with the indicated resolution.    

 

Fig. 76. The webcam used to perform multi-camera configuration 
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Camera positions have been shown in Fig. 77. IDs are given as C1, C2, C3 and C4 

to the cameras respectively. Camera viewing area is indicated with blurred area for 

C1. C1-X and C1-Y are the length and height of rectangular C1 camera viewing area 

(CVA).  Other cameras have similar viewing areas according to their positions. The 

blue and red areas represent the common intersection areas for two webcams. The 

middle square area represents intersection area of four webcams. Black lines represent 

guidelines.   

 

Fig. 77. Camera positions and camera intersection areas 

5.3.2. Multi-Camera Experiment with Conf-1 

Images taken from the cameras from bird’s eye view configuration are shown in 

Fig. 78. The grayish areas on the left or right edges in the images are real floor texture 

of the experiment environment. The utilized mobile robot steering wheels are quite 

thin and ball caster wheels are small. Therefore, plastic based yellow layer is used to 

prevent wheel jamming to suture area of the floor tiles.     

 

Fig. 78. Real areas covered and acquired by the cameras   

The stitched images are demonstrated in Fig. 79 as the first configuration (Conf-1). 

Images are simply superimposed and re-scaled. To increase accuracy of SURF 

detector, colored labels are used. Eventually, images are stitched to each other 

successfully. The brown colored objects represent the obstacles. Robot is under the 𝐶ସ 

camera CVA and the target is placed under the 𝐶ଵ. It can be seen that there is different 

level of shadowing in the images taken from the cameras. Because of such 

differences, several negligible inconsistencies in stitched objects have emerged. They 
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are negligible; since, all these errors are too small to be effective on path planning and 

visual servoing tasks.       

 

Fig. 79. The stitched image to acquire Configuration-1 (Conf-1) 

After acquiring stitched environment, obstacle detection task is executed as in 

single camera configuration, Fig. 80. The obstacles are detected and the environment 

is converted to binary map. This process is performed by assigning ‘1’ to the 

obstacles and assigning ‘0’ to the remaining area. This task is known as ‘Binary 

Image Acquisition’. The robot and target positions are also detected and stored. To 

increase safety, the object dilation is used to re-scale detected obstacles.     

 

Fig. 80. Obstacle map acquired from the stitched image  
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Adaptive artificial potential field (A-APF) method is performed the path planning 

process on acquired map. The extracted path has crossed on three cameras. The 𝑃௧௤ ൌ

ሺ𝐶ସ, 𝐶ଶ, 𝐶ଵሻ and 192 image frames have been processed. Therefore, 192 different 

position sampling has been taken on the acquired path. These positions are used to 

implement visual based control process with designed controllers. Simulation takes 

about 11.2s, so 17.142 frames per second is obtained. The simulation path cost is 

found as 1037.53px. The Gaussian controller with triangle positioning scheme is 

manage the robot to approach to the target position, successfully. The next suitable 

position is calculated in each iteration. In Fig. 81, the formed path by A-APF is given.  

  

Fig. 81. Simulation path with A-APF 

Attractive potential field (A-PF), repulsive potential field (R-PF) and total potential 

field (T-PF) force values against number of processed image frames are given in Fig. 

82. A-PF force increases at several frames from the starting, then it decreases until the 

target position is reached. On the other hand, R-PF forces show changing pattern until 

the assigned task is completed. T-PF forces is formed by combining attractive and 

repulsive forces. As it can be seen, total forces are quite similar to the opposite 

direction values of the A-PF forces.     
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Fig. 82. Potential force change 

The changes of attractive and repulsive gain values (aps = ζ and rps = η) are given 

in Fig. 83. The ‘aps’ increases for a while from the start point, then it decreases with 

small rates as iteration continues. The ‘rps’ increases aggressively at first, then it 

decreases almost vertically to a point. It approaches near stabilize state with a little 

fluctuation until the end of the simulation. On the other hand, potential calculating 

order shows small changes and minimum calculating order shows no-changes.    

 

Fig. 83. Potential scaling factors change 

Real implementation frames under 𝐶ସ are given in Fig. 84. The ‘f1, f2 … f8’ 

frames show different robot positions at different times. In Fig. 85, the C2-s, C2-f and 

C1s, C1-f represent the starting and final position under 𝐶ଶ and 𝐶ଵ, respectively. The 

simulated and real paths are given in Fig. 85 as well. The 153 frames are processed in 

total (with all sub-paths in 𝑃௧௤). Moreover, 14.57 FPS is achieved with 10.5s time for 

Conf-1. Only one-third of the total frames are stored to keep performance stable. 
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Fig. 84. Sample frames from visual based control task under C4 camera 

 

Fig. 85. (I) Robot positions under C2 and C1 cameras (II) Simulation and Real paths 

Acquired path plan has been used as reference path which have to be followed by 

the mobile robot. The robot is triggered to make motions according to reference path 

in real time. 𝐴ோ, 𝐴௅ and 𝐴் values are calculated as 73.81o, 69.19o and 37.0o 

respectively according to the intermediate target at the first starting frame. These 

values are calculated as 59.29o, 61.41o and 59.29o respectively at the end of the 

control task. Robot has successfully reached to the pre-defined target about 10.5s. 

Starting and finishing positions of the mobile robot is given in Fig. 86. 

 

Fig. 86. (a) Starting position and (b) finishing position of the mobile robot 
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Sample frames from the visual control process in the whole working environment 

are given in Fig. 87. The ‘f1, f2 … f8’ frames demonstrate different robot positions at 

different times.   

 

Fig. 87. Sample frames from visual based control task 

The path created by robot motions are given in following Fig. 88. The controller 

has tried to kept the mobile robot on acquired path through the control process. The 

distance of path created by robot motions until to the target position is emerged a little 

smaller than the distance of simulation path. Main reason behind this situation is the 

dynamically changed local targets used to track the simulation path.  Local target is 

extracted from simulation path within a pre-defined threshold value and it is 

periodically updated until reaching to the main/final target. In this way, the controller 

generally smooths sharp turns.  

 

Fig. 88. Simulated path and starting position of robot 
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The path and robot motions from selected frames are demonstrated in Fig. 89. 

Except from starting and finishing positions of robot, several additional intermediate 

positions have been given. Eventually, the mobile robot has smoothly tracked the 

input path. There may be some error between simulation and real path. However, this 

error is so small in terms of path cost, so it is negligible.    

 

Fig. 89. Simulation path and mobile robot motions 

The real path formed by the mobile robot has been given in Fig. 90. As it seen, the 

distance of real path is emerged a little smaller than the simulation path. Its length is 

found about 995.16px. Therefore, there is only 4% difference between paths.    

 

Fig. 90. Simulation path (red) and Real path (blue) 
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The angle value changes of the control points (mobile robot wheels) and target are 

given in Fig. 91. The local target point is controlled in each iteration and if it is 

required, this target position is updated. The angle changes have dramatically 

increased when the mobile robot starts to perform turning motions. At the end of the 

control process 𝐴், 𝐴௅ and 𝐴ோ angle values approach to the each other very closely. 

This means that the robot gradually approaches to the target position.  

 

Fig. 91. Angle changes of control points 

Velocity changes of the left and right wheels are given in Fig. 92. The changes in 

velocity values look like the changes in 𝐴௅ and 𝐴ோ angle values with different 

magnitude. The main reason is that the angle values directly affect the velocity values 

of mobile robot wheels. Both the angle and velocity value changes are a bit jagged. 

This is because; sensitivity of the controller and storing of selected sample frames to 

the disk.   

 

Fig. 92. Left and Right velocity changes of WMR wheels 
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5.3.3. Additional Experiments with Different Configurations (Conf-2/3) 

Experiments have been performed on two different operating environment 

configurations beside the previous configuration (Conf-1). The experiment 

environment and acquired path plan with A-APF method is given in Fig. 93 for Conf-

2 and Fig. 94 for Conf-3. In each configuration, the object dilation to the obstacles has 

been implemented to increase path safety. Only the acquired paths and numerical 

results have been given in these experiments. 

 

Fig. 93. (I) Configuration-2 (Conf-2) and (II) simulated path plan 

 

Fig. 94. (I) Configuration-3 (Conf-3) and (II) simulated path plan 

The mobile robot has successfully reached to the pre-defined target under 

configurations with different obstacle alignments in simulation experiments.  In each 

configuration images taken from camera can be superimposed differently. The 

important principle is the fusing common intersection areas with a high degree of 

precision. The starting and finishing positions with angle values by the mobile robot 

are given in Fig. 95 for Conf-2 and Fig. 96 for Conf-3. In Conf-1, the WMR has 

started with 𝐴் ൌ 14.94°, 𝐴௅ ൌ 142.30° and 𝐴ோ ൌ 22.76° and reached to the target 

with 𝐴் ൌ 57.34°, 𝐴௅ ൌ 61.33° and 𝐴ோ ൌ 61.33° angle values. On the other hand, in 
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Conf-2, the WMR has started with 𝐴் ൌ 32.47°, 𝐴௅ ൌ 65.88° and 𝐴ோ ൌ 81.65° and 

reached to the target with 𝐴் ൌ 57.03°, 𝐴௅ ൌ 55.80° and 𝐴ோ ൌ 67.17° angle values.   

 

Fig. 95. (I) starting position and (II) finishing position for Conf-2 

 

Fig. 96. (I) starting position and (II) finishing position for Conf-3 

The formed path by the mobile robot from starting position to finishing position is 

given in Fig. 97. In each configuration the object dilation to the obstacles has been 

applied to increase path safety.  

 

Fig. 97. (I) path formed in Conf-2 (II) path formed in Conf-3 

Acquired time and path cost values are given in Table 12. Except the first 

experiment (Conf-1) simulation is performed faster. The real path cost is generally 
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smaller than simulation path costs. The average difference between simulation and 

real path costs has emerged about 3.656% for all experiments. Both simulation and 

real paths are not the best paths in terms of cost and safety. However, it can be said 

that acquired paths are close to the best solution and provides feasible balance 

between the cost and safety. 

Table 12. Acquired time and cost values for different configurations 

Experiment 
Simulation 

Time (s) 

Implementation 

Time (s) 

Simulation Path 

Cost (px) 

Real Path Cost 

(px) 

Conf-1 11.2 10.5 1037.53 995.16 

Conf-2 11.4 11.9 1088.65 1055.42 

Conf-3 12.5 13.8 1143.08 1099.27 

 

5.3.4. General Observations 

Multi-camera configuration has some advantages and disadvantages. Advantage is 

that the sensor-in-device (or eye-in-device) hardware are not needed. Therefore, cost 

of the system can be reduced. Second advantage is that working space can be enlarged 

with additional cameras. Third advantage is that all the robots can be controlled from 

one system (actually system may be saturated to an upper limit). Disadvantage of the 

designed system is that it can be only established for indoor environment. The number 

of required cameras may be high for large interior environments. So, the flexibility of 

the system will reduce. To overcome this problem, according to applying area, focal 

length and resolution of cameras and light intensity have to be tested and adjusted.   

Image stitching is a time-consuming task, but this task only performed once for 

every mobile robot control task. The illumination and shadowing can also be the 

problematic issues for multi-camera configuration. Although all the cameras have 

same specifications and have been placed to the same height, images taken from these 

cameras can have different level of shadowing and illumination.  Therefore, these two 

problems should be focused further in eye-out-device robot control systems.  

On the other hand, the control process can be done without image stitching task 

under multi-camera configuration. This process can be done by modeling intersection 

areas as middle-target points. The mobile robot can progressively reach its final 

position by using these middle targets as starting/finishing positions.   
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5.3.5. Experiments without Image Stitching (Conf-1)  

Multi-camera images have been stitched in previous experiments. It provides 

accurate results but it is a time-consuming task. Since, before performing the control 

process all images are stitched by utilizing SURF detector. Then path is extracted 

from this whole image. The acquired path positions are distributed according to the 

camera coverage area where the WMR will appear. For instance, two cameras may be 

enough to deliver the mobile robot to the desired target position. Acquired images 

from the cameras are demonstrated in Fig. 98. It is shown that the mobile robot is 

initially positioned under the C4 camera and main target is fixedly positioned under 

the C1 camera. The configuration space is the same space used in the first image 

stitching based multi camera experiment.   

 

Fig. 98. Real acquired areas covered by the cameras 

This time images are not stitched. Each of the camera images are considered local 

maps that includes local initial and target positions. Local target is determined 

according to the most suitable intersection area which is closest to the main target and 

has enough space for WMR. When the WMR reaches to the local target position in 

first camera coverage area where it resides, this local target point is assigned as initial 

position for WMR in next camera which closest to the main target position.  

The local target determination process is illustrated in the following Fig. 99. The 

direction information is determined relative to the target and initial positions of the 

mobile robot. Therefore, it can be said that the main target is in NW (North-West) 

direction. 
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Fig. 99. Obstacle-free intersection regions for a camera (C4) 

After determining the directional information, the closest intersection area to this 

direction is identified by using distance information to the target as well. In this case 

the closest intersection area to the main target is I1. Then the robot motion is triggered 

towards to I1 intersection area. The local target is assigned to upmost middle point in 

this area because of location of intersection area. Aim of selecting the upmost position 

of the intersection area (local target) is that providing the robot remains in the 

boundary of the intersection area. On the other hand, aim of the middle position of the 

point is that to provide a balanced distance between obstacles. The exact position of 

the local target may change according to the location of intersection area. Therefore, it 

may be leftmost, rightmost, lowermost and uppermost. However middle position is 

selected vertically or horizontally. It should be remembered that C1-C3 and C2-C4 

intersection areas are horizontal and C1-C2 and C3-C4 intersection areas are vertical. 

Intersection areas have been shown with red rounded rectangles in Fig. 99.  

The default robot position and path simulation under C4 camera is given in Fig. 

100 (I) and (II), respectively. The selected f1, f2, … , f8 frames showing robot positions 

and angles from initial to the final position in Fig. 101. The WMR has reached to the 

defined position about 4.24s in 46 frames. So, it can be said that 10.80 frames per 

second are processed while storing and displaying data tasks are activated. 𝐴௅, 𝐴ோ and 

𝐴் angle changes and velocity of wheels during the control process are graphically 
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demonstrated in Fig. 102. The formed paths by simulation (blue) and real robot (red) 

are shown in Fig. 103. The path length is found as 442.51px in total for simulation 

and 423.45px in total for real experiment.   

 

Fig. 100. (I) Camera 4 (C4) coverage area (II) Simulated path under C4 

 

Fig. 101. Selected instance frames showing robot positions and angles 

 

Fig. 102. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels 
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Fig. 103. Simulation path (blue) and Real path (red) 

The default robot position and path simulation under C2 camera is given in Fig. 

104. The selected f1, f2, … , f8 frames showing robot positions and angles from initial 

to the final position in Fig. 105. The WMR has reached to the defined position about 

2.12s in 26 frames. So, it can be said that 12,26 frames per second are processed while 

storing and displaying data tasks are activated. 𝐴௅, 𝐴ோ and 𝐴் angle changes and 

velocity of wheels during the control process are graphically demonstrated in Fig. 

106. The formed paths by simulation (blue) and real robot (red) are shown in Fig. 107. 

The path length is found as 283.34px in total for simulation and 271.18px in total for 

real experiment. 

 

Fig. 104. (I) Camera 2 (C2) coverage area (II) Simulated path under C2 
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Fig. 105. Selected instance frames showing robot positions and angles 

 

Fig. 106. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels 

 

Fig. 107. Simulation path (blue) and Real path (red) 

The default robot position and path simulation under C1 camera is given in Fig. 

108. The selected f1, f2, … , f8 frames showing robot positions and angles from initial 

to the final position in Fig. 109. The WMR has reached to the defined position about 

3.62s in 42 frames. So, it can be said that 11,60 frames per second are processed while 

storing and displaying data tasks are activated. 𝐴௅, 𝐴ோ and 𝐴் angle changes and 

velocity of wheels during the control process are graphically demonstrated in Fig. 

110. The formed paths by simulation (blue) and real robot (red) are shown in Fig. 111. 
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The path length is found as 354.19px in total for simulation and 332.83px in total for 

real experiment. 

 

Fig. 108. (I) Camera 1 (C1) coverage area (II) Simulated path under C1 

 

Fig. 109. Selected instance frames showing robot positions and angles 

 

Fig. 110. (I) Angle changes of WMR control points (II) Velocity changes of WMR wheels 
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Fig. 111. Simulation path (blue) and Real path (red) 

The experiment results have been summarized in Table 13. According to the 

obstacle alignment and configuration space specifications, utilized cameras may 

change. In other words, cameras with the different number and the different coverage 

areas can be utilized until the predefined target position is reached. Moreover, a 

camera may be utilized more than once to perform given control task(s). Comparing 

to the image stitching based multi-camera model, this pure multi-camera model can 

achieve better simulation and implementation times. Average simulation time is 

decreased from 11.7s to 10.46s with 10.6% gain and average implementation time is 

decreased from 12.07s to 9.71s with 19.55% gain. However, for all experiment 

configurations in pure model, except from Conf-3; path cost is increased about 3.01% 

from 1089.75 to 1122.56 for simulation and path cost is increased about 1.1% from 

1049.95 to 1061.46 for implementation. Therefore, it can be said that simulation and 

implementation time of pure model is generally better than stitch-based model. On the 

other hand, simulation and implementation path cost of stitch-based model is mostly 

better than pure model. The main reason behind this situation is that the complete path 

model is extracted from the whole configuration space including all robot, target and 

obstacles in stitch-based model. However, path is partly extracted from local 

configuration space of related camera according to the robot position in pure model.   

Table 13. Acquired time and cost values for different configurations 

Experiment 
Utilized 

Cameras 

Simulation 

Time (s) 

Implementation 

Time (s) 

Simulation Path 

Cost (px) 

Real Path 

Cost (px) 

Conf-1 C4, C2, C1 9.98 9.07 1080.04 1027.46 

Conf-2 C4, C3, C1 10.75 9.88 1185.63 1121.57 

Conf-3 C4, C2, C1 10.64 10.17 1102.03 1035.36 
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5.4. The Main Influencers for Control Models 

Illumination highly affects the threshold masks in the object detection process. 

Because of that both color features and color quantization methods are employed 

together to implement accurate object detection in the acquired images. If experiments 

are conducted under minor changing or constant light conditions, then masks operate 

without any error. The calibration of camera and image distortion affects data 

computations in processed image frames. The results are obtained with low accuracy 

without good and stable calibration and distortion. For example; a camera with 

fisheye lenses is not appropriate as a head imaging device without calibration. 

Calibration and distortion should be done according to the environment parameters. 

The Gaussian and decision tree-based controllers have been exhibited an efficient 

and promising control task. It is easy to implement in visual based control designs. It 

can be used with both simple (angle, encoder etc.) and complex input parameters 

(depth, lidar information etc.). It has demonstrated a great consistency with potential 

field method. Several modifications may be required to apply it to other path planning 

methods. 

Standard potential field method is sometimes insufficient to meet admissible safety 

and cost issues. Main reasons behind these are the local minimum, unstable 

oscillation, obstacle positions and so on. Safe path is created by dilation process on 

detected object in the most of studies. Geometric calculations also provide relative 

solutions to these problems. But eventually most effective and robust method is 

providing parameters which are changeable according to conditions of configuration 

space. Such mechanisms can be created with adaptive methodologies.        

 System hardware also influences performance of the visual based robot control. It 

should be emphasized that all the processed images are displayed and stored in real-

time besides the stored WMR controller data. If the processing of displaying and 

storing the image data to the storage unit are deactivated, then images can be 

processed about 72.4% more performance averagely. There is no parallelization in 

control processes with accelerators like Graphic Processing Unit (GPU) processors. If 

GPU or CPU acceleration is exerted by parallelizing the existing control algorithms, 

then the performance can clearly be increased to better levels. Therefore, hardware is 

one of the most prominent factors in a real-time VBC system. 
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 Multi-camera based visual control allows robot to be operated by the designed 

control system for large areas in interior spaces. The camera specifications should be 

same to acquire better efficiency and performance. Another factor is number of the 

cameras, but an external computer can cope with a certain number of cameras. 

Therefore, as the number of the camera increases the number of required computers 

will also increase. This situation is the main drawback of such systems. Illumination 

is a significant factor for multi-camera as it is in the single camera configuration. 

Each camera may be exposed different level of illumination. This difference may 

cause improper stitching process. Another option is managing the visual control 

process without images stitching. However, the path planning may emerge as a 

challenging issue.  

5.5. A Multi Target Design with Load Balancing 

5.5.1. System Design 

 Additional modules have been developed in order to determine the system 

performance in multiple targets and to suggest a load balancing system (LBS). There 

are multiple targets and two robots in the environment. The goal is to achieve a 

balanced distribution of workloads by considering the cost for both robots. As in the 

previous implementations, the configuration space image is obtained from the head 

camera. 

 The global positions of the robots and targets located on the input image of the 

configuration space are determined by the methods of color quantization and 

thresholding. The coordinates of the specified targets (or graph nodes) are kept in a 

matrix. The distance vectors from robots to nodes are calculated with these 

coordinates of targets and robots. The distance vectors are placed in a vector matrix 

table with the corresponding target ID and coordinate values. The number of vector 

matrix table will be calculated as much as the number of robots in the system. Two 

separate vector matrix tables are created for two robots. Then, the dimensions of the 

matrix space to be formed according to the number of targets in the environment are 

determined. The distance values of each target to both robots are compared according 

to the robot positions and the vector magnitudes in each vector matrix table. The 

target is assigned to the robot's navigation class according to the robot's proximity 

status to this target and the target having corresponding ID is deleted from both vector 
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matrix tables. This procedure has been repeated while the LBS has in both active and 

inactive status. Thus, the effect of load balancing on the navigation route has been 

investigated. The new navigation classes may also contain a different number of 

target elements according to the status of whether LBS is on or off. Fig. 112 shows 

the general operating steps of the system up to the creation of matrices (TMs) having 

target information for each robot. These matrices of targets include information about 

the targets to be navigated for each robot.    

 

Fig. 112. Creating matrices holding target information 

 Fig. 113 illustrates the object identification steps for the components in the 

configuration space having multiple targets and two robots. All targets detected have 

been retained in a target matrix table.    

 

Fig. 113. Color-based component detection process: (I) Real-environment image, (II) Quantized 

image, (III) Binary map view of the environment, (IV) Detected components 
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5.5.2. Load Balancing System (LBS) 

 Load balancing is used to allocate the targets (workloads) in the environment in a 

balanced and effective manner among existing robots. By using the load balancing, 

the aim is to enable the robots to touring their given target areas faster and with less 

cost. The proposed load balancing method carries out the division of targets by 

considering two criteria. The first of these criteria is to distribute a balanced number 

of targets. For example; nine targets can be allocated as four and five targets between 

two robots in the configuration space. It is aimed to give the similar number of 

workloads to the robots. For this control, the distance of each target to the robots is 

checked and the assignment procedure is performed according to the proximity status, 

which is the first criterion of equilibrium. Table 14 below shows the first step of the 

load balancing algorithm applied according to the target parameters. This process 

takes place before the path plan is extracted. 

Table 14. Load balancing algorithm based on number of targets 

Input-1: Target location matrix – 𝑲𝑴  
Input-2: Distance vector matrices – 𝑴𝑹𝟏, 𝑴𝑹𝟐 
Input-3: Number of targets – 𝑯𝑺 

 Equilibrium limit – 𝑫𝑺: 𝑯𝑺/𝟐 
If 𝑯𝑺 ൑ 𝟎 then,  
     END  
If 𝑯𝑺 ൐ 𝟎 then, 
     Loop: 𝒊=𝟎; 𝒊<𝑯𝑺; 𝒊++ 
          If 𝑴𝑹𝟏𝒊 ൏ 𝑴𝑹𝟐𝒊 then, 

New KM Matrix: 𝑲𝑴𝑹𝟏 ← 𝑲𝑴𝒊 
          If 𝑴𝑹𝟏𝒊 ൐ 𝑴𝑹𝟐𝒊 then, 

New KM Matrix: 𝑲𝑴𝑹𝟐 ← 𝑲𝑴𝒊 
          Else if 𝑴𝑹𝟏𝒊 ൌ 𝑴𝑹𝟐𝒊 then, 

If 𝒏ሺ𝑲𝑴𝑹𝟏ሻ||𝒏ሺ𝑲𝑴𝑹𝟐ሻ ൒ 𝑫𝑺 then and 
     If 𝒏ሺ𝑲𝑴𝑹𝒙ሻ ൏ 𝒏ሺ𝑲𝑴𝑹𝒚ሻ 𝒙, 𝒚 ∈ ሼ𝟏, 𝟐ሽ ⋀ 𝒙 ് 𝒚  
          𝑲𝑴𝑹𝒙 ← Remaining targets 
     End Condition 

     End Loop 
End Condition 

Output: 𝑲𝑴𝑹𝟏, 𝑲𝑴𝑹𝟐 
 

 According to the number of targets, LBS algorithm takes three inputs in the first 

stage. These parameters are the KM matrix which includes the position information of 

the targets, the MR1 and MR2 matrices which contain the distance data of each robot 

to all targets and the HS parameter which is the number of targets. If the number of 

targets (HS) is ‘1’ or higher, then the iteration is triggered and run until HS value is 

reached. At each stage, the distance of each target to the robots is checked, and if the 

robot is close to the target, then the target is assigned to this robot.  
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 In case of equality of distance values, the target is assigned to a random robot. 

Assignment of targets to the nearest robot will continue until the number of targets 

assigned to one of the robots is equal to the DS (half of the number of targets). When 

this value is reached, all remaining targets are assigned to the robot with fewer 

assigned targets. Thus, a target assignment process is performed between the robots 

by considering the number of targets. In the last case, one more or an equal number of 

targets are assigned to one of the robots. The 𝐾𝑀ோଵ and 𝐾𝑀ோଶ are newly created 

matrices of target positions. The 𝑛ሺ𝐾𝑀ோ௫ሻ is the number of targets in the matrix. The 

𝑥 and 𝑦 parameters are integers. 

 The second criterion for LBS is the traveling distances of the robots. The LBS 

algorithm checks this criterion after the acquisition of the cost of the path with the 

nearest neighbor or genetic algorithm. In this context, after the path plans are obtained 

in two classes having balanced number of targets, the path costs for each robot are 

calculated and compared. According to this cost, one or more of the workloads 

assigned to a robot can be reassigned to the other robot. The algorithm given in Table 

15 performs this process after the path plan has been extracted. 

Table 15. Load balancing algorithm according to path costs 

Input-1: Shared target locations matrix – 𝑲𝑴𝑹𝟏, 𝑲𝑴𝑹𝟐  
Input-2: Path plan costs for R1 and R2 – 𝒀𝑷𝑹𝟏, 𝒀𝑷𝑹𝟐 
Input-3: Distance vector matrices – 𝑴𝑹𝟏, 𝑴𝑹𝟐 

Absolute difference of path plan costs – 𝒀𝑷𝑴𝑭 ൌ |𝒀𝑷𝑹𝟏 െ 𝒀𝑷𝑹𝟐| 
If 𝒀𝑷𝑴𝑭 ൏ 𝒎𝒊𝒏ሺ𝒀𝑷𝑹𝟏, 𝒀𝑷𝑹𝟐ሻ ∗ 𝟎, 𝟐𝟎 then,  
     END  
Loop: while 𝒀𝑷𝑴𝑭 ൒ 𝒎𝒊𝒏ሺ𝒀𝑷𝑹𝟏, 𝒀𝑷𝑹𝟐ሻ ∗ 𝟎, 𝟐𝟎, 
     If 𝒎𝒂𝒌𝒔ሺ𝒀𝑷𝑹𝟏, 𝒀𝑷𝑹𝟐ሻ ൌ 𝒀𝑷𝑹𝟏 then, 
          𝑲𝑴𝑹𝒙 ൌ 𝑲𝑴𝑹𝟏  ⋀ 𝒙 ൌ 𝟏 
          𝑲𝑴𝑹𝒚 ൌ 𝑲𝑴𝑹𝟐  ⋀ 𝒚 ൌ 𝟐 
          𝑴𝑹𝒙 ൌ 𝑴𝑹𝟏 ⋀ 𝑴𝑹𝒚 ൌ 𝑴𝑹𝟐  
     If 𝒎𝒂𝒌𝒔ሺ𝒀𝑷𝑹𝟏, 𝒀𝑷𝑹𝟐ሻ ൌ 𝒀𝑷𝑹𝟐 then, 
          𝑲𝑴𝑹𝒙 ൌ 𝑲𝑴𝑹𝟐  ⋀ 𝒙 ൌ 𝟐 
          𝑲𝑴𝑹𝒚 ൌ 𝑲𝑴𝑹𝟏  ⋀ 𝒚 ൌ 𝟏 
          𝑴𝑹𝒙 ൌ 𝑴𝑹𝟐 ⋀ 𝑴𝑹𝒚 ൌ 𝑴𝑹𝟏  
     End Condition 
     𝑯𝑹𝒙 ൌ 𝒎𝒂𝒌𝒔𝒅ሺ𝑲𝑴𝑹𝒙ሻ, 
     New KM Matrices: 𝑲𝑴𝑹𝒚 ൌ 𝑲𝑴𝑹𝒚 ∪ 𝑯𝑹𝒙, 𝑲𝑴𝑹𝒙 ൌ 𝑲𝑴𝑹𝒙\𝑯𝑹𝒙 
     New Path Cost: 𝒀𝑷𝑹𝒚 ൌ 𝒅൫𝑲𝑴𝑹𝒚൯ ∈ ൛𝑴𝑹𝒚ൟ, NN||GA 
     New Path Cost: 𝒀𝑷𝑹𝒙 ൌ 𝒅ሺ𝑲𝑴𝑹𝒙ሻ ∈ ሼ𝑴𝑹𝒙ሽ, NN||GA 
End Loop 
End Condition 

Output: 𝒀𝑷𝑹𝒚, 𝒀𝑷𝑹𝒙 and 𝑲𝑴𝑹𝒚, 𝑲𝑴𝑹𝒙 

 

 The 𝐾𝑀ோଵ, 𝐾𝑀ோଶ shared target positions matrices, 𝑌𝑃ோଵ, 𝑌𝑃ோଶ matrices including 

path costs for each robot and 𝑀𝑅1, 𝑀𝑅2 distance data for each robot to all targets are 
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given as input to LBS algorithm according to the path costs. If the absolute value of 

the difference between the cost of two path plans is less than 20% of the smallest path 

cost 𝑌𝑃ெி, then the algorithm is terminated. In case of the difference is large than the 

20%, the parameters for the high path costs are assigned to the parameters 𝐾𝑀ோ௫, 

𝑀𝑅௫ and 𝑥, and parameters for the low path costs are assigned to the parameters 

𝐾𝑀ோ௬, 𝑀𝑅௬ and 𝑦. After this assignment, the farthest node distance value to the robot 

position is determined for the path having the largest distance value and it is assigned 

to the 𝐻ோ௫ parameter. In the next step, the 𝐻ோ௫ target is added to the new target 

location matrix 𝐾𝑀ோ௬ and the target 𝐻ோ௫ is subtracted from the 𝐾𝑀ோ௫ matrix. New 

path costs are found by re-calculating the 𝐾𝑀ோ௫ and 𝐾𝑀ோ௬ distance matrices of the 

targets with GA and NN. This target addition/subtraction and reassignment process 

continues until the threshold value between the path costs is reached. If this threshold 

value is not reached, then the algorithm terminates and the nearest value close to the 

threshold value is considered as the solution. In order to see the efficiency of load 

balancing, the LBS module is integrated into the system as an optional plug-in. 

5.5.3. Nearest Neighbor Method 

 The nearest neighbor method uses the distance between the target nodes to create a 

path in a simple way. The start position node can be determined by the algorithm or 

by external selection. After selecting a starting position, the distances between this 

node and other target nodes are calculated. This distance calculation is done by using 

the Euclidean distance equation. In the next step, all distances from the starting node 

to the others are compared and the node with the smallest distance from the starting 

point is selected as the second target to be visited. This new node is reassigned as the 

start node. The previous node is removed from the navigation matrix. All previous 

steps are repeated for this new node. This path extraction process continues until all 

variables in the dataset are processed in the same way. When all node visits are 

completed, a path is obtained that visits all nodes. The resulting pathway may be the 

least cost path, but the closest neighbor method generally produces an acceptable 

level of cost in the TSP (Travelling Salesman Problem). The closest neighbor method 

has been used as its default specifications in this study. Fig. 114 shows the working 

diagram for the NN method.   
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Fig. 114. Nearest Neighbor (NN) working diagram 

5.5.4. Genetic Algorithm (GA) 

 Genetic algorithm is a method that is inspired by nature and makes problem 

solution closer to the best solution by performing a search and optimization process 

on the target dataset. It tries to reach a holistic solution based on the principle of 

survival of the best, while conducting the search process in multidimensional and 

complex space. The genetic algorithm generates a set of solutions unlike a single 

solution to the problem. Since it works with nature inspiration, selection attempts to 

further improve the data population with crossing and mutation steps. The algorithm 

is stopped when the maximum number of iterations is reached. The method tries to 

make the best choice for the current situation through the fitness function. It produces 

effective, efficient and useful solutions when traditional optimization methods do not 

give good or expected results. Fig. 115 shows the working scheme of the algorithm. It 

is commonly used to solve the TSP. The calculation of the fitness value is based on 

the distance values between these object nodes. As a result of tests for maximum 

iteration, an upper limit has been determined empirically. 

 

Fig. 115. Genetic Algorithm (GA) working diagram 
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5.5.5. Findings and Observations 

 In order to see the performance values of the proposed system, a configuration 

space with a total of two different target layouts including 8 and 24 targets have been 

used. Two robots (R1 - Red, R2 - Green) share the tasks in the system. Robot 

positions are arranged so that they are opposite directions. The distribution of targets 

has been set in three forms; random (R), stacked to one side (S) and collective (C). 

The 12 different experiments have been performed in total according to three target 

distributions, two different target numbers and activation status of LBS 

(active/inactive). 

 In the task sharing, the proximity of the targets to the robots is considered. In this 

case, it can be said that load balancing is ignored. When LBS is activated, it is 

ensured that the total distance values of the paths followed by the robots are brought 

closer together. In some studies, it is tried to provide load balancing by distributing 

the targets in balanced numbers to the robots. However, it is not provided an efficient 

solution by considering only the number of targets. Since, the costs of the paths may 

be very different from each other. For this reason, both number of targets and cost of 

traveling criteria are taken into account for load balancing in this study.   

 The experiment environment is as shown in Fig. 116 for the configuration of 8 

targets. In the figure, there is a random distribution in part I, in section II is piled to 

the right side, and in section III there is a collective distribution.  

 

Fig. 116. Different distribution configurations of ‘8’ targets in different positions 

 The path plans obtained for the 8 targets with nearest neighbor and genetic 

algorithm methods are given in Fig. 117. The path shown by red has been obtained by 

the NN method, while the path shown by blue has been obtained by GA. When the 

path plans are examined, it is observed that the genetic algorithm creates similar path 

plans with the nearest neighbor and differentiates in some sections. This difference 

leads to cost differentiation in path costs. This is due to the fact that the methodology 
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of the methods is different in the evaluation process. On the other hand, the number of 

iterations for GA in 8 target configurations are set to 30. 

 

Fig. 117. Path plans for 8 targets with NN (red) and GA (blue) methods 

 Fig. 118 shows the paths plans created when LBS is open. As it can be seen, an 

equal number of targets are assigned to each robot in all distributions. After this 

assignment, navigation plans have been extracted between targets with NN and GA. 

In the next step, the second part of the algorithm is run if the difference between the 

distances of path plans exceeds the threshold value. Since this threshold is not 

exceeded in these distributions, path plans are considered to be efficient. 

 

Fig. 118. Acquired path plans for ‘8’ targets (LBS open) 

 The experiment environment is as shown in Fig. 119 for the configuration with 24 

targets. In the figure, there is a random distribution in part I, in section II is piled to 

the right side, and in section III there is a collective distribution. 

 

Fig. 119. Different distribution configurations of ‘24’ targets in different positions 

 The path plans obtained for the 24 targets with the NN and GA methods are given 

in Fig. 120. The path shown by red has been obtained by the NN method, while the 

path shown by blue has been obtained by the GA method. Similarly, although there is 
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a similarity ratio of the paths obtained in the same way, there are also sections in 

which they differ. The number of GA iterations has been set to 60 for 24 targets. As 

the number of targets increases, the minimum number of iterations needed also 

increases. Increasing the number of iterations can provide better results in the GA 

method, but the algorithmic performance decreases. In experiments (I) and (III), 

where the distribution shows a homogeneous characteristic, it is seen that similar or 

close number of targets are assigned to R1 and R2 robots. On the other hand, in the 

experiment (II) in the middle side, 8 targets have been assigned to the R1 robot while 

16 targets have been assigned to the R2 robot. This causes an unbalanced workload 

distribution between the robots. 

 

Fig. 120. Path plans for 24 targets with NN (red) and GA (blue) methods 

 In Fig. 121, only one target has been reassigned to the R1 robot from R2 robot by 

executing the LBS algorithm, (I). The distribution has been performed again 

according to the number of targets and path cost in the experiment, (II). A more 

balanced target assignment has been made to the robots. There is no change due to the 

fact that the targets are already balanced and the difference between path costs is 

below the threshold value in the experiment, (III). 

 

Fig. 121. Acquired path plans for ‘24’ targets (LBS open) 

 Distributing the target tasks to the robots with load balancing by considering the 

number of targets and the closeness of the targets to the robots ensures that the paths 

obtained do not cross. This structure minimizes the negative situations of robots such 

as waiting and disturbing each other. 
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 The path costs are given in Table 16 for the R1 robot and in Table 17 for the R2 

robot. The obtained path costs by NN and GA methods have been given in all target 

numbers and distribution configurations while LBS is inactive. Table data provides 

basic data to see the individual workloads of robots.  The GA method has generally 

generated paths lesser cost than the NN method except for a few configurations. On 

the other hand, there are also plans having same cost with the NN and GA methods.  

As the number of targets increases, path costs generally increase in both methods. 

According to the distribution of the targets, it has been observed that the cost is higher 

in the random distribution and the cost is lower in the collective distribution. 

Table 16. Path costs (px) obtained in experiments for R1 - LBS closed (LBS-C) 

Exp. Name 

Distributions

R  S C 

NN  GA NN GA NN  GA
8 Target  624  593 734 734 401  395
24 Target  1428  1342 1098 985 837  842

 
Table 17. Path costs (px) obtained in experiments for R2 - LBS closed (LBS-C) 

Exp. Name 

Distributions

R  S C 

NN  GA NN GA NN  GA
8 Target  565  588 305 305 362  349
24 Target  1349  1318 1820 1746 878  866

 

 The path costs are given in Table 18 for the R1 robot and in  

Table 19 for the R2 robot. The obtained path costs by NN and GA methods have been 

given in all target numbers and distribution configurations while LBS is active. 

Similarly, the GA method has given better results than the NN method when the load 

balancing is active. The difference between path distances has been further reduced 

by LBS. The results given in bold text mean that better results are obtained when the 

load balancing is active. It can be said that LBS generally provides better results for 

task sharing, except for a few cases. 

Table 18. Path costs (px) obtained in experiments for R1 - LBS open (LBS-O) 

Exp. Name 

Distributions

R  S C 

NN  GA NN GA NN  GA
8 Target  624  593 613 613 361  352
24 Target  1436  1302 1495 1276 840  856
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Table 19. Path costs (px) obtained in experiments for R2 - LBS open (LBS-O) 

Exp. Name 

Distributions

R  S C 

NN  GA NN GA NN  GA
8 Target  565  565 546 546 352  344
24 Target  1268  1218 1369 1209 798  781

 

 Table 20 shows the total workloads (costs) for each configuration. When the total 

workloads are examined, it is understood that GA method gives better results than NN 

method in most cases. There are also cases where the NN method equals to the GA in 

the total path costs. The GA method has ensured improvements in path costs from 0% 

to 13.24% compared to the NN method. On the other hand, when the effect of load 

balancing on the total path cost is examined, it has been observed that the LBS 

provides improvements in all other cases except for the 8 target tests where the 

distribution is stacked (S). In the case which could not improve the overall cost of the 

path, the workload has been given with the similar costs to the robots in the 

background and significant improvements have been achieved. This could provide 

better energy management. These results indicate that the higher the number of 

targets, the better the load balancing results. On the other hand, a more efficient 

working infrastructure has been built in terms of time and energy by providing similar 

number of workloads to robots. 

Table 20. Total workload of robots in each configuration (total cost) 

Exp. Name 

Distributions

R S C 
NN  GA NN GA NN  GA

8 Target LBS‐C 1189  1181 1039 1039 732  726
8 Target LBS‐O 1189  1158 1159 1159 713  696
24 Target LBS‐C  2777  2660 2918 2731 1715  1708
24 Target LBS‐O  2704  2520 2864 2485 1638  1637

 

5.5.6. Results and Recommendations  

 In this study, the task sharing for robot, balanced load distribution, path plan 

extraction, multiple TSP problem and the necessary methods have been discussed on 

random, one side stacked and collective distributions with different target numbers. 

The main focus of this study is distributing targets with a balanced manner. The 

targets have been assigned to the robots efficiently in terms of both number and cost 

with LBS. According to the obtained results, it has been observed that LBS improves 

the default path plan in many different scenarios. LBS has produced efficient results 
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in terms of multiple targets and task sharing across multiple robots. In terms of cost, 

GA has showed more successful performance. In terms of speed, the NN method 

performed much better than the GA method. The main reason of this situation is that 

the GA method tries to improve the solutions obtained in each step by depending on 

the number of iterations. Both methods have showed advantages and disadvantages 

according to their usage areas and needs. A total of 12 different experiments have 

been performed according to two different target numbers, three different 

distributions and two different LBS status. 
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6. CONCLUSION AND FUTURE WORKS 

The WMR motions has been successfully characterized in each image frame and it 

has reached to the target position with high accuracy. The developed control methods 

ensure more robust, flexible and simple controlling process and eliminate systematic 

and unsystematic errors. The designed control infrastructure is primarily suitable for 

interior spaces. For instance; forklift trucks can be efficiently controlled in a 

warehouse with VBC systems. Since external or internal distance sensors are not 

necessary, system cost will decrease by using the proposed method. Modelling and 

adapting it to any indoor environment are easy. 

The developed method is the first method using parameters of detected objects to 

form and operate a dynamic structured triangle or graph, directly on the robot. 

Besides, as far as we know, this is the first study employing Gaussian function as a 

default mobile robot controller by modifying several parameters in real time. This is 

the first study which uses decision tree-based controller as a novel method in VBC 

systems. Firstly, we modeled and designed only the go-to-goal control task which is 

one of the major task components in robotic applications alongside the navigation, 

obstacle avoidance etc. tasks. Then we have designed adaptive potential field method 

for path planning and combined it with previously designed go-to-goal controllers. 

Ultimately, the multi-camera infrastructure design is successfully harmonized with 

proposed methods.  

 We plan to combine this study with a newly designed or available visual-based 

control systems by comparing experiment parameters. Additionally, we will integrate 

and test commonly known path planning approaches with our method. Ultimately, it 

is aimed to apply this study to configuration spaces with obstacles and multi targets. 

Visual based control presents design ideas in another level for robotic applications. 

Eye-in-device (or internal sensor) applications generally requires calculation of 

distance parameters from 2D images by considering depth information. Therefore, it 

requires much complex processes as disadvantage. Eye-out-device (or external 

sensor) requires distance information with a good calibrated camera as well. But this 

configuration provides simple approaching to control process. The main disadvantage 

is that the camera is generally placed to a fixed position. Therefore, there is a 

coverage area for the camera.   
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 In this thesis study, a novel Gaussian/Decision tree controller, adaptive artificial 

potential field methods and multi-camera configuration are proposed and they have 

been combined for a visual based control. By using the proposed methods WMR has 

reached to the target position for all configurations. A robot is admitted as a point 

mass in many studies. However, the WMR is admitted with its whole dimensions in 

both simulations and real implementations for this study. Moreover, we have touched 

key issues extensively and have made a wide literature search.  

 In this thesis study, a multi-camera model is proposed for VBC. It provides an 

expandable and scalable platform. Unlike the stereovision imaging, depth information 

is not used and it does not provide any remarkable advantage for this configuration. 

The mobile robot has successfully reached to the target position in each configuration. 

It has been focused to multi-camera model and path planning in the scope of this 

work. Therefore, we have used a basic color thresholding-based object detection 

method. We plan to use and investigate learning based object detection methods in 

our next studies. Ultimately, we will extensively focus these issues in later studies. 

 A model will be designed by preparing the necessary infrastructure to test an 

alternative graph-based method in Fig. 122. It will used to determine the feasible 

paths between the obstacles. After determining the obstacles in the obstacle-hosted 

environment, the corner points of the obstacles are extracted with an algorithm like 

Harris. Then circles whose diameter equal to the distance between these points are 

created between the closest corner points or between the corner points and the 

obstacle edges. The center points of these circles are found. Circles that are smaller in 

diameter than the diameter of the robot are eliminated. Paths that do not intersect the 

obstacles between the circles are drawn so that they coincide to the center of the 

circle. Next, there is a diagram showing the routes on which the robot can proceed. 

These paths between the circle centers are our edges and the centers of the circle are 

our nodes. At the last stage, the cost of cross sections between these nodes is 

calculated in length. Inter-node costs can be kept in an adjacency matrix. Ultimately, 

this graph will be the input for path planning, it will be used to find the shortest path.  

 In Fig. 122, the robot can go to the green nodes. However, it cannot go to the red 

nodes, which is mainly because the diameter of the circle around the node is smaller 

than the diameter of the robot. The graph in the figure is illustrated as an example. It 
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is aimed to make the path planning process steps more durable and smoother with 

additional improvements, techniques and heuristic methods.  

 

Fig. 122. Creating a graph-based path; The green nodes are the nodes to be gone, and the red nodes 

are the blind nodes. BP: Initial Position, HP: Target Position 

 Despite all the problems, visual based robot control under multi-camera 

surveillance is a young area which should be studied in-depth. According to the all 

knowledge and expertise acquired within this study, it can be clearly said that both 

eye-out-device and eye-in-device based visual control systems shows a promising 

future. 
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