T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

## 2-BOYUTLU LİNEER OLMAYAN COUPLED BURGERS' DENKLEMİ İÇİN SONLU FARK YAKLAŞIMLARI

Abdulnasır GAGİR

# YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI

Ekim 2018

| Tezin Başlığı | : | 2-BOYUTLU LİNEER OLMAYAN COUPLED BURGERS' |
|---------------|---|-------------------------------------------|
|               |   | DENKLEMİ İÇİN SONLU FARK YAKLAŞIMLARI     |

| Tezi Hazırlayan | : | Abdulnasır GAGİR |
|-----------------|---|------------------|
| Sınav Tarihi    | : | 02.10.2018       |

Yukarıda adı geçen tez jürimizce değerlendirilerek Matematik Ana Bilim Dalında Yüksek Lisans Tezi olarak kabul edilmiştir.

# Sınav Jüri Üyeleri

| Tez Danışmanı: | Doç.Dr. Nuri Murat Yağmurlu                         |  |
|----------------|-----------------------------------------------------|--|
|                | İnönü Üniversitesi                                  |  |
|                | <b>Prof.Dr.Selçuk Kutluay</b><br>İnönü Üniversitesi |  |
|                | <b>Prof.Dr. Mustafa İnç</b><br>Fırat Üniversitesi   |  |

**Prof.Dr. H. İbrahim Adıgüzel** Enstitü Müdürü

# ONUR SÖZÜ

Yüksek Lisans Tezi olarak sunduğum "2-Boyutlu Lineer Olmayan Coupled Burgers' Denklemi için Sonlu Fark Yaklaşımları" başlıklı bu çalışmanın bilimsel ahlâk ve geleneklere aykırı düşecek bir yardıma başvurmaksızın tarafımdan yazıldığını ve yararlandığım bütün kaynakların, hem metin içinde hem de kaynakçada yöntemine uygun biçimde gösterilenlerden oluştuğunu belirtir, bunu onurumla doğrularım.

Abdulnasır GAGİR

## ÖZET

#### Yüksek Lisans Tezi

### 2-BOYUTLU LİNEER OLMAYAN COUPLED BURGERS' DENKLEMİ İÇİN SONLU FARK YAKLAŞIMLARI

#### Abdulnasır GAGİR

İnönü Üniversitesi Fen Bilimleri Enstitüsü Matematik Ana Bilim Dalı

64+xiv sayfa

2018

#### Danışman : Doç.Dr. Nuri Murat Yağmurlu

Bu yüksek lisans tez çalışması altı bölümden oluşmaktadır.

Tezin giriş bölümünde, bu tezde göz önüne alınacak 2-boyutlu coupled Burgers' denkleminin yapısı hakkında kısaca bahsedildikten sonra bu çalışmanın amacı hakkında ön bilgi verildi.

Ikinci bölümde, tezde kullanılacak olan açık (*explicit*), kapalı (*implicit*) ve Crank-Nicolson klasik sonlu fark yöntemleri anlatıldıktan sonra bu yöntemlerin ısı iletim denklemine uygulanması ile elde edilen fark şemaları örnek uygulama olarak verildi.

Uçüncü bölümde, 2-boyutlu coupled Burgers' denkleminin literatür taraması ayrıntılı olarak verildikten sonra farklı başlangıç ve sınır şartlarına sahip üç model problem tanıtıldı. Ayrıca bu bölümde nümerik şemaların doğruluk ve tutarlılığını ölçmede kullanılacak  $L_2$  ve  $L_{\infty}$  hata normları verildi.

Dördüncü bölümde, açık, kapalı ve Crank-Nicolson klasik sonlu fark yöntemlerinin üç model probleme uygulanmasıyla elde edilen şemalar verildikten sonra bu şemalar yardımıyla model problemlerin nümerik çözümleri elde edildi. Elde edilen nümerik sonuçların mevcut tam çözümlerle ve literatürdeki diğer sonuçlarla karşılaştırılması tablolar halinde sunuldu. Ayrıca tam çözümleri mevcut olan model Problem 1 ve Problem 3 için hesaplanan  $L_2$  ve  $L_{\infty}$  hata normları tablolarda gösterildi.

Beşinci bölüm bu tezin esas bölümünü oluşturmaktadır. Bu bölümde, 2-boyutlu coupled Burgers' denklemindeki lineer olmayan  $UU_x$ ,  $VU_y$ ,  $UV_x$  ve  $VV_y$ terimleri yerine Rubin-Graves [1] tipi bir lineerleştirme tekniğinin uygulanmasıyla elde edilen sonlu fark şemaları kullanılarak model problemlerin nümerik çözümleri bulundu. Bulunan nümerik çözümler mevcut tam çözümlerle ve literatürdeki diğer sonuçlarla karşılaştırıldı. Aynı zamanda  $L_2$  ve  $L_{\infty}$  hata normları hesaplandı. Ayrıca Problem 1 ve Problem 3 için hem nümerik hem de tam çözümler grafiksel olarak gösterilirken Problem 2 için yalnızca nümerik sonuçların grafikleri verildi.

Son olarak altıncı bölümde, tam çözümleri mevcut olan Problem 1 ve Problem 3 için tezin dördüncü bölümünde açık, kapalı ve Crank-Nicolson yöntemleri ve beşinci bölümünde Rubin-Graves tipi lineerleştirme tekniğinin uygulanmasıyla hesaplanan  $L_2$  ve  $L_{\infty}$  hata normları kendi içerisinde karşılaştırıldı.

ANAHTAR KELİMELER: 2-Boyutlu Coupled Burgers' Denklemi, Sonlu Fark Yöntemleri, Açık Sonlu Fark Yöntemi, Kapalı Sonlu Fark Yöntemi, Crank-Nicolson Sonlu Fark Yöntemi, Rubin-Graves Tipi Lineerleştirme Tekniği.

### ABSTRACT

#### M.Sc. Thesis

# FINITE DIFFERENCE APPROXIMATIONS FOR 2-DIMENSIONAL NONLINEAR COUPLED BURGERS' EQUATION

#### Abdulnasır GAGIR

Inönü University Graduate School of Natural and Applied Sciences Department of Mathematics

64+xiv pages

2018

Supervisor : Assoc.Prof.Dr. Nuri Murat Yağmurlu

This master thesis consists of six chapters.

In the introductory chapter of the thesis, preliminary information was given about the purpose of this study after briefly mentioning the structure of the 2-dimensional coupled Burgers' equation to be considered in this thesis.

In the second chapter, explicit, implicit and Crank-Nicolson classical finite difference methods to be used in the thesis are explained and then the difference schemes obtained by applying these methods to the heat transfer equation are given as a sample application.

In the third chapter, the literature search of the 2-dimensional coupled Burgers' equation is described in detail, then three model problems with different initial and boundary conditions are presented. In addition,  $L_2$  and  $L_{\infty}$  error norms are used in this section to measure the accuracy and consistency of numerical schemas.

In the fourth chapter, the schematics obtained by applying three model probing methods of explicit, implicit and Crank-Nicolson classical finite difference methods are given and then numerical solutions of problems are obtained with these schemes. The numerical results obtained were presented in tabular form, comparing with the available full solutions and other results in the literature. In addition, the  $L_2$  and  $L_{\infty}$  error norms calculated for model Problem 1 and Problem 3 having exact solutions are shown in the tables.

The fifth chapter forms the main part of this thesis. In this section, a linearization technique of the Rubin-Graves [1] type instead of the nonlinear  $UU_x, VU_y, UV_x$  and  $VV_y$  terms in the 2-Dimensional Coupled Burgers' Numerical solutions of the model problems were obtained by using the finite difference

schemes. The numerical solutions obtained were compared with the existing complete solutions and with the other results in the literature. At the same time,  $L_2$  and  $L_{\infty}$  error norms were calculated. In addition, for Problem 1 and Problem 3 both numerical and complete solutions are shown graphically, whereas for Problem 2 only numerical results are plotted.

Lastly, in the sixth chapter, explicit and implicit and Crank-Nicolson methods in the fourth section of the thesis for Exact Problems 1 and 3, and  $L_2$  and  $L_{\infty}$  error norms calculated by applying the Rubin-Graves type linearization technique in the fifth section are compared within themselves.

**KEYWORDS:** 2-Dimensional Coupled Burgers' Equations, Finite Difference Methods, Explicit Finite Difference Method, Implicit Finite Difference Method, Crank-Nicolson Finite Difference Method, Rubin-Graves Type Linearization Technique.

# TEŞEKKÜR

Yüksek lisans tez çalışmamı yöneten, tezin hazırlanmasının her aşamasında yardımlarını esirgemeyen çok değerli hocam Doç. Dr. Nuri Murat YAĞMURLU' ya teşekkürü bir borç biliyor ve şükranlarımı sunuyorum. Bu çalışmama engin tecrübe ve deneyimleriyle büyük katkılarda bulunan ve üzerimde büyük emekleri olan saygı değer hocalarım Prof. Dr. Selçuk KUTLUAY, Prof. Dr. Alaattin ESEN ve Doç. Dr. Yusuf UÇAR' a sonsuz teşekkürlerimi sunarım. Ayrıca yüksek lisans dönemi boyunca bana her türlü konuda yardımcı olan başta bölüm başkanımız Prof. Dr. Sadık KELEŞ' e ve diğer bölüm hocalarıma, bu tezin yazım düzeninde fikirlerinden yararlandığım her zaman kıymetli zamanını bana ayıran Doç. Dr. M. Kemal ÖZDEMİR' e, eğitim-öğretim sürecim boyunca sabır ve sevgiyle her zaman yanımda olan benden hiçbir zaman desteklerini esirgemeyen ve bu hayattaki en büyük değerim olan aileme sonsuz teşekkürlerimi sunarım.

|                                                                    | ÖZET                                                                                                                                                                                                                                             | i                                 |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                    | ABSTRACT                                                                                                                                                                                                                                         | iii                               |
|                                                                    | TEŞEKKÜR                                                                                                                                                                                                                                         | v                                 |
|                                                                    | İÇİNDEKİLER                                                                                                                                                                                                                                      | vii                               |
|                                                                    | ŞEKİLLER DİZİNİ                                                                                                                                                                                                                                  | viii                              |
|                                                                    | TABLOLAR DİZİNİ                                                                                                                                                                                                                                  | х                                 |
|                                                                    | SİMGELER VE KISALTMALAR                                                                                                                                                                                                                          | xiv                               |
| 1.                                                                 | GİRİŞ                                                                                                                                                                                                                                            | 1                                 |
| 2.<br>2.1.<br>2.1.1.<br>2.1.2.<br>2.1.3.<br>2.1.4.                 | TEMEL KAVRAMLAR                                                                                                                                                                                                                                  | 3<br>3<br>9<br>10<br>12<br>13     |
| 3.<br>3.1.<br>3.1.1.<br>3.1.2.<br>3.1.3.                           | 2-BOYUTLU COUPLED BURGERS' DENKLEMİ VE MOD<br>PROBLEMLER<br>Giriş                                                                                                                                                                                | DEL<br>14<br>14<br>17<br>17<br>18 |
| <ol> <li>4.1.</li> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> </ol> | KLASİK SONLU FARK YÖNTEMLERİ İLE MODEL PROBLEMLERİN<br>NÜMERİK ÇÖZÜMLERİ<br>Açık Sonlu Fark Yöntemi (ASFY) ile Çözümü<br>Kapalı Sonlu Fark Yöntemi (KSFY) ile Çözümü<br>Crank-Nicolson Sonlu Fark Yöntemi (CNSFY) ile Çözümü<br>Nümerik Sonuçlar | 20<br>20<br>22<br>23<br>24        |
| 5.                                                                 | BİR LİNEERLEŞTİRME TEKNİĞİ İLE MODEL PROBLEMLERİN<br>NÜMERİK ÇÖZÜMLERİ                                                                                                                                                                           | 41                                |
| 5.1. 5.2.                                                          | Rubin-Graves Tipi Lineerleştirilmiş Sonlu Fark Yaklaşımı (RGSFY)<br>Nümerik Sonuçlar                                                                                                                                                             | 41<br>43                          |
| 6.                                                                 | SONUÇ                                                                                                                                                                                                                                            | 57                                |

# İÇİNDEKİLER

| KAYNAKLAR | 61 |
|-----------|----|
| ÖZGEÇMİŞ  | 64 |

# şekiller dizini

| Şekil 5.1  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|------------|------------------------------------------------------------------------------|----|
|            | için $t=0.01$ zamanında $u^\prime$ nun RGSFY ile elde edilen (a) tam         |    |
|            | ve (b) nümerik çözümlerinin gösterimi                                        | 45 |
| Şekil 5.2  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|            | için $t=0.01$ zamanında $v^\prime$ nin RGSFY ile elde edilen (a) tam         |    |
|            | ve (b) nümerik çözümlerinin gösterimi                                        | 46 |
| Şekil 5.3  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|            | için $t=0.5$ zamanında $u^\prime$ nun RGSFY ile elde edilen (a) tam          |    |
|            | ve (b) nümerik çözümlerinin gösterimi                                        | 46 |
| Şekil 5.4  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|            | için $t = 0.5$ zamanında $v'$ nin RGSFY ile elde edilen (a) tam ve           |    |
|            | (b) nümerik çözümlerinin gösterimi                                           | 47 |
| Şekil 5.5  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|            | için $t = 1.0$ zamanında $u'$ nun RGSFY ile elde edilen (a) tam              |    |
|            | ve (b) nümerik çözümlerinin gösterimi                                        | 47 |
| Şekil 5.6  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri   |    |
|            | için $t=1.0$ zamanında $v^\prime$ nin RGSFY ile elde edilen (a) tam ve       |    |
|            | (b) nümerik çözümlerinin gösterimi                                           | 48 |
| Şekil 5.7  | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri  |    |
|            | için $t = 0.625$ zamanında (a) $u$ ve (b) $v$ için RGSFY ile elde            |    |
|            | edilen nümerik çözümlerin gösterimi                                          | 49 |
| Şekil 5.8  | Problem 2' nin $h_x = h_y = 0.025$ , Re= 100, $\Delta t = 10^{-4}$ değerleri |    |
|            | için $t = 0.625$ zamanında (a) $u$ ve (b) $v$ için RGSFY ile elde            |    |
|            | edilen nümerik çözümlerin gösterimi                                          | 50 |
| Şekil 5.9  | Problem 2' nin $h_x = h_y = 0.025$ , Re= 500, $\Delta t = 10^{-4}$ değerleri |    |
|            | için $t = 0.625$ zamanında (a) $u$ ve (b) $v$ için RGSFY ile elde            |    |
|            | edilen nümerik çözümlerin gösterimi                                          | 50 |
| Şekil 5.10 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri  |    |
|            | için $t=0.01$ zamanında $u^\prime$ nun RGSFY ile elde edilen (a) tam         |    |
|            | ve (b) nümerik çözümlerinin gösterimi                                        | 52 |

| Şekil $5.11$ | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri |    |
|--------------|-----------------------------------------------------------------------------|----|
|              | için $t=0.01$ zamanında $v^\prime$ nin RGSFY ile elde edilen (a) tam        |    |
|              | ve (b) nümerik çözümlerinin gösterimi $\ldots\ldots\ldots\ldots\ldots$      | 52 |
| Şekil $5.12$ | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri |    |
|              | için $t=0.5$ zamanında $u^\prime$ nun RGSFY ile elde edilen (a) tam         |    |
|              | ve (b) nümerik çözümlerinin gösterimi                                       | 53 |
| Şekil $5.13$ | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri |    |
|              | için $t=0.5$ zamanında $v^\prime$ nin RGSFY ile elde edilen (a) tam ve      |    |
|              | (b) nümerik çözümlerinin gösterimi                                          | 53 |
| Şekil $5.14$ | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri |    |
|              | için $t=1.0$ zamanında $u^\prime$ nun RGSFY ile elde edilen (a) tam         |    |
|              | ve (b) nümerik çözümlerinin gösterimi $\ldots\ldots\ldots\ldots$            | 54 |
| Şekil $5.15$ | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri |    |
|              | için $t=1.0$ zamanında $v^\prime$ nin RGSFY ile elde edilen (a) tam ve      |    |
|              | (b) nümerik çözümlerinin gösterimi                                          | 54 |

# TABLOLAR DİZİNİ

| Tablo 4.1  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri için    |            |
|------------|------------------------------------------------------------------------------------|------------|
|            | t = 0.01, 0.5 ve 2.0 zamanlarında $u$ için ASFY ile elde edilen                    | <b>م</b> ح |
|            | numerik çozumleri.                                                                 | 25         |
| Tablo 4.2  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ degerleri için    |            |
|            | t = 0.01, 0.5 ve 2.0 zamanlarında $v$ için ASFY ile elde edilen                    |            |
|            | nümerik çözümleri.                                                                 | 26         |
| Tablo 4.3  | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri          |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $u$ için ASFY ile elde edilen                  |            |
|            | nümerik çözümleri.                                                                 | 26         |
| Tablo 4.4  | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri          |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $v$ için ASFY ile elde edilen                  |            |
|            | nümerik çözümleri.                                                                 | 27         |
| Tablo 4.5  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri         |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $u$ için KSFY ile elde edilen                  |            |
|            | nümerik çözümlerinin Ref. [6] ile karşılaştırılması                                | 28         |
| Tablo 4.6  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri         |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $v$ için KSFY ile elde edilen                  |            |
|            | nümerik çözümlerinin Ref. [6] ile karşılaştırılması                                | 28         |
| Tablo 4.7  | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri          |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $u$ için KSFY ile elde edilen                  |            |
|            | nümerik çözümleri.                                                                 | 28         |
| Tablo 4.8  | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri          |            |
|            | için $t = 0.01$ ve 1.0 zamanlarında $v$ için KSFY ile elde edilen                  |            |
|            | nümerik çözümleri.                                                                 | 29         |
| Tablo 4.9  | Problem 1' in $h_r = h_u = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri         |            |
|            | icin $t = 0.01$ ve 1.0 zamanlarında $u$ icin CNSFY ile elde edilen                 |            |
|            | nümerik cözümlerinin Ref. [6] ile karsılastırılması                                | 29         |
| Tablo 4.10 | Problem 1' in $h_r = h_u = 0.05$ . Re= 100, $\Delta t = 10^{-4}$ değerleri         |            |
|            | icin $t = 0.01$ ve 1.0 zamanlarında v icin CNSFY ile elde edilen                   |            |
|            | nümerik cözümlerinin Ref. [6] ile karsılaştırılmaşı                                | 29         |
| Tablo 4.11 | Problem 1' in $h_{\pi} = h_{\pi} = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri  |            |
| 10010 1111 | icin $t = 0.01$ ve 1.0 zamanlarında $u$ icin CNSFY ile elde edilen                 |            |
|            | njimerik cözümleri                                                                 | 30         |
| Tablo 4 12 | Problem 1' in $h_{-} = h_{-} = 0.05$ Re= 10 $\Delta t = 10^{-4}$ değerleri         | 00         |
| 10010 1.12 | icin $t = 0.01$ ve 1.0 zamanlarında $v$ icin CNSEV ile elde edilen                 |            |
|            | nimerik cözümleri                                                                  | 30         |
| Table 4.13 | Problem 2' nin $h_{\mu} = h_{\mu} - 0.025$ Re- 500 $\Lambda t - 10^{-4}$ değerleri | 50         |
| 10010 1.10 | icin $t = 0.625$ zamanında $u$ icin ASFV ile elde edilen nümerik                   |            |
|            | cözümleri ile bu cözümlerin Ref [12, 20] ile kergelesturlmeg                       | 21         |
|            | çozumen ne bu çozumenin nei. [15, 29] ne karşıraştırılması                         | 91         |

| Tablo 4.14 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 500, $\Delta t = 10^{-4}$ değerleri                                                                        |     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | ıçın $t = 0.625$ zamanında $v$ ıçın ASFY ile elde edilen numerik<br>çözümleri ile bu çözümlerin Ref. [13, 29] ile karşılaştırılması                 | 32  |
| Tablo 4.15 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.625$ zamanında $u$ için ASFY ile elde edilen nümerik     |     |
| Tablo 4 16 | çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması<br>Problem 2' nin $h_{\tau} = h_{\tau} = 0.025$ Re= 50 $\Delta t = 10^{-4}$ değerleri           | 32  |
| 10010 1110 | için $t = 0.625$ zamanında $v$ için ASFY ile elde edilen nümerik                                                                                    |     |
| Tablo 4.17 | çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması<br>Problem 2' nin $h_x = h_y = 0.025$ . Re= 500. $\Delta t = 10^{-4}$ değerleri                 | 32  |
| 10010 111  | için $t = 0.625$ zamanında $u$ için KSFY ile elde edilen nümerik                                                                                    |     |
| Tablo 4.18 | çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması<br>Problem 2' nin $h_x = h_y = 0.025$ . Re= 500. $\Delta t = 10^{-4}$ değerleri                 | 33  |
|            | için $t = 0.625$ zamanında $v$ için KSFY ile elde edilen nümerik                                                                                    |     |
| Tablo 4.19 | çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması<br>Problem 2' nin $h_r = h_u = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri                  | 33  |
|            | için $t = 0.625$ zamanında $u$ için KSFY ile elde edilen nümerik                                                                                    | 2.4 |
| Tablo 4.20 | çozumlerinin Ref. [6, 13, 29] ile karşılaştırılması<br>Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri                  | 34  |
|            | için $t = 0.625$ zamanlarında $v$ için KSFY ile elde edilen nümerik                                                                                 | 9.4 |
| Tablo 4.21 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 500, $\Delta t = 10^{-4}$ değerleri                                                                        | 34  |
|            | için $t = 0.625$ zamanında $u$ için CNSFY ile elde edilen nümerik<br>cözümlerinin Ref. [6, 13, 20] ile kergileşturulmaşı                            | 25  |
| Tablo 4.22 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 500, $\Delta t = 10^{-4}$ değerleri                                                                        | 55  |
|            | için $t = 0.625$ zamanında $v$ için CNSFY ile elde edilen nümerik<br>cözümlerinin Ref. [6, 13, 29] ile karşılaştırılmaşı                            | 35  |
| Tablo 4.23 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri                                                                         | 00  |
|            | için $t = 0.625$ zamanında $u$ için CNSFY ile elde edilen nümerik<br>cözümlerinin Ref. [6, 13, 29] ile karsılastırılması.                           | 36  |
| Tablo 4.24 | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri                                                                         |     |
|            | ıçın $t = 0.625$ zamanında $v$ ıçın CNSFY ile elde edilen numerik<br>çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.                           | 36  |
| Tablo 4.25 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>isin $t = 0.01, 0.5$ as 1.0 second and a wisin ACEV ile alde a dilar |     |
|            | ıçın $t = 0.01, 0.5$ ve 1.0 zamanlarında $u$ ıçın ASF Y ile elde edilen<br>nümerik çözümleri.                                                       | 37  |
| Tablo 4.26 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01, 0.5$ yo 1.0 zamanlarında ariçin ASEV ile elde edilen |     |
|            | nümerik çözümleri. $\dots$                                                                                                                          | 38  |
| Tablo 4.27 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01, 0.5$ ve 1.0 zamanlarında $u$ için KSFV ile elde      |     |
|            | edilen nümerik çözümleri.                                                                                                                           | 38  |

| Tablo 4.28 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01, 0.5$ ve 1.0 zamanlarında $v$ için KSFY ile elde edilen<br>nümerik eözümleri                                                   | 20   |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Tablo 4.29 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01$ , 0.5 ve 1.0 zamanlarında $u$ için CNSFY ile elde<br>edilen nümerik cözümleri                                                 | 30   |
| Tablo 4.30 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01$ , 0.5 ve 1.0 zamanlarında $v$ için CNSFY ile elde<br>edilen nümerik çözümleri.                                                | 39   |
| Tablo 5.1  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.01$ , 0.5 ve 2.0 zamanlarında $u$ için RGSFY ile elde<br>edilen nümerik cözümler                                                   | 13   |
| Tablo 5.2  | Problem 1' in $h_x = h_y = 0.05$ , Re= 100, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.01$ , 0.5 ve 2.0 zamanlarında $v$ için RGSFY ile elde<br>edilen nümerik gözümler                                                   | 14   |
| Tablo 5.3  | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.01$ ve 1.0 zamanlarında $u$ için RGSFY ile elde edilen                                                                              | ±4±  |
| Tablo 5.4  | nůmerik çözümleri.<br>Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.01$ ve 1.0 zamanlarında $v$ için RGSFY ile elde edilen                                                        | 14   |
| Tablo 5.5  | nůmerik çözümleri                                                                                                                                                                                                            | 14   |
| Tablo 5.6  | verilenlerle karşılaştırılması                                                                                                                                                                                               | 16   |
| Tablo 5.7  | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.625$ zamanında $u$ çözümü için RGSFY ile elde edilen<br>nümerik cözümlerinin Ref. [6, 13, 29]' de verilenlerle karsılaştırılmaşı  | 48   |
| Tablo 5.8  | Problem 2' nin $h_x = h_y = 0.025$ , Re= 50, $\Delta t = 10^{-4}$ değerleri<br>için $t = 0.625$ zamanında $v$ çözümü için RGSFY ile elde edilen<br>nümerik çözümlerinin Ref. [6, 13, 29]' de verilenlerle karşılaştırılması. | . 48 |
| Tablo 5.9  | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01$ , 0.5 ve 1.0 zamanlarında $u$ için RGSFY ile elde<br>edilen nümerik çözümleri                                                 | 51   |
| Tablo 5.10 | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için $t = 0.01$ , 0.5 ve 1.0 zamanlarında $v$ için RGSFY ile elde<br>edilen nümerik çözümleri                                                 | 51   |
|            |                                                                                                                                                                                                                              |      |

| Tablo 5.11   | Problem 1' in RGSFY için $h_x = h_y = 0.05$ , Re= 100 ve 10,                                                                                                                                                                                                                                                      |          |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|              | $\Delta t = 10^{-4}$ değerleri için farklı t<br>zamanlarında u ve v için elde                                                                                                                                                                                                                                     |          |
|              | edilen $L_2$ ve $L_{\infty}$ hata normlarının karşılaştırılmaları                                                                                                                                                                                                                                                 | 55       |
| Tablo $5.12$ | Problem 1' in RGSFY için $h_x = h_y = 0.05$ , Re= 100 ve 10,                                                                                                                                                                                                                                                      |          |
|              | $\Delta t = 10^{-4}$ değerleri için farklı $t$ zamanlarında $u$ ve $v$ için elde                                                                                                                                                                                                                                  |          |
|              | edilen $L_2$ ve $L_{\infty}$ hata normlarının karşılaştırılmaları                                                                                                                                                                                                                                                 | 55       |
| Tablo $5.13$ | Problem 3' ün RGSFY için $h_x = h_y = 0.05$ , Re= 1000, $\Delta t =$                                                                                                                                                                                                                                              |          |
|              | $10^{-3}$ değerleri için farklı $t$ zamanlarında $u$ ve $v$ için elde edilen                                                                                                                                                                                                                                      |          |
|              | $L_2$ ve $L_\infty$ hata normlarının karşılaştırılmaları                                                                                                                                                                                                                                                          | 55       |
| Tablo $5.14$ | Problem 3' ün RGSFY için $h_x = h_y = 0.05$ , Re= 1000, $\Delta t =$                                                                                                                                                                                                                                              |          |
|              | $10^{-3}$ değerleri için farklı $t$ zamanlarında $u$ ve $v$ için elde edilen                                                                                                                                                                                                                                      |          |
|              | $L_2$ ve $L_\infty$ hata normlarının karşılaştırılmaları                                                                                                                                                                                                                                                          | 56       |
| Tablo 6.1    | Problem 1' in $h_r = h_u = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri                                                                                                                                                                                                                                         |          |
|              | için farklı t zamanlarında u için elde edilen $L_2$ ve $L_{\infty}$ hata                                                                                                                                                                                                                                          |          |
|              | normlarının karşılaştırılmaları.                                                                                                                                                                                                                                                                                  | 58       |
| Tablo 6.2    | Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ değerleri                                                                                                                                                                                                                                         |          |
|              | için farklı t zamanlarında v için elde edilen $L_2$ ve $L_{\infty}$ hata                                                                                                                                                                                                                                          |          |
|              | normlarının karşılaştırılmaları.                                                                                                                                                                                                                                                                                  | 58       |
| Tablo 6.3    | Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri                                                                                                                                                                                                                                       |          |
|              | 0                                                                                                                                                                                                                                                                                                                 |          |
|              | için farklı $t$ zamanlarında $u$ için elde edilen $L_2$ ve $L_{\infty}$ hata                                                                                                                                                                                                                                      |          |
|              | için farklı $t$ zamanlarında $u$ için elde edilen $L_2$ ve $L_{\infty}$ hata normlarının karşılaştırılmaları.                                                                                                                                                                                                     | 59       |
| Tablo 6.4    | için farklı $t$ zamanlarında $u$ için elde edilen $L_2$ ve $L_{\infty}$ hata<br>normlarının karşılaştırılmaları<br>Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri                                                                                                                    | 59       |
| Tablo 6.4    | için farklı t zamanlarında u için elde edilen $L_2$ ve $L_{\infty}$ hata<br>normlarının karşılaştırılmaları<br>Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için farklı t zamanlarında v için elde edilen $L_2$ ve $L_{\infty}$ hata                                            | 59       |
| Tablo 6.4    | için farklı $t$ zamanlarında $u$ için elde edilen $L_2$ ve $L_{\infty}$ hata<br>normlarının karşılaştırılmaları<br>Problem 3' ün $h_x = h_y = 0.05$ , Re= 1000, $\Delta t = 10^{-3}$ değerleri<br>için farklı $t$ zamanlarında $v$ için elde edilen $L_2$ ve $L_{\infty}$ hata<br>normlarının karşılaştırılmaları | 59<br>59 |

## SİMGELER VE KISALTMALAR

ASFY : Açık Sonlu Fark Yöntemi,
KSFY : Kapalı Sonlu Fark Yöntemi,
CNSFY : Crank-Nicolson Sonlu Fark Yöntemi,
RGSFY : Rubin-Graves tipi lineerleştirilmiş Sonlu Fark Yaklaşımı,
h : Konum adım uzunluğu,
k : Zaman adım uzunluğu,
Re : Reynolds sayısı.

# 1. GİRİŞ

Mühendis ve bilim adamlarının yaptıkları en önemli görevlerden biri fiziksel olayları modellemektir. İster uzaysal, biyolojik, kimyasal, jeolojik ister mekanik olsun doğadaki hemen hemen her olay fizik veya diğer bilim dallarının kanunları yardımıyla kendine ait büyüklükler arasında cebirsel, diferansiyel ya da integral denklemler yardımıyla tanımlanabilir. Mekanik, termal ve/veya aerodinamik yüklere maruz kalan değişik şekilli delik ve çok sayıda gergiye sahip bir basınç tüpündeki basınç dağılımı; göl, denizsuyu veya atmosferdeki kirleticilerin yoğunluğunun bulunması; kasırga ve şimşek oluşumunu anlamak ve tahmin etmek için hava tahminlerinin simülasyonu mühendislerin ilgilendikleri en önemli pratik problemlerden sadece bazılarıdır. Bu tür problemlerin çoğunun denkleminin türetilmesi o kadar çok zor olmasada, kompleks geometrik ve malzeme yapıları yüzünden tam çözümlerini bulmak genellikle zordur. Bu durumlarda nümerik yöntemler bu denklemlerin çözümlerinin bulunmasında yardımcı olurlar. Nümerik yöntemler verilen bir diferansiyel denklemi genellikle bilgisayar yardımıyla çözülebilecek bir grup cebirsel denklem sistemine dönüştürür. Çoğu diferansiyel denklemlerin çözümü için geliştirilen çok sayıda nümerik yöntemler mevcuttur. Bunlardan biri olan sonlu fark yöntemlerinde, diferansiyel denklemdeki türevlerin yerine çözüm bölgesinde düğüm noktalarındaki değerleri içeren fark denklemleri yazılır. Sonuçta elde edilen cebirsel denklemler sınır şartlarının uygulanmasından sonra düğüm noktalarındaki değerleri elde etmek için çözülürler [2].

Sonlu fark yöntemleri önceden verilen başlangıç ve sınır şartlarına sahip lineer veya lineer olmayan kısmi diferansiyel denklem veya denklem sistemlerinin çözümünde literatürde yaygın olarak kullanıla gelmiştir. Bu tezde 2-boyutlu lineer olmayan coupled Burgers' denklemleminin sonlu fark yöntemleriyle yaklaşık çözümleri elde edilecektir. Literatürde bir boyutlu ve iki boyutlu Burgers' denklemlerinin çözümleri üzerine sonlu fark yöntemleri de dahil olmak üzere farklı yöntemlerle elde edilen çok sayıda çalışma mevcuttur. Fakat 2-boyutlu coupled Burgers' denkleminin sonlu fark yöntemleriyle nümerik çözümleri üzerine yapılan çalışma sayısı daha azdır.

Burger [3] tarafından türbülansı modellemek için kullanılan ve

$$u_t + \mathbf{u}\,u_x = \nu u_{xx}$$

formunda verilen bir boyutlu Burgers' denkleminin analitik olarak çözümüne ilk defa Bateman [4] teşebbüs etti. İki boyutlu Burgers' denklemi ise Khater vd. [5] tarafından

$$u_t + u u_x + u u_y = \nu(u_{xx} + u_{yy})$$

formunda farklı başlangıç ve sınır şartları ile ele alındı.

Bu tezde ise lineer olmayan diferansiyel denklem sistemi sınıfından olan ve

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy})$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

formunda verilen 2-boyutlu coupled Burgers' denkleminin sonlu fark yöntemleriyle nümerik çözümlerinin bulunması amaçlanmaktadır [6]. Bu amaçla, denklem farklı başlangıç ve sınır şartlarıyla verilen üç model problem ile göz önüne alındı. Önce açık, kapalı ve Crank-Nicolson yöntemleriyle model problemlerin nümerik çözümleri elde edildi. Daha sonra denklemdeki lineer olmayan terimler yerine bir lineerleştirme tekniği kullanılarak model problemlerin nümerik çözümleri araştırıldı.

## 2. TEMEL KAVRAMLAR

Tezin bu bölümünde sonraki bölümlerde kullanılacak bazı temel kavramlar hakkında bilgiler verildi.

### 2.1 Klasik Sonlu Fark Yöntemleri

Sonlu Fark Yöntemleri (SFY) genel olarak diferansiyel denklemlerin nümerik çözümlerinin elde edilmesinde kullanılan yöntemlerden biridir. Sonlu fark yöntemleri uygulanırken aşağıda verilen temel adımlar dikkate alınır [7, 8].

1. Problemin çözüm bölgesi düzgün geometrik şekiller içeren kafeslere bölünür ve problemin yaklaşık çözümü her bir kafesin düğüm (*mesh, grid*) noktaları üzerinden hesaplanır.

2. Diferansiyel denklemlerdeki bilinmeyenler ve onların türevleri yerine, Taylor seri açılımından elde edilen uygun sonlu fark yaklaşımları kullanılarak düğüm noktalarındaki çözümlerle ilişkilendirilen sonlu fark yaklaşımları yazılır.

3. Böylece lineer veya lineer olmayan diferansiyel denklemden oluşan başlangıç veya sınır değer probleminin çözümünü bulma problemi fark denklemlerinden oluşan lineer veya lineer olmayan bir cebirsel denklem sisteminin çözümünü bulma problemi halini alır. Elde edilen denklem sistemi direkt veya iteratif yöntemlerden biri yardımı ile çözülerek göz önüne alınan problemin istenilen düğüm noktalarında yaklaşık çözümü bulunur.

4. Problemde verilen başlangıç ve sınır şartlarının yerine uygun fark yaklaşımları yazılarak hesaplanır.

5. Yöntemin geçerliliği için yakınsaklığı, tutarlılığı ve karalılığı incelenir.

x, y ve t bağımsız değişkenler olmak üzere u kısmi diferansiyel denklemin tam çözümü ve U ise kısmi diferansiyel denkleme karşılık gelen sonlu fark denkleminin tam çözümü olsun. Genel olarak sonlu fark yöntemlerinde çözüm bölgesi

 $\Delta x(=hx) x$  yönünde konum adım uzunluğu,  $\Delta y(=hy) y$  yönünde konum adım uzunluğu ve  $\Delta t(=k) t$  yönünde zaman adım uzunluğu olmak üzere kafeslere bölünür.

Örneğin;  $[0, l] \times [0, l] \times [0, \infty)$  yarı açık bölgesi üzerinde  $(x_i, y_i, t_n)$  ile ifade edilen bir düğüm noktası;

$$\begin{aligned} x_i &= i\Delta x = ih_x, & i = 0(1)M, \ (0 = x_0 < x_1 < \dots < x_M = l \\ y_j &= j\Delta y = jh_y, & j = 0(1)N, \ (0 = y_0 < y_1 < \dots < y_N = l \\ t_n &= n\Delta t = nk, & n = 0, 1, \dots, T \end{aligned}$$

olarak verilir. Temsili bir  $P(ih_x, jh_y, nk)$  düğüm noktası üzerinde U(x, y, t) fonksiyonunun noktasal değeri için;

$$U_p,$$
  
 $U(ih_x, jh_y, nk)$ 

veya

$$U_{i,j}^n$$

gösterimlerinden birisi kullanılır. Bu gösterimlerin kullanılmasıyla U fonksiyonunun birinci ve ikinci mertebeden türevlerinin sonlu fark yaklaşımları da ifade edilir.

Kısmi diferansiyel denklemlerde yer alan türevlerin bilgisayarda sayısal hesabı için yaklaşık formda yazılması gerekir. Yaklaşık formda yazılması Taylor Seri açılımı kullanılarak yapılır.

Ilk önce çok değişkenli bir fonksiyon için Taylor seri açılımı kullanılarak birinci mertebeden türev yaklaşımları için ileri fark formülasyonunu elde edelim.

Verilen bir U(x, y, t) çok değişkenli fonsiyonunun  $(x_i + \Delta x, y_j, t_n)$  noktasındaki

değeri Taylor seri açılımı ile

$$U(x_i + \Delta x, y_j, t_n) = U(x_i, y_j, t_n) + (\Delta x)\frac{\partial U}{\partial x} + \frac{(\Delta x)^2}{2!}\frac{\partial^2 U}{\partial x^2} + \frac{(\Delta x)^3}{3!}\frac{\partial^3 U}{\partial x^3} + \dots$$
(2.1.1)

$$= U(x_i, y_j, t_n) + \sum_{n=1}^{\infty} \frac{(\Delta x)^n}{n!} \frac{\partial^n U}{\partial x^n}$$

şeklinde yazılabilir. (2.1.1)' de  $\partial U/\partial x$  terimi yalnız bırakılırsa

$$\frac{\partial U}{\partial x} = \frac{U(x_i + \Delta x, y_j, t_n) - U(x_i, y_j, t_n)}{\Delta x} - \frac{(\Delta x)}{2!} \frac{\partial^2 U}{\partial x^2} - \frac{(\Delta x)^2}{3!} \frac{\partial^3 U}{\partial x^3} - \dots \quad (2.1.2)$$

elde edilir. Burada

$$O(\Delta x) = -\frac{(\Delta x)}{2!} \frac{\partial^2 U}{\partial x^2} - \frac{(\Delta x)^2}{3!} \frac{\partial^3 U}{\partial x^3} + \dots$$

hatayı göstermek üzere (2.1.2) eşitliği

$$\frac{\partial U}{\partial x} = \frac{U(x_i + \Delta x, y_j, t_n) - U(x_i, y_j, t_n)}{\Delta x} + O(\Delta x)$$

olarak yazılabilir. Bu ifade U büyüklüğünün x'e göre birinci türevi için yapılmış birinci dereceden bir yaklaşımdır ve indis formunda

$$\frac{\partial U}{\partial x} = \frac{U_{i+1,j}^n - U_{i,j}^n}{\Delta x} + O(\Delta x)$$
(2.1.3)

şeklinde yazılabilir. Ayrıca (2.1.3) birinci mertebeden türev için ileri fark formülasyonu olarak adlandırılır.

Birinci mertebeden türev yaklaşımı için geri fark formülasyonu elde etmek için Taylor açılımı

$$U(x_i - \Delta x, y_j, t_n) = U(x_i, y_j, t_n) - (\Delta x)\frac{\partial U}{\partial x} + \frac{(\Delta x)^2}{2!}\frac{\partial^2 U}{\partial x^2} - \frac{(\Delta x)^3}{3!}\frac{\partial^3 U}{\partial x^3} + \dots$$
(2.1.4)

yazılır ve yukarıdakine benzer işlemler uygulanırsa

$$\frac{\partial U}{\partial x} = \frac{U_{i,j}^n - U_{i-1,j}^n}{\Delta x} + O(\Delta x)$$

şeklinde birinci mertebeden geri fark formülasyonu elde edilir. İleri ve geri fark için elde edilen Taylor açılımları birbirinden

$$U(x_i + \Delta x, y_j, t_n) - U(x_i - \Delta x, y_j, t_n) = 2(\Delta x)\frac{\partial U}{\partial x} + 3\frac{(\Delta x)^3}{3!}\frac{\partial^3 U}{\partial x^3} + \dots$$

şeklinde çıkartılır ve benzer işlemler uygulanırsa

$$\frac{\partial U}{\partial x} = \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2\Delta x} + O(\Delta x)^2$$

biçiminde merkezi fark formülasyonu elde edilir. Bu formülasyonun ikinci mertebeden olduğuna dikkat edilmelidir.

Şimdi ikinci mertebeden türev yaklaşımları için merkezi fark formülasyonunu Taylor seri açılımını kullanarak elde edelim. Taylor serisinin  $(x_i + 2\Delta x, y_j, t_n)$  ve  $(x_i - 2\Delta x, y_j, t_n)$  noktalarındaki açılımları sırasıyla

$$U(x_{i} + 2\Delta x, y_{j}, t_{n}) = U(x_{i}, y_{j}, t_{n}) + (2\Delta x)\frac{\partial U}{\partial x} + \frac{(2\Delta x)^{2}}{2!}\frac{\partial^{2}U}{\partial x^{2}} + \frac{(2\Delta x)^{3}}{3!}\frac{\partial^{3}U}{\partial x^{3}} + \dots$$

$$(2.1.5)$$

$$U(x_{i} - 2\Delta x, y_{j}, t_{n}) = U(x_{i}, y_{j}, t_{n}) - (2\Delta x)\frac{\partial U}{\partial x} + \frac{(2\Delta x)^{2}}{2!}\frac{\partial^{2}U}{\partial x^{2}} - \frac{(2\Delta x)^{3}}{3!}\frac{\partial^{3}U}{\partial x^{3}} + \dots$$

$$(2.1.6)$$

şeklinde yazılır ve (2.1.6) denklemi 2 ile çarpılır ve (2.1.5) denkleminden çıkartılır

$$U(x_i+2\Delta x,y_j,t_n)-2U(x_i-2\Delta x,y_j,t_n) = -U(x_i,y_j,t_n) + (\Delta x)^2 \frac{\partial^2 U}{\partial x^2} + (\Delta x)^3 \frac{\partial^3 U}{\partial x^3} + \dots$$

ve daha sonra $\partial^2 U/\partial x^2$ ikinci türev terimi yalnız bırakılırsa

$$\frac{\partial^2 U}{\partial x^2} = \frac{U(x_i + 2\Delta x, y_j, t_n) - 2U(x_i - \Delta x, y_j, t_n) + U(x_i, y_j, t_n)}{(\Delta x)^2} + O(\Delta x)$$
(2.1.7)

elde edilir. (2.1.7) indis formunda

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i+2,j}^n - 2U_{i+1,j}^n + U_{i,j}^n}{(\Delta x)^2} + O(\Delta x)$$

şeklinde gösterilir ve ikinci türevin üç nokta ileri fark formülü olarak adlandırılır.

Benzer işlemler (2.1.4) ile verilen  $U(x_i - \Delta x, y_j, t_n)$  ve (2.1.6) ile verilen  $U(x_i - 2\Delta x, y_j, t_n)$  için Taylor seri açılımları arasında yapılırsa

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i,j}^n - 2U_{i-1,j}^n + U_{i-2,j}^n}{(\Delta x)^2} + O(\Delta x)$$

şeklinde ikinci türevin üç nokta geri fark formülü elde edilir.

(2.1.1) ile verilen  $U(x_i + \Delta x, y_j, t_n)$  ve (2.1.4) ile verilen  $U(x_i - \Delta x, y_j, t_n)$  için Taylor seri açılımları toplanarak benzer işlemler uygulanırsa

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i+1,j}^n - 2U_{i,j}^n + U_{i-1,j}^n}{(\Delta x)^2} + O(\Delta x)^2$$

şeklinde ikinci türevin merkezi fark formülü elde edilir [9].

İkinci olarak bir boyutlu fonksiyonlara benzer şekilde iki boyutlu bir  $U = U(x_i, y_j, t_n)$  fonksiyonu için Taylor seri açılımı kullanılarak elde edilen türev yaklaşım formülleri hataları ihmal edilerek aşağıdaki gibi verilebilir.

$$\frac{\partial U}{\partial x} = \frac{U_{i+1,j}^n - U_{i,j}^n}{h_x} \tag{2.1.8}$$

x' e göre birinci mertebeden İki Nokta İleri Fark Formülü

$$\frac{\partial U}{\partial y} = \frac{U_{i,j+1}^n - U_{i,j}^n}{h_y} \tag{2.1.9}$$

y' ye göre birinci mertebeden İki Nokta İleri Fark Formülü

$$\frac{\partial U}{\partial x} = \frac{U_{i,j}^n - U_{i-1,j}^n}{h_x} \tag{2.1.10}$$

 $\boldsymbol{x}$ e göre birinci mertebeden İki Nokta Geri Fark Formülü

$$\frac{\partial U}{\partial y} = \frac{U_{i,j}^n - U_{i,j-1}^n}{h_y} \tag{2.1.11}$$

y' ye göre birinci mertebeden İki Nokta Geri Fark Formülü

$$\frac{\partial U}{\partial x} = \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x}$$
(2.1.12)

x' e göre birinci mertebeden Üç Nokta Merkezi Fark Formülü

$$\frac{\partial U}{\partial y} = \frac{U_{i,j+1}^n - U_{i,j-1}^n}{2h_y}$$
(2.1.13)

y'ye göre birinci mertebeden Üç Nokta Merkezi Fark Formülüdür. Bunun yanında

$$\frac{\partial U}{\partial t} = \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k} \tag{2.1.14}$$

t' ye göre birinci mertebeden İleri Fark Formülü

$$\frac{\partial U}{\partial t} = \frac{U_{i,j}^n - U_{i,j}^{n-1}}{k} \tag{2.1.15}$$

t' ye göre birinci mertebeden Geri Fark Formülüdür.

Son olarak

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i,j}^n - 2U_{i+1,j}^n + U_{i+2,j}^n}{h_x^2} \tag{2.1.16}$$

 $x^{\prime}$ e göre ikinci mertebeden Üç Nokta İleri Fark Formülü

$$\frac{\partial^2 U}{\partial y^2} = \frac{U_{i,j}^n - 2U_{i,j+1}^n + U_{i,j+2}^n}{h_y^2} \tag{2.1.17}$$

y'ye göre ikinci mertebeden Üç Nokta İleri Fark Formülü

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i-2,j}^n - 2U_{i-1,j}^n + U_{i,j}^n}{h_x^2} \tag{2.1.18}$$

 $x^{\prime}$ e göre ikinci mertebeden Üç Nokta Geri Fark Formülü

$$\frac{\partial^2 U}{\partial y^2} = \frac{U_{i,j-2}^n - 2U_{i,j-1}^n + U_{i,j}^n}{h_y^2}$$
(2.1.19)

 $y^{\prime}$ ye göre ikinci mertebeden Üç Nokta Geri Fark Formülü

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2} \tag{2.1.20}$$

x'e göre ikinci mertebeden Üç Nokta Merkezi Fark Formülü

$$\frac{\partial^2 U}{\partial y^2} = \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2}$$
(2.1.21)

y' ye göre ikinci mertebeden Üç Nokta Merkezi Fark Formülüdür.

Bir diferansiyel denklemi sonlu fark formunda ifade etmek için en çok kullanılan Sonlu Fark Yöntemleri şunlardır:

▶ Açık (*Explicit*) Sonlu Fark Yöntemi

- ▶ Kapalı (*Implicit*) Sonlu Fark Yöntemi
- ▶ Crank-Nicolson Sonlu Fark Yöntemi.

Bu yöntemler klasik sonlu fark yöntemleri olarak bilinir [7, 8]. Bu yöntemlerin daha iyi anlaşılabilmesi için  $D = [0, l] \times [0, l] \times [0, \infty)$  bölgesi üzerinde

$$\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}\right) = \frac{1}{K} \frac{\partial U}{\partial t}, \qquad (x, y) \epsilon D, \qquad t > 0 \qquad (2.1.22)$$

olarak verilen iki boyutlu ısı iletim denklemini

$$U(x, y, 0) = U_0(x, y)$$

başlangıç şartı ve

$$U(x, y_0, t) = g_1(x, t) \qquad x_0 \le x \le x_M \qquad t > 0,$$
  

$$U(x, y_N, t) = g_2(x, t) \qquad x_0 \le x \le x_M \qquad t > 0,$$
  

$$U(x_0, y, t) = h_1(y, t) \qquad y_0 \le y \le y_N \qquad t > 0,$$
  

$$U(x_M, y, t) = h_2(y, t) \qquad y_0 \le y \le y_N \qquad t > 0.$$

sınır şartları ile birlikte göz önüne alalım [10].

### 2.1.1 Açık Sonlu Fark Yöntemi (ASFY)

Bu kısımda yukarıda verilen iki boyutlu ısı iletim denklemindeki  $\partial^2 U/\partial x^2$ ,  $\partial^2 U/\partial y^2$  ve  $\partial U/\partial t$  türevleri yerlerine sırasıyla (2.1.20), (2.1.21) ve (2.1.14) eşitlikleri ile verilen

$$\frac{\partial^2 U}{\partial x^2} \cong \frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2},$$
$$\frac{\partial^2 U}{\partial y^2} \cong \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2},$$

ve

$$\frac{\partial U}{\partial t} \cong \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

sonlu fark yaklaşımları hatalar ihmal edilerek yazılırsa ısı iletim denkleminin açık sonlu fark yaklaşımı

$$\frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2} + \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2} = \frac{1}{K} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

şeklinde elde edilir. Bu ifade eşitlik düzenlenirse

$$U_{i,j}^{n+1} = U_{i,j}^n + r_1(U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n) + r_2(U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n)$$
(2.1.23)

(i = 0, 1, 2, ..., M), (j = 0, 1, 2, ..., N) ve (n = 0, 1, 2, ..., T) için şeması elde edilir. Burada  $r_1 = K(k/h_x^2)$  ve  $r_2 = K(k/h_y^2)$  dir. (2.1.23) ile verilen açık sonlu fark şeması yardımıyla  $t_n$  zaman adımında  $U_{i,j}^n$  değerleri kullanılarak  $t_{n+1}$  zaman adımındaki  $U_{i,j}^{n+1}$  değerleri kolayca bulunur.

### 2.1.2 Kapalı Sonlu Fark Yöntemi (KSFY)

Bu kısımda ise (2.1.22) eşitliğinde verilen

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = \frac{1}{K} \frac{\partial U}{\partial t}$$

ısı iletim denklemindeki  $\partial^2 U/\partial x^2$ ,  $\partial^2 U/\partial y^2$  ve  $\partial U/\partial t$  türevleri yerine sırasıyla (2.1.20), (2.1.21) ve (2.1.14) eşitlikleriyle verilen

$$\begin{aligned} \frac{\partial^2 U}{\partial x^2} &\cong \frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2}, \\ \frac{\partial^2 U}{\partial y^2} &\cong \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_y^2}, \end{aligned}$$

ve

$$\frac{\partial U}{\partial t} \cong \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

sonlu fark yaklaşımları yazılırsa problemin kapalı sonlu fark yaklaşımı

$$\frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2} + \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_y^2} = \frac{1}{K} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

şeklinde bulunur. Bu ifade düzenlenirse

$$U_{i,j}^{n+1} - r_1(U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}) - r_2(U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}) = U_{i,j}^n \quad (2.1.24)$$

(i = 0, 1, 2, ..., M), (j = 0, 1, 2, ..., N) ve (n = 0, 1, 2, ..., T) elde edilir. Burada  $r_1 = K(k/h_x^2)$  ve  $r_2 = K(k/h_y^2)$  dir. Bu tezde elde edilen kapalı sonlu fark yaklaşımlarının çözümü için izlenecek yol aşağıda kısaca anlatılmıştır.

(2.1.24) ile verilen kapalı fark şemasını çözmek için ilk önce çözüm bölgesi x yönünde M, y yönünde N kafese ayrıldı. Daha sonra i = 1, 2, ..., M - 1, j = 1, 2, ..., N - 1 için (2.1.24) şeması kullanıldığında

$$A.U^{n+1} = U^n + b$$

$$\widetilde{A}.V^{n+1} = V^n + \widetilde{b}$$

$$(2.1.25)$$

şeklindeki denklem sistemi elde edildi. Bu sistem çözülerek (n + 1). zaman adımındaki U ve V değerleri hesaplandı.

Burada; A ve  $\widetilde{A}$   $(M-1) \times (N-1)$  tipinde,  $U^{n+1}$  ve  $V^{n+1}$   $(N-1) \times 1$  tipinde, b,  $\widetilde{b}$ ,  $U^n$  ve  $V^n$   $(M-1) \times 1$  tipinde matrislerdir. Örneğin, M = N = 4 seçilirse (2.1.25) ile verilen sistemdeki matrisler;

$$A_{i,j} = \left(\frac{1}{k} + 4a\right) \quad i = j = 1, 2, ..., 9$$

$$A_{1,2} = \frac{U_{1,1}^n}{2h} - a \qquad A_{2,1} = -\left(\frac{U_{1,2}^n}{2h} + a\right) \qquad A_{1,4} = \frac{V_{1,1}^n}{2h} - a \qquad A_{4,1} = -\left(\frac{V_{2,1}^n}{2h} + a\right)$$

$$A_{2,3} = \frac{U_{1,2}^n}{2h} - a \qquad A_{3,2} = -\left(\frac{U_{1,3}^n}{2h} + a\right) \qquad A_{2,5} = \frac{V_{1,2}^n}{2h} - a \qquad A_{5,2} = -\left(\frac{V_{2,2}^n}{2h} + a\right)$$

$$A_{4,5} = \frac{U_{2,1}^n}{2h} - a \qquad A_{5,4} = -\left(\frac{U_{2,2}^n}{2h} + a\right) \qquad A_{3,6} = \frac{V_{1,3}^n}{2h} - a \qquad A_{6,3} = -\left(\frac{V_{2,3}^n}{2h} + a\right)$$

$$A_{5,6} = \frac{U_{2,2}^n}{2h} - a \qquad A_{6,5} = -\left(\frac{U_{2,3}^n}{2h} + a\right) \qquad A_{4,7} = \frac{V_{2,1}^n}{2h} - a \qquad A_{6,3} = -\left(\frac{V_{3,1}^n}{2h} + a\right)$$

$$A_{7,8} = \frac{U_{3,1}^n}{2h} - a \qquad A_{8,7} = -\left(\frac{U_{3,2}^n}{2h} + a\right) \qquad A_{5,8} = \frac{V_{2,2}^n}{2h} - a \qquad A_{8,5} = -\left(\frac{V_{3,2}^n}{2h} + a\right)$$

$$A_{8,9} = \frac{U_{3,2}^n}{2h} - a \qquad A_{9,8} = -\left(\frac{U_{3,3}^n}{2h} + a\right) \qquad A_{6,9} = \frac{V_{2,3}^n}{2h} - a \qquad A_{9,6} = -\left(\frac{V_{3,3}^n}{2h} + a\right)$$

biçiminde elde edilir. Burada  $k=\Delta t$  ve  $a=\frac{\varepsilon}{h^2}$ dır. Ayrıca

$$U^{n} = \frac{1}{k} [U_{1,1}^{n}, U_{1,2}^{n}, U_{1,3}^{n}, U_{2,1}^{n}, U_{2,2}^{n}, U_{2,3}^{n}, U_{3,1}^{n}, U_{3,2}^{n}, U_{3,3}^{n}]^{T}$$

$$b = \begin{bmatrix} U_{0,1}^{n+1}(\frac{V_{1,1}^{n}}{2h}+a) + U_{1,0}^{n+1}(\frac{U_{1,1}^{n}}{2h}+a) \\ U_{0,2}^{n+1}(\frac{V_{1,2}^{n}}{2h}+a) \\ U_{0,3}^{n+1}(\frac{V_{1,3}^{n}}{2h}+a) - U_{1,4}^{n+1}(\frac{U_{1,3}^{n}}{2h}-a) \\ U_{2,0}^{n+1}(\frac{U_{2,1}^{n}}{2h}+a) \\ 0 \\ -U_{2,4}^{n+1}(\frac{U_{2,3}^{n}}{2h}-a) \\ -U_{4,1}^{n+1}(\frac{V_{3,1}^{n}}{2h}-a) + U_{3,0}^{n+1}(\frac{U_{3,1}^{n}}{2h}+a) \\ -U_{4,3}^{n+1}(\frac{V_{3,2}^{n}}{2h}-a) - U_{3,4}^{n+1}(\frac{U_{3,3}^{n}}{2h}-a) \end{bmatrix}$$

şeklinde bulunur. Benzer şekilde  $\widetilde{A}$ ,  $V^n$  ve  $\widetilde{b}$  hesaplanır. Daha sonra (2.1.25) ile verilen denklemler bir sistem olarak ortak çözülürse (n+1). zaman adımındaki U ve V değerleri bulunmuş olur. Bu işlem istenilen zaman adımına kadar sürdürülür.

## 2.1.3 Crank-Nicolson Sonlu Fark Yöntemi (CNSFY)

(2.1.22) ısı iletim denkleminin Crank-Nicolson sonlu fark yaklaşımı

$$\frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2} + \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2} = \frac{1}{K} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

ve

$$\frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2} + \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_y^2} = \frac{1}{K} \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k}$$

sırasıyla verilen açık ve kapalı sonlu fark şemalarının ortalamasının alınmasıyla

$$\frac{\frac{1}{K}\frac{U_{i,j}^{n+1} - U_{i,j}^{n}}{k} = \frac{U_{i-1,j}^{n} - 2U_{i,j}^{n} + U_{i+1,j}^{n}}{2h_{x}^{2}} + \frac{U_{i,j-1}^{n} - 2U_{i,j}^{n} + U_{i,j+1}^{n}}{2h_{y}^{2}} + \frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{2h_{x}^{2}} + \frac{U_{i,j-1}^{n-1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_{y}^{2}}$$

şeklinde elde edilir. Bu şema,  $r_1 = K(k/2h_x^2)$  ve  $r_2 = K(k/2h_y^2)$ olmak üzere,

$$U_{i,j}^{n+1} - r_1(U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}) - r_2(U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1})$$
  
=  $U_{i,j}^n + r_1(U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n) - r_2(U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n)$ 

ve

(i = 0, 1, 2, ..., M), (j = 0, 1, 2, ..., N) ve (n = 0, 1, 2, ..., T) olarak yazılabilir. Burada  $U_{i,j}^{n+1}$  değerlerini elde etmek için CNSFY ile verilen sistem kapalı sonlu fark şemasına benzer olarak çözülür.

### 2.1.4 Ağırlıklı Averaj Yöntemi

Bu kısımda ise ısı iletim probleminin ağırlıklı averaj yaklaşımı

$$\frac{U_{i,j}^{n+1} - U_{i,j}^n}{k} = \theta\left(\frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2} + \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_y^2}\right) + (1 - \theta)\left(\frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2} + \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2}\right)$$

şeklinde yazılabilir. Burada $0 \leq \theta \leq 1$ aralığındadır. Bu ağırlıklı averaj yaklaşımı

 $\blacktriangleright \qquad \theta = 0 \qquad \text{için Açık Sonlu Fark Yaklaşımını,}$ 

- $\blacktriangleright$   $\theta=1$ için Kapalı Sonlu Fark Yaklaşımını ve
- ▶  $\theta = \frac{1}{2}$  için Crank-Nicolson Sonlu Fark Yaklaşımını verir.

# 3. 2-BOYUTLU COUPLED BURGERS' DENKLEMİ VE MODEL PROBLEMLER

#### 3.1 Giriş

Bu bölümde

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy})$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

formunda verilen 2-boyutlu lineer olmayan coupled viskoz Burgers' denklemi [6]

$$u(x, y, 0) = \psi_1(x, y); \quad (x, y) \in \Omega$$
$$v(x, y, 0) = \psi_2(x, y); \quad (x, y) \in \Omega$$

başlangıç şartları ve

$$u(x, y, t) = \xi(x, y, t); \quad (x, y) \in \partial\Omega$$
$$v(x, y, t) = \zeta(x, y, t); \quad (x, y) \in \partial\Omega$$

Dirichlet tipi sınır şartları ile ele alındı. Burada  $\Omega = \{(x, y) : a \leq x \leq b, c \leq y \leq d\}$ çözüm bölgesi,  $\partial\Omega$  çözüm bölgesinin sınırı, u(x, y, t) ve v(x, y, t) bulunacak olan hız bileşenleri,  $\psi_1$ ,  $\psi_2$ ,  $\xi$  ve  $\zeta$  önceden verilen bilinen fonksiyonlar,  $\partial u/\partial t$  kararsızlık terimi,  $u\partial u/\partial x$  lineer olmayan konveksiyon terimi,  $(1/\text{Re})(u_{xx} + u_{yy})$  difüzyon terimi ve  $\varepsilon = 1/\text{Re}$  olup, Reynolds sayısıdır.

Iki boyutlu coupled viskoz Burgers' denklemi Navier-Stokes denklemlerinin daha uygun bir formudur. 2-boyutlu coupled Burgers' denklemi;

- ▶ Gaz dinamiği, trafik akışı ve şok dalgalarını modelleme
- ▶ Sığ su dalgalarını araştırma
- ▶ Brusselator'ün kimyasal reaksiyon difüzyon modelini inceleme

gibi çeşitli fiziksel uygulamalarda yaygın olarak kullanılan matematiksel bir modeldir. Denklemin nümerik çözümü kompleks akışkanların hesaplanmasında yöntemlerin geliştirilmesi için ilk ve doğal bir adımdır. Dolayısıyla, hesapsal akışkanlar dinamiğinde yeni yaklaşımları Burgers' denklemine uygulayarak test etmek bir gelenek olmuştur. Bu denklem aynı zamanda çeşitli nümerik algoritmaları test etmek için de kullanılır. Son yıllarda bir boyutlu Burgers' denklemi ve çok boyutlu Burgers' denklem sistemlerinin nümerik çözümleri hem bilim insanları hem de mühendislerin dikkatini çekti ve bu da sonlu fark, sonlu eleman, sınır değer elemanları gibi yöntemlerin kullanılmasına yol açtı [6].

2-boyutlu coupled Burgers' denkleminin analitik çözümü ilk defa Fletcher tarafından Hopf-Cole dönüşümü kullanılarak verildi [11]. Fletcher [12] çalışmasında lineer, kuadratik ve kübik dikdörtgensel sonlu eleman şemaları ile üç, beş ve yedi nokta şemaları için minimum kesme hatalarını karşılaştırmak için orta seviyeden şiddetli iç ve sınır gradyanlarına sahip bir ve iki boyutlu Burgers' denklemlerinin çözümlerini elde etmiştir. Bahadır [13] iki boyutlu Burgers' denklemlerini tam kapalı sonlu fark formunda diskritize etmiş ve nümerik çözümleri elde etmiştir.

Literatürde 2-boyutlu coupled Burgers' denklemi ile ilgili bir takım çalışmalar mevcuttur. Bunlardan bazıları; Soliman [14] varyasyonel iterasyon yöntemi ile 2-boyutlu Burgers' denkleminin ve homojen olmayan coupled Burgers' denkleminin çözümlerini tam olarak elde etti ve Adomian ayrışım yöntemi ile karşılaştırma yaparak kendi yönteminin daha etkin olduğunu gösterdi. Ali vd. [15] 2-boyutlu coupled Burgers' denkleminin nümerik çözümleri için radyal baz fonksiyonları ile birlikte birinci mertebeden doğruluğa sahip ileri fark yaklaşımını kullanarak meshfree teknik uyguladılar. Tamsir ve Srivastava [6] 2-boyutlu coupled Burgers' denkleminin nümerik çözümleri için her bir zaman adımında çözülecek lineer cebirsel fark denklemleri sisteminden oluşan bir şema önererek yarı açık sonlu fark yöntemini kullandılar. Zhu vd. [16] çalışmalarında 2-boyutlu Burgers' denkleminin lineer olmayan fark şemasını nümerik olarak çözmek için Adomian ayrışım yöntemini (ADM) önerdiler. Kheiri ve Jabbari [17] 2-boyutlu coupled Burgers' denkleminin analitik çözümlerini Homotopy analiz ve Homotopy Pade yöntemleri ile elde ettiler. Al-Saif ve Abdul-Hussein [18] analitik çözümleri oluşturmak için komutatif cebir teorisine dayalı birinci mertebeden integral vöntemini 2-boyutlu coupled Burgers' denkleminin tam cözümlerini elde etmek için önerdiler. Aminikhah [19] lineer olmayan 2-boyutlu Burgers' denklemini etkin bir şekilde çözen Laplace dönüşüm yöntemi ile Homotopy pertürbasyon yönteminin yeni bir hibrid yapısını sundu. Kweyu vd. [20] makalelerinde Hopf-Cole dönüşümü ve değişkenlerine ayırma volu ile genel analitik çözümlerden 2-boyutlu Burgers' denklemi için değişik tam başlangıç ve Dirichlet sınır şartları ürettiler. Srivastava vd. [21] düzgün dağılımlı düğüm noktalarına dayalı açık sonlu fark yöntemiyle bir boyutlu Burgers denkleminin çözümlerini elde ettiler. Srivastava vd. [22] düzgün dağılımlı ızgara noktaları üzerinde 2-boyutlu zamana bağlı coupled viskoz Burgers' denkleminin nümerik çözümü için yeni bir logaritmik açık sonlu fark yöntemi sundular. Zhang vd. [23] analitik çözüm kullanarak 2-boyutlu lineer olmayan coupled viskoz Burgers denkleminin tam sonlu fark çözümlerini geliştirdiler. Mittal ve Tripathi [24] modifiye edilmiş bi-kübik fonksiyonları kullanarak lineer olmayan 2-boyutlu parabolik kısmi diferansiyel denklemler için etkin bir nümerik şema geliştirdiler. Zhanlav vd. [25] 2-boyutlu ısı denkleminin çözümü için yüksek mertebeden doğruluğa sahip açık sonlu fark şemasını önerdiler ve önerilen bu nümerik semanın doğruluğunu test etmek için 2-boyutlu coupled Burgers' denkleminin nümerik ve tam çözümlerini karşılaştırdılar. Cristescu [26] 2-boyutlu coupled Burgers' denkleminin nümerik çözümü için Homotopy analiz metodu ve sonlu farklar arasında bir kombinasyonu araştırmayı amaçladı. Saqib vd. [27] çalışmalarında 2-boyutlu zamana bağlı coupled lineer olmayan sistemlerin

nümerik çözümlerini ele aldılar. Wubs ve Goede [28] makalelerinde tam açık yöntemin çözüm sürecindeki kesmeden kaynaklanan açık-kapalı yöntemi göz önüne almışlar ve test problemlerinden birini de 2-boyutlu coupled Burgers' denklemi olarak seçmişlerdir.

Tezde ele alınan yöntemlerin performansını göstermek için üç test problemi göz önüne alındı.

### 3.1.1 Model Problem 1

İlk model problem olarak

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy}),$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

2-boyutlu coupled Burgers' denklemi $\Omega = \{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$ çözüm bölgesi üzerinde, başlangıç ve sınır şartları da Hopf-Cole dönüşümü uygulanmasıyla

$$u(x, y, t) = \frac{3}{4} - \frac{1}{4 \left[1 + \exp((-4x + 4y - t)\text{Re}/32)\right]},$$
  
$$v(x, y, t) = \frac{3}{4} + \frac{1}{4 \left[1 + \exp((-4x + 4y - t)\text{Re}/32)\right]},$$

şeklinde bulunan tam çözümlerden alındı [13].

### 3.1.2 Model Problem 2

İkinci model problem olarak $\Omega = \{(x,y): 0 \leq x \leq 0.5, 0 \leq y \leq 0.5\}$ çözüm bölgesi olmak üzere

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy}),$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

2-boyutlu coupled Burgers'denklemi

$$u(x, y, 0) = \sin(\pi x) + \cos(\pi y),$$
$$v(x, y, 0) = x + y$$

başlangıç şartları ve

$$\begin{aligned} u(0,y,t) &= \cos(\pi y), & u(0.5,y,t) = 1 + \cos(\pi y) \\ v(0,y,t) &= y, & v(0.5,y,t) = 0.5 + y \end{aligned} \right\} & 0 \le y \le 0.5, t \ge 0 \\ u(x,0,t) &= 1 + \sin(\pi x) & u(x,0.5,t) = \sin(\pi x) \\ v(x,0,t) &= x & v(x,0.5,t) = x + 0.5 \end{aligned} \right\} & 0 \le x \le 0.5, t \ge 0 \end{aligned}$$

sınır şartları ile birlikte ele alındı [6]. Bu model problemin tam çözümü olmadığından elde edilen sonuçlar literatürde mevcut olan diğer çalışmalardaki sonuçlarla karşılaştırıldı.

## 3.1.3 Model Problem 3

Üçüncü ve son model problem olarak $\Omega = \{(x,y): 0 \le x \le 1, 0 \le y \le 1\}$ çözüm bölgesi üzerinde

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy})$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

2-boyutlu coupled Burgers' denklemi

$$u(x, y, 0) = \frac{-4\pi \cos(2\pi x) \sin(\pi y)}{\operatorname{Re}(2 + \sin(2\pi x) \sin(\pi y))}, \qquad (x, y)\epsilon\Omega$$
$$v(x, y, 0) = \frac{-2\pi \sin(2\pi x) \cos(\pi y)}{\operatorname{Re}(2 + \sin(2\pi x) \sin(\pi y))}, \qquad (x, y)\epsilon\Omega$$

başlangıç şartları ve

$$\begin{split} u(0,y,t) &= -\frac{2\pi e^{-\frac{5\pi^2 t}{\operatorname{Re}}}\sin(\pi y)}{\operatorname{Re}}, & u(1,y,t) = -\frac{2\pi e^{-\frac{5\pi^2 t}{\operatorname{Re}}}\sin(\pi y)}{\operatorname{Re}} \\ u(x,0,t) &= 0, & u(x,1,t) = 0 \\ v(0,y,t) &= 0, & v(1,y,t) = 0 \\ v(x,0,t) &= -\frac{\pi e^{-\frac{5\pi^2 t}{\operatorname{Re}}}\sin(2\pi x)}{\operatorname{Re}}, & v(x,1,t) = \frac{\pi e^{-\frac{5\pi^2 t}{\operatorname{Re}}}\sin(2\pi x)}{\operatorname{Re}} \\ \end{split} \right\} t \ge 0 \end{split}$$

sınır şartları ile birlikte göz önüne alındı. Bu problemin tam çözümü

$$u(x, y, t) = -\frac{4\pi e^{-\frac{5\pi^2 t}{\text{Re}}}\cos(2\pi x)\sin(\pi y)}{\text{Re}(2+e^{-\frac{5\pi^2 t}{\text{Re}}}\sin(2\pi x)\sin(\pi y))}$$
$$v(x, y, t) = -\frac{2\pi e^{-\frac{5\pi^2 t}{\text{Re}}}\sin(2\pi x)\cos(\pi y)}{\text{Re}(2+e^{-\frac{5\pi^2 t}{\text{Re}}}\sin(2\pi x)\sin(\pi y))}$$

dir [6].

Bu tezde göz önüne alınan ve tam çözümü mevcut olan model problemlere yöntemlerin uygulanmasıyla elde edilen sonlu fark şemalarının doğruluğunu kontrol etmek ve elde edilen nümerik çözümlerin tam çözüme ne kadar yakın olduğunu ölçmek için literatürde

$$L_2 = \sqrt{\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} |U_{i,j} - (u_{tam})_{i,j}|^2}$$

$$L_{\infty} = \max_{i,j} |U_{i,j} - (u_{tam})_{i,j}|$$

formunda tanımlanan hata normları kullanıldı [11].
# 4. KLASİK SONLU FARK YÖNTEMLERİ **ILE MODEL PROBLEMLERIN NÜMERIK** ÇÖZÜMLERİ

Bu bölümde önceki bölümde tanıtılan üç model problemin açık, kapalı ve Crank-Nicolson klasik sonlu fark yöntemleri ile nümerik çözümleri elde edildi. Elde edilen bu nümerik çözümler mevcut tam çözümlerle ve literatürdeki diğer çalışmalarla tablolar halinde karşılaştırıldı.

#### Açık Sonlu Fark Yöntemi (ASFY) ile Çözümü **4.1**

Bu kısımda

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy})$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

biçiminde verilen 2-boyutlu viskoz coupled Burgers' denkleminin açık sonlu fark şemasını elde etmek için denklemlerde bulunan türevler yerine

$$\begin{split} \frac{\partial U}{\partial x} &\cong \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x} \\ \frac{\partial U}{\partial y} &\cong \frac{U_{i,j+1}^n - U_{i,j-1}^n}{2h_y} \\ \frac{\partial V}{\partial x} &\cong \frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_x} \\ \frac{\partial V}{\partial y} &\cong \frac{V_{i,j+1}^n - V_{i,j-1}^n}{2h_y} \\ \frac{\partial U}{\partial t} &\cong \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k} \\ \frac{\partial V}{\partial t} &\cong \frac{V_{i,j}^{n+1} - V_{i,j}^n}{k} \\ \frac{\partial V}{\partial t} &\cong \frac{U_{i-1,j}^n - 2U_{i,j}^n + U_{i+1,j}^n}{h_x^2} \end{split}$$

 $\partial^2$ 

$$\begin{aligned} \frac{\partial^2 U}{\partial y^2} &\cong \frac{U_{i,j-1}^n - 2U_{i,j}^n + U_{i,j+1}^n}{h_y^2} \\ \frac{\partial^2 V}{\partial x^2} &\cong \frac{V_{i-1,j}^n - 2V_{i,j}^n + V_{i+1,j}^n}{h_x^2} \\ \frac{\partial^2 V}{\partial y^2} &\cong \frac{V_{i,j-1}^n - 2V_{i,j}^n + V_{i,j+1}^n}{h_y^2} \end{aligned}$$

sonlu fark yaklaşımları yazılıp bilinmeyen  $U_{i,j}^{n+1}$  ve  $V_{i,j}^{n+1}$  ifadeleri denklemlerde yalnız bırakılacak şekilde gerekli düzenlemeler yapılırsa;

$$\begin{split} U_{i,j}^{n+1} &= U_{i-1,j}^n (\frac{k}{2h_x} U_{i,j}^n + \frac{\varepsilon k}{h_x^2}) + U_{i,j}^n (1 - 2\frac{\varepsilon k}{h_x^2} - 2\frac{\varepsilon k}{h_y^2}) + U_{i+1,j}^n (-\frac{k}{2h_x} U_{i,j}^n + \frac{\varepsilon k}{h_x^2}) \\ &+ U_{i,j-1}^n (\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) + U_{i,j+1}^n (-\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) \end{split}$$

ve

$$\begin{split} V_{i,j}^{n+1} &= V_{i-1,j}^n (\frac{k}{2h_x} U_{i,j}^n + \frac{\varepsilon k}{h_x^2}) + V_{i,j}^n (1 - 2\frac{\varepsilon k}{h_x^2} - 2\frac{\varepsilon k}{h_y^2}) + V_{i+1,j}^n (-\frac{k}{2h_x} U_{i,j}^n + \frac{\varepsilon k}{h_x^2}) \\ &+ V_{i,j-1}^n (\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) + V_{i,j+1}^n (-\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) \end{split}$$

bulunur. Burada i, j = 1(1)M - 1 olmak üzere  $h_x = h_y$ ,  $\varepsilon k/h_x^2 = \varepsilon k/h_y^2 = a$ ,  $k/2h_x = k/2h_x = b$  ve  $\varepsilon = 1/\text{Re}$  alınır ve daha sonra gerekli düzenlemeler yapılırsa;

$$U_{i,j}^{n+1} = U_{i-1,j}^n (bU_{i,j}^n + a) + U_{i,j}^n (1 - 4a) - U_{i+1,j}^n (bU_{i,j}^n - a) + U_{i,j-1}^n (bV_{i,j}^n + a)$$
$$- U_{i,j+1}^n (bV_{i,j}^n - a)$$
$$V_{i,j}^{n+1} = V_{i-1,j}^n (bU_{i,j}^n + a) + V_{i,j}^n (1 - 4a) - V_{i+1,j}^n (bU_{i,j}^n - a) + V_{i,j-1}^n (bV_{i,j}^n + a)$$
$$- V_{i,j+1}^n (bV_{i,j}^n - a)$$

şemaları elde edilir. Bu sonlu fark şemalarında bilinen  $U^n$  ve  $V^n$  değerleri kullanılarak istenilen t zamanındaki  $U^{n+1}$  ve  $V^{n+1}$  bilinmeyen değerleri her üç model problem için de kolayca elde edildi.

### 4.2 Kapalı Sonlu Fark Yöntemi (KSFY) ile Çözümü

Bu kısımda ise

$$u_t + u u_x + v u_y = \varepsilon (u_{xx} + u_{yy})$$
$$v_t + u v_x + v v_y = \varepsilon (v_{xx} + v_{yy})$$

biçiminde verilen 2-boyutlu viskoz coupled Burgers' denkleminin kapalı sonlu fark şemasını elde etmek için denklemlerde bulunan türevler yerine

$$\begin{split} \frac{\partial U}{\partial x} &\cong \frac{U_{i+1,j}^{n+1} - U_{i-1,j}^{n+1}}{2h_x} \\ \frac{\partial U}{\partial y} &\cong \frac{U_{i,j+1}^{n+1} - U_{i,j-1}^{n+1}}{2h_y} \\ \frac{\partial V}{\partial x} &\cong \frac{V_{i+1,j}^{n+1} - V_{i-1,j}^{n+1}}{2h_x} \\ \frac{\partial V}{\partial y} &\cong \frac{V_{i,j+1}^{n+1} - V_{i,j-1}^{n+1}}{2h_y} \\ \frac{\partial U}{\partial t} &\cong \frac{U_{i,j}^{n+1} - U_{i,j}^n}{k} \\ \frac{\partial V}{\partial t} &\cong \frac{V_{i,j}^{n+1} - V_{i,j}^n}{k} \\ \frac{\partial^2 U}{\partial x^2} &\cong \frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2} \\ \frac{\partial^2 V}{\partial y^2} &\cong \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_x^2} \\ \frac{\partial^2 V}{\partial y^2} &\cong \frac{V_{i,j-1}^{n+1} - 2V_{i,j}^{n+1} + V_{i+1,j}^{n+1}}{h_x^2} \\ \frac{\partial^2 V}{\partial y^2} &\cong \frac{V_{i,j-1}^{n+1} - 2V_{i,j}^{n+1} + V_{i,j+1}^{n+1}}{h_y^2} \end{split}$$

sonlu fark yaklaşımları yazılır bilinen  $U_{i,j}^n$  ve  $V_{i,j}^n$  ifadeleri sağ tarafta ve bilinmeyen  $U_{i,j}^{n+1}$  ve  $V_{i,j}^{n+1}$  ifadeleri sol tarafta olacak şekilde yeniden düzenlenirse;

$$\begin{split} U_{i-1,j}^{n+1} &(-\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) + U_{i,j}^{n+1} (1 + 2\frac{\varepsilon k}{h_x^2} + 2\frac{\varepsilon k}{h_y^2}) \\ &+ U_{i+1,j}^{n+1} (\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) - U_{i,j-1}^{n+1} (\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) + U_{i,j+1}^{n+1} (\frac{k}{2h_y} V_{i,j}^n - \frac{\varepsilon k}{h_y^2}) \\ &= U_{i,j}^n \end{split}$$

$$\begin{split} V_{i-1,j}^{n+1} &(-\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) + V_{i,j}^{n+1} (1 + 2\frac{\varepsilon k}{h_x^2} + 2\frac{\varepsilon k}{h_y^2}) \\ &+ V_{i+1,j}^{n+1} (\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) - V_{i,j-1}^{n+1} (\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) + V_{i,j+1}^n (\frac{k}{2h_y} V_{i,j}^n - \frac{\varepsilon k}{h_y^2}) \\ &= V_{i,j}^n \end{split}$$

şemaları bulunur. Burada i, j = 1(1)M - 1 olmak üzere  $h_x = h_y, \varepsilon k/h_x^2 = \varepsilon k/h_y^2 = a$ ,  $k/2h_x = k/2h_y = b$  ve  $\varepsilon = 1/\text{Re}$  alınır ardından gerekli düzenlemeler yapılırsa;

$$-U_{i-1,j}^{n+1}(bU_{i,j}^n+a) + U_{i,j}^{n+1}(1+4a) + U_{i+1,j}^{n+1}(bU_{i,j}^n-a) - U_{i,j-1}^{n+1}(bV_{i,j}^n+a) + U_{i,j+1}^{n+1}(bV_{i,j}^n-a) = U_{i,j}^n$$

ve

$$-V_{i-1,j}^{n+1}(bU_{i,j}^n+a) + V_{i,j}^{n+1}(1+4a) + V_{i+1,j}^{n+1}(bU_{i,j}^n-a) - V_{i,j-1}^{n+1}(bV_{i,j}^n+a) + V_{i,j+1}^{n+1}(bV_{i,j}^n-a) = V_{i,j}^n$$

şemaları elde edilir. Bu sonlu fark şemalarında bilinen  $U^n$  ve  $V^n$  değerleri kullanılarak istenilen t zamanındaki  $U^{n+1}$  ve  $V^{n+1}$  bilinmeyen değerleri her üç model problem için yukarıda verilen kapalı sistemin çözülmesiyle elde edildi.

## 4.3 Crank-Nicolson Sonlu Fark Yöntemi (CNSFY) ile Çözümü

Crank-Nicolson sonlu fark yaklaşımı açık ve kapalı sonlu fark yaklaşımlarının ortalamalarının alınmasıyla elde edilir.

Ilk olarak bilinmeyen U bileşeni için yukarıda verilen

$$U_{i,j}^{n+1} = U_{i-1,j}^n (bU_{i,j}^n + a) + U_{i,j}^n (1 - 4a) - U_{i+1,j}^n (bU_{i,j}^n - a) + U_{i,j-1}^n (bV_{i,j}^n + a) - U_{i,j+1}^n (bV_{i,j}^n - a)$$

ve

açık sonlu fark şeması ve

$$U_{i,j}^{n} = -U_{i-1,j}^{n+1}(bU_{i,j}^{n} + a) + U_{i,j}^{n+1}(1 + 4a) + U_{i+1,j}^{n+1}(bU_{i,j}^{n} - a) - U_{i,j-1}^{n+1}(bV_{i,j}^{n} + a) + U_{i,j+1}^{n+1}(bV_{i,j}^{n} - a)$$

kapalı sonlu fark şemasının ortalamalarının alınmasıyla,  $i,j=1(1)M-1,\,h_x=h_y,$ <br/> $\varepsilon k/2h_x^2=\varepsilon k/2h_y^2=c,\,k/4h_x=k/4h_y=d$  ve $\varepsilon=1/{\rm Re}$ olmak üzere

$$-U_{i-1,j}^{n+1}(dU_{i,j}^n+c) + U_{i,j}^{n+1}(1+4c) + U_{i+1,j}^{n+1}(dU_{i,j}^n-c)$$
  

$$-U_{i,j-1}^{n+1}(dV_{i,j}^n+c) + U_{i,j+1}^{n+1}(dV_{i,j}^n-c)$$
  

$$=U_{i-1,j}^n(dU_{i,j}^n+c) + U_{i,j}^n(1-4c) - U_{i+1,j}^n(dU_{i,j}^n-c)$$
  

$$+U_{i,j-1}^n(dV_{i,j}^n+c) - U_{i,j+1}^n(dV_{i,j}^n-c)$$

Crank-Nicolson sonlu fark şeması elde edilir.

Benzer şekilde bilinmeyen V bileşeni için yukarıda verilen açık ve kapalı şemaların ortalamalarının alınmasıyla;

$$-V_{i-1,j}^{n+1}(dU_{i,j}^{n}+c)+V_{i,j}^{n+1}(1+4c)+V_{i+1,j}^{n+1}(dU_{i,j}^{n}-c)$$
  

$$-V_{i,j-1}^{n+1}(dV_{i,j}^{n}+c)+V_{i,j+1}^{n+1}(dV_{i,j}^{n}-c)$$
  

$$=V_{i-1,j}^{n}(dU_{i,j}^{n}+c)+V_{i,j}^{n}(1-4c)-V_{i+1,j}^{n}(dU_{i,j}^{n}-c)$$
  

$$+V_{i,j-1}^{n}(dV_{i,j}^{n}+c)-V_{i,j+1}^{n}(dV_{i,j}^{n}-c)$$

Crank-Nicolson sonlu fark şeması elde edilir. U ve V bileşenleri için elde edilen Crank-Nicolson sonlu fark şemalarında bilinen  $U^n$  ve  $V^n$  değerleri kullanılarak istenilen t zamanındaki  $U^{n+1}$  ve  $V^{n+1}$  bilinmeyen değerleri her üç model problem için yukarıda verilen kapalı sistemlerin çözülmesiyle elde edildi.

#### 4.4 Nümerik Sonuçlar

Bu kısımda yukarıda elde edilen açık, kapalı ve Crank-Nicolson sonlu fark şemalarının üç model probleme uygulanmasıyla elde edilen sonuçlar verildi. Şimdi ilk olarak Problem 1'in ASFY, KSFY ve CNSFY ile elde edilen nümerik

çözümlerini inceleyelim.

Tablo 4.1: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 2.0 zamanlarında u için ASFY ile elde edilen nümerik çözümleri.

| (x,y)        | t = 0.01   |             | t =               | 0.5         | t =               | t = 2.0     |  |
|--------------|------------|-------------|-------------------|-------------|-------------------|-------------|--|
|              | Nümerik    | Tam         | Nümerik           | Tam         | Nümerik           | Tam         |  |
| (0.1, 0.1)   | 0.623106   | 0.623047    | 0.542999          | 0.543322    | 0.500470          | 0.500482    |  |
| (0.5, 0.1)   | 0.501617   | 0.501622    | 0.500341          | 0.500353    | 0.500003          | 0.500003    |  |
| (0.9, 0.1)   | 0.500011   | 0.500011    | 0.500002          | 0.500002    | 0.500000          | 0.500000    |  |
| (0.3, 0.3)   | 0.623106   | 0.623047    | 0.642685          | 0.543322    | 0.500441          | 0.500482    |  |
| (0.7, 0.3)   | 0.501617   | 0.501622    | 0.500317          | 0.500353    | 0.500003          | 0.500003    |  |
| (0.1, 0.5)   | 0.748272   | 0.748274    | 0.742151          | 0.742214    | 0.555149          | 0.555675    |  |
| (0.5, 0.5)   | 0.623106   | 0.623047    | 0.542500          | 0.543322    | 0.500414          | 0.500482    |  |
| (0.9, 0.5)   | 0.501617   | 0.501622    | 0.500304          | 0.500353    | 0.500003          | 0.500003    |  |
| (0.3, 0.7)   | 0.748272   | 0.748274    | 0.742117          | 0.742214    | 0.554806          | 0.555675    |  |
| (0.7, 0.7)   | 0.623106   | 0.623047    | 0.542454          | 0.543322    | 0.500383          | 0.500482    |  |
| (0.1, 0.9)   | 0.749988   | 0.749988    | 0.749945          | 0.749946    | 0.744197          | 0.744256    |  |
| (0.5, 0.9)   | 0.748272   | 0.748274    | 0.742106          | 0.742214    | 0.554490          | 0.555675    |  |
| (0.9, 0.9)   | 0.623106   | 0.623047    | 0.542273          | 0.543322    | 0.500525          | 0.500482    |  |
| $L_2$        | 3.822248 > | $< 10^{-5}$ | $1.074640 \times$ | $(10^{-3})$ | $1.102389 \times$ | $(10^{-3})$ |  |
| $L_{\infty}$ | 6.071813 > | $< 10^{-5}$ | $2.037839 \times$ | $(10^{-3})$ | $2.256392 \times$ | $(10^{-3})$ |  |

Tablo 4.1' de Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  olmak üzere t = 0.01, 0.5 ve 2.0 zamanlarında u çözümü için açık sonlu fark yöntemiyle elde edilen nümerik sonuçlar tam çözümün bazı noktalardaki değerleri ile karşılaştırıldı ve  $L_2$ ,  $L_\infty$  hata normları ile birlikte sunuldu. Tablodan da görüleceği üzere nümerik çözüm ile tam çözüm birbirleriyle iyi uyum içerisinde olup hata normları oldukça düşüktür. Tablo 4.2' de ise bu problemin aynı parametre ve zaman değerlerinde v çözümü için aynı yöntem ile elde edilen nümerik sonuçları tam çözümü ile karşılaştırıldı ve hesaplanan hata normları ile birlikte verildi. Bu tablodan nümerik ve tam çözümün noktasal değerlerinin birbiriyle uyum içerisinde ve hata normlarının oldukça düşük olduğu açıkça görülmektedir.

Tablo 4.3 ve 4.4' de sırasıyla Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u ve v bileşenlerinin açık sonlu fark yöntemiyle elde edilen nümerik çözümleri bazı noktalarda tam çözümle karşılaştırıldı ve  $L_2$ ,  $L_\infty$  hata normları ile birlikte sunuldu. Reynolds sayısı küçültüldüğünde her iki tablodan da görüleceği üzere nümerik çözüm ile tam çözüm birbirleriyle oldukça iyi uyum içerisinde olup hata normları da kayda değer

Tablo 4.2: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 2.0 zamanlarında v için ASFY ile elde edilen nümerik çözümleri.

| (x,y)        | t = 0.01   |             | t =               | 0.5         | t =        | 2.0         |
|--------------|------------|-------------|-------------------|-------------|------------|-------------|
|              | Nümerik    | Tam         | Nümerik           | Tam         | Nümerik    | Tam         |
| (0.1, 0.1)   | 0.876894   | 0.876953    | 0.957001          | 0.956678    | 0.999530   | 0.999518    |
| (0.5, 0.1)   | 0.998383   | 0.998378    | 0.999659          | 0.999647    | 0.999997   | 0.999997    |
| (0.9, 0.1)   | 0.999989   | 0.999989    | 0.999698          | 0.999998    | 1.000000   | 1.000000    |
| (0.3, 0.3)   | 0.876894   | 0.876953    | 0.857315          | 0.956678    | 0.999559   | 0.999518    |
| (0.7, 0.3)   | 0.998383   | 0.998378    | 0.999683          | 0.999647    | 0.999997   | 0.999997    |
| (0.1, 0.5)   | 0.751728   | 0.751726    | 0.757849          | 0.757786    | 0.944851   | 0.944325    |
| (0.5, 0.5)   | 0.876894   | 0.876953    | 0.957500          | 0.956678    | 0.999586   | 0.999518    |
| (0.9, 0.5)   | 0.998383   | 0.998378    | 0.999696          | 0.999647    | 0.999997   | 0.999997    |
| (0.3, 0.7)   | 0.751728   | 0.751726    | 0.757883          | 0.757786    | 0.945194   | 0.944325    |
| (0.7, 0.7)   | 0.876894   | 0.876953    | 0957546           | 0.956678    | 0.999617   | 0.999518    |
| (0.1, 0.9)   | 0.750012   | 0.750012    | 0.750055          | 0.750054    | 0.755803   | 0.755744    |
| (0.5, 0.9)   | 0.751728   | 0.751726    | 0.757894          | 0.757786    | 0.945510   | 0.944325    |
| (0.9, 0.9)   | 0.876894   | 0.876953    | 0.957727          | 0.956678    | 0.999475   | 0.999518    |
| $L_2$        | 2.744350 > | $< 10^{-5}$ | $7.151904 \times$ | $< 10^{-4}$ | 6.068792 > | $< 10^{-4}$ |
| $L_{\infty}$ | 6.071813 > | $< 10^{-5}$ | $2.037839 \times$ | $(10^{-3})$ | 2.256392 > | $< 10^{-3}$ |

Tablo 4.3: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u için ASFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =      | 0.01             | t =      | 1.0              |
|--------------|----------|------------------|----------|------------------|
|              | Nümerik  | Tam              | Nümerik  | Tam              |
| (0.1, 0.1)   | 0.624805 | 0.624805         | 0.605626 | 0.605626         |
| (0.5, 0.1)   | 0.594202 | 0.594202         | 0.576840 | 0.576840         |
| (0.9, 0.1)   | 0.567082 | 0.567082         | 0.553017 | 0.553017         |
| (0.3, 0.3)   | 0.624805 | 0.624805         | 0.605627 | 0.605626         |
| (0.7, 0.3)   | 0.594202 | 0.594202         | 0.576840 | 0.576840         |
| (0.1, 0.5)   | 0.655431 | 0.655431         | 0.636685 | 0.636685         |
| (0.5, 0.5)   | 0.624805 | 0.624805         | 0.605628 | 0.605626         |
| (0.9, 0.5)   | 0.594202 | 0.594202         | 0.576840 | 0.576840         |
| (0.3, 0.7)   | 0.655431 | 0.655431         | 0.636687 | 0.636685         |
| (0.7, 0.7)   | 0.624805 | 0.624805         | 0.605629 | 0.605626         |
| (0.1, 0.9)   | 0.682611 | 0.682611         | 0.666353 | 0.666353         |
| (0.5, 0.9)   | 0.655431 | 0.655431         | 0.636687 | 0.636685         |
| (0.9, 0.9)   | 0.624805 | 0.624805         | 0.605627 | 0.605626         |
| $L_2$        | 8.466011 | $\times 10^{-8}$ | 2.330390 | $\times 10^{-6}$ |
| $L_{\infty}$ | 6.767452 | $\times 10^{-8}$ | 2.789705 | $\times 10^{-6}$ |

| (x,y)        | t =        | 0.01             | t =        | 1.0              |
|--------------|------------|------------------|------------|------------------|
|              | Nümerik    | Tam              | Nümerik    | Tam              |
| (0.1, 0.1)   | 0.875195   | 0.875195         | 0.894374   | 0.894374         |
| (0.5, 0.1)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.9, 0.1)   | 0.932918   | 0.932918         | 0.946983   | 0.946983         |
| (0.3, 0.3)   | 0.875195   | 0.875195         | 0.894373   | 0.894374         |
| (0.7, 0.3)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.1, 0.5)   | 0.844569   | 0.844569         | 0.863315   | 0.863315         |
| (0.5, 0.5)   | 0.875195   | 0.875195         | 0.894372   | 0.894374         |
| (0.9, 0.5)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.3, 0.7)   | 0.844569   | 0.844569         | 0.863313   | 0.863315         |
| (0.7, 0.7)   | 0.875195   | 0.875195         | 0.894371   | 0.894374         |
| (0.1, 0.9)   | 0.817389   | 0.817389         | 0.833647   | 0.833647         |
| (0.5, 0.9)   | 0.844569   | 0.844569         | 0.863313   | 0.863315         |
| (0.9, 0.9)   | 0.875195   | 0.875195         | 0.894373   | 0.894374         |
| $L_2$        | 6.047263 > | $\times 10^{-8}$ | 1.583412 : | $\times 10^{-6}$ |
| $L_{\infty}$ | 6.767452 > | $\times 10^{-8}$ | 2.789705 : | $\times 10^{-6}$ |

Tablo 4.4: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için ASFY ile elde edilen nümerik çözümleri.

ölçüde küçüktür.

Tamsir ve Srivastava Ref. [6] ile verilen çalışmalarında Problem 1' in KSFY şeması kullanarak nümerik çözümlerini verdiler. Bu çalışmada aynı şema kullanılarak aynı sonuçlar elde edilmiş ve Tablo 4.5-4.8' de gösterilmiştir. Ayrıca Ref. [6]' da olmamasına rağmen, bu kısımda elde ettiğimiz  $L_2$ ,  $L_{\infty}$  hata normları da bu tablolarda verildi ve bu tablolardan hata normlarının oldukça küçük olduğu görüldü.

Tablo 4.9 ve 4.10' da Problem 1' in CNSFY yöntemiyle  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında elde edilen nümerik sonuçlar tam çözümle ve Ref. [6]' da verilenlerle karşılaştırıldı ve  $L_2$ ,  $L_{\infty}$ hata normları ile birlikte sunuldu. Her iki tablodaki noktasal sonuçlar incelendiğinde CNSFY kullanılarak elde edilen sonuçların tam çözüm ve Ref. [6]' dakilerle oldukça iyi uyum içinde olduğu açıkça görülür.

Problem 1' in davranışını incelemek için denklemde bulunan Reynolds sayısı Re= 10 olarak seçildi ve CNSFY ile elde edilen sonuçlar  $h_x = h_y = 0.05$ ,

Tablo 4.5: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u için KSFY ile elde edilen nümerik çözümlerinin Ref. [6] ile karşılaştırılması.

| (x,y)        |                  | t = 0.01   |          |                  | t = 1.0    |          |
|--------------|------------------|------------|----------|------------------|------------|----------|
|              | Nümerik          | Nümerik[6] | Tam      | Nümerik          | Nümerik[6] | Tam      |
| (0.1, 0.1)   | 0.623106         | 0.623106   | 0.623047 | 0.510307         | 0.510307   | 0.510522 |
| (0.5, 0.1)   | 0.501617         | 0.501617   | 0.501622 | 0.500072         | 0.500072   | 0.500074 |
| (0.9, 0.1)   | 0.500011         | 0.500011   | 0.500011 | 0.500000         | 0.500000   | 0.500000 |
| (0.3, 0.3)   | 0.623106         | 0.623106   | 0.623047 | 0.509824         | 0.509824   | 0.510522 |
| (0.7, 0.3)   | 0.501617         | 0.501617   | 0.501622 | 0.500067         | 0.500067   | 0.500074 |
| (0.1, 0.5)   | 0.748272         | 0.748272   | 0.748274 | 0.716947         | 0.716947   | 0.716759 |
| (0.5, 0.5)   | 0.623106         | 0.623106   | 0.623047 | 0.509499         | 0.509499   | 0.510522 |
| (0.9, 0.5)   | 0.501617         | 0.501617   | 0.501622 | 0.500063         | 0.500063   | 0.500074 |
| (0.3, 0.7)   | 0.748272         | 0.748272   | 0.748274 | 0.717266         | 0.717266   | 0.716759 |
| (0.7, 0.7)   | 0.623106         | 0.603106   | 0.623047 | 0.509314         | 0.509314   | 0.510522 |
| (0.1, 0.9)   | 0.749988         | 0.749988   | 0.749988 | 0.749738         | 0.749738   | 0.749742 |
| (0.5, 0.9)   | 0.748272         | 0.748272   | 0.748274 | 0.717530         | 0.717530   | 0.716759 |
| (0.9, 0.9)   | 0.623106         | 0.623106   | 0.623047 | 0.509172         | 0.509172   | 0.510522 |
| $L_2$        | $3.82320 \times$ | $10^{-5}$  |          | $1.34134 \times$ | $10^{-3}$  |          |
| $L_{\infty}$ | $6.10057 \times$ | $10^{-5}$  |          | $2.91545 \times$ | $10^{-3}$  |          |

Tablo 4.6: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için KSFY ile elde edilen nümerik çözümlerinin Ref. [6] ile karşılaştırılması.

| (x, y)       |                  | t = 0.01   |          |                  | t = 1.0   |          |
|--------------|------------------|------------|----------|------------------|-----------|----------|
|              | Nümerik          | Nümerik[6] | Tam      | Nümerik          | [6]       | Tam      |
| (0.1, 0.1)   | 0.876894         | 0.876894   | 0.876953 | 0.989693         | 0.989693  | 0.989478 |
| (0.5, 0.1)   | 0.998383         | 0.998383   | 0.998378 | 0.999928         | 0.999928  | 0.999926 |
| (0.9, 0.1)   | 0.999989         | 0.999989   | 0.999989 | 1.000000         | 1.000000  | 1.000000 |
| (0.3, 0.3)   | 0.876894         | 0.876894   | 0.876953 | 0.990176         | 0.990176  | 0.989478 |
| (0.7, 0.3)   | 0.998383         | 0.998383   | 0.998378 | 0.999933         | 0.999933  | 0.999926 |
| (0.1, 0.5)   | 0.751728         | 0.751728   | 0.751726 | 0.783053         | 0.783053  | 0.783241 |
| (0.5, 0.5)   | 0.876894         | 0.876894   | 0.876953 | 0.990501         | 0.990501  | 0.989478 |
| (0.9, 0.5)   | 0.998383         | 0.998383   | 0.998378 | 0.999937         | 0.999937  | 0.999926 |
| (0.3, 0.7)   | 0.751728         | 0.751728   | 0.751726 | 0.782734         | 0.782734  | 0.783241 |
| (0.7, 0.7)   | 0.876894         | 0.876894   | 0.876953 | 0.990686         | 0.990686  | 0.989478 |
| (0.1, 0.9)   | 0.750012         | 0.750012   | 0.750012 | 0.750262         | 0.750262  | 0.750258 |
| (0.5, 0.9)   | 0.751728         | 0.751728   | 0.751726 | 0.782470         | 0.782470  | 0.783241 |
| (0.9, 0.9)   | 0.876894         | 0.876894   | 0.876953 | 0.990828         | 0.990828  | 0.989478 |
| $L_2$        | $2.74504 \times$ | $10^{-5}$  |          | $8.30257 \times$ | $10^{-4}$ |          |
| $L_{\infty}$ | $6.10057 \times$ | $10^{-5}$  |          | $2.91545 \times$ | $10^{-3}$ |          |

Tablo 4.7: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında *u* için KSFY ile elde edilen nümerik çözümleri.

| (x, y)       |                  | t = 0.01   |          |                  | t = 1.0    |          |
|--------------|------------------|------------|----------|------------------|------------|----------|
| (w, g)       | Nümerik          | Nümerik[6] | Tam      | Nümerik          | Nümerik[6] | Tam      |
| (0.1, 0.1)   | 0.624805         | 0.624805   | 0.624805 | 0.605626         | 0.605626   | 0.605626 |
| (0.5, 0.1)   | 0.594202         | 0.594202   | 0.594202 | 0.576840         | 0.576840   | 0.576840 |
| (0.9, 0.1)   | 0.567082         | 0.567082   | 0.567082 | 0.553017         | 0.553017   | 0.553017 |
| (0.3, 0.3)   | 0.624805         | 0.624805   | 0.624805 | 0.605627         | 0.605627   | 0.605626 |
| (0.7, 0.3)   | 0.594202         | 0.594202   | 0.594202 | 0.576840         | 0.576840   | 0.576840 |
| (0.1, 0.5)   | 0.655431         | 0.655431   | 0.655431 | 0.636685         | 0.636685   | 0.636685 |
| (0.5, 0.5)   | 0.624805         | 0.624805   | 0.624805 | 0.605628         | 0.605628   | 0.605626 |
| (0.9, 0.5)   | 0.594202         | 0.594202   | 0.594202 | 0.576840         | 0.576840   | 0.576840 |
| (0.3, 0.7)   | 0.655431         | 0.655431   | 0.655431 | 0.636687         | 0.636687   | 0.636685 |
| (0.7, 0.7)   | 0.624805         | 0.624805   | 0.624805 | 0.605629         | 0.605629   | 0.605626 |
| (0.1, 0.9)   | 0.682611         | 0.682611   | 0.682611 | 0.666353         | 0.666353   | 0.666353 |
| (0.5, 0.9)   | 0.655431         | 0.655431   | 0.655431 | 0.636687         | 0.636687   | 0.636685 |
| (0.9, 0.9)   | 0.624805         | 0.624805   | 0.624805 | 0.605628         | 0.605628   | 0.605626 |
| $L_2$        | $8.83457 \times$ | $10^{-8}$  |          | $2.48955 \times$ | $10^{-6}$  |          |
| $L_{\infty}$ | $6.98907 \times$ | $10^{-8}$  |          | $2.95592 \times$ | $10^{-6}$  |          |

| (x,y)        |                   | t = 0.01    |          |                  | t = 1.0    |          |
|--------------|-------------------|-------------|----------|------------------|------------|----------|
|              | Nümerik           | Nümerik[6]  | Tam      | Nümerik          | Nümerik[6] | Tam      |
| (0.1, 0.1)   | 0.875195          | 0.875195    | 0.875195 | 0.894374         | 0.894374   | 0.894374 |
| (0.5, 0.1)   | 0.905798          | 0.905798    | 0.905798 | 0.923160         | 0.923160   | 0.923160 |
| (0.9, 0.1)   | 0.932918          | 0.932918    | 0.932918 | 0.946983         | 0.946983   | 0.946983 |
| (0.3, 0.3)   | 0.875195          | 0.875195    | 0.875195 | 0.894373         | 0.894373   | 0.894374 |
| (0.7, 0.3)   | 0.905798          | 0.905798    | 0.905798 | 0.923160         | 0.923160   | 0.923160 |
| (0.1, 0.5)   | 0.844569          | 0.844569    | 0.844569 | 0.863315         | 0.863315   | 0.863315 |
| (0.5, 0.5)   | 0.875195          | 0.875195    | 0.875195 | 0.894372         | 0.894372   | 0.894374 |
| (0.9, 0.5)   | 0.905798          | 0.905798    | 0.905798 | 0.923160         | 0.923160   | 0.923160 |
| (0.3, 0.7)   | 0.844569          | 0.844569    | 0.844569 | 0.863313         | 0.863313   | 0.863315 |
| (0.7, 0.7)   | 0.875195          | 0.875195    | 0.875195 | 0.894371         | 0.894371   | 0.894374 |
| (0.1, 0.9)   | 0.817389          | 0.817389    | 0.817389 | 0.833647         | 0.833647   | 0.833647 |
| (0.5, 0.9)   | 0.844569          | 0.844569    | 0.844569 | 0.863313         | 0.863313   | 0.863315 |
| (0.9, 0.9)   | 0.875195          | 0.875195    | 0.875195 | 0.894372         | 0.894372   | 0.894374 |
| $L_2$        | $6.310525 \times$ | $(10^{-8})$ |          | $1.69156 \times$ | $10^{-6}$  |          |
| $L_{\infty}$ | 6.989075 ×        | $(10^{-8})$ |          | $2.95592 \times$ | $10^{-6}$  |          |

Tablo 4.8: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için KSFY ile elde edilen nümerik çözümleri.

Tablo 4.9: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6] ile karşılaştırılması.

| (x,y)        |            | t = 0.01    |          |                   | t = 1.0     |          |
|--------------|------------|-------------|----------|-------------------|-------------|----------|
|              | Nümerik    | Nümerik[6]  | Tam      | Nümerik           | Nümerik[6]  | Tam      |
| (0.1, 0.1)   | 0.623106   | 0.623106    | 0.623047 | 0.510307          | 0.510307    | 0.510522 |
| (0.5, 0.1)   | 0.501617   | 0.501617    | 0.501622 | 0.500072          | 0.500072    | 0.500074 |
| (0.9, 0.1)   | 0.500011   | 0.500011    | 0.500011 | 0.500000          | 0.500000    | 0.500000 |
| (0.3, 0.3)   | 0.623106   | 0.623106    | 0.623047 | 0.509823          | 0.509824    | 0.510522 |
| (0.7, 0.3)   | 0.501617   | 0.501617    | 0.501622 | 0.500067          | 0.500067    | 0.500074 |
| (0.1, 0.5)   | 0.748272   | 0.748272    | 0.748274 | 0.716948          | 0.716947    | 0.716759 |
| (0.5, 0.5)   | 0.623106   | 0.623106    | 0.623047 | 0.509497          | 0.509499    | 0.510522 |
| (0.9, 0.5)   | 0.501617   | 0.501617    | 0.501622 | 0.500063          | 0.500063    | 0.500074 |
| (0.3, 0.7)   | 0.748272   | 0.748272    | 0.748274 | 0.717267          | 0.717266    | 0.716759 |
| (0.7, 0.7)   | 0.623106   | 0.623106    | 0.623047 | 0.509311          | 0.509314    | 0.510522 |
| (0.1, 0.9)   | 0.749988   | 0.749988    | 0.749988 | 0.749738          | 0.749738    | 0.749742 |
| (0.5, 0.9)   | 0.748272   | 0.748272    | 0.748274 | 0.717532          | 0.717530    | 0.716759 |
| (0.9, 0.9)   | 0.623106   | 0.623106    | 0.623047 | 0.509170          | 0.509170    | 0.510522 |
| $L_2$        | 3.822706 × | $< 10^{-5}$ |          | $1.341393 \times$ | $10^{-3}$   |          |
| $L_{\infty}$ | 6.086191 × | $< 10^{-5}$ |          | $2.903955 \times$ | $(10^{-3})$ |          |

Tablo 4.10: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6] ile karşılaştırılması.

| (x,y)        |            | t = 0.01    |          |                   | t = 1.0    |          |
|--------------|------------|-------------|----------|-------------------|------------|----------|
|              | Nümerik    | Nümerik[6]  | Tam      | Nümerik           | Nümerik[6] | Tam      |
| (0.1, 0.1)   | 0.876894   | 0.876894    | 0.876953 | 0.989693          | 0.989693   | 0.989478 |
| (0.5, 0.1)   | 0.998383   | 0.998383    | 0.998378 | 0.999928          | 0.999928   | 0.999926 |
| (0.9, 0.1)   | 0.999989   | 0.999989    | 0.999989 | 1.000000          | 1.000000   | 1.000000 |
| (0.3, 0.3)   | 0.876894   | 0.876894    | 0.876953 | 0.990177          | 0.990176   | 0.989478 |
| (0.7, 0.3)   | 0.998383   | 0.998383    | 0.998378 | 0.999933          | 0.999933   | 0.999926 |
| (0.1, 0.5)   | 0.751728   | 0.751728    | 0.751726 | 0.783052          | 0.783053   | 0.783241 |
| (0.5, 0.5)   | 0.876894   | 0.876894    | 0.876953 | 0.990503          | 0.990501   | 0.989478 |
| (0.9, 0.5)   | 0.998383   | 0.998383    | 0.998378 | 0.999937          | 0.999937   | 0.999926 |
| (0.3, 0.7)   | 0.751728   | 0.751728    | 0.751726 | 0.782733          | 0.782734   | 0.783241 |
| (0.7, 0.7)   | 0.876894   | 0.876894    | 0.876953 | 0.990689          | 0.990686   | 0.989478 |
| (0.1, 0.9)   | 0.750012   | 0.750012    | 0.750012 | 0.750262          | 0.750262   | 0.750258 |
| (0.5, 0.9)   | 0.751728   | 0.751728    | 0.751726 | 0.782468          | 0.782470   | 0.783241 |
| (0.9, 0.9)   | 0.876894   | 0.876894    | 0.876953 | 0.990830          | 0.990828   | 0.989478 |
| $L_2$        | 2.744679 × | $(10^{-5})$ |          | $8.302825 \times$ | $10^{-4}$  |          |
| $L_{\infty}$ | 6.086191 × | $(10^{-5})$ |          | $2.903955 \times$ | $10^{-3}$  |          |

| (x,y)        | t =        | 0.01             | t =        | 1.0              |
|--------------|------------|------------------|------------|------------------|
|              | Nümerik    | Tam              | Nümerik    | Tam              |
| (0.1, 0.1)   | 0.624805   | 0.624805         | 0.605626   | 0.605626         |
| (0.5, 0.1)   | 0.594202   | 0.594202         | 0.576840   | 0.576840         |
| (0.9, 0.1)   | 0.567082   | 0.567082         | 0.553017   | 0.553017         |
| (0.3, 0.3)   | 0.624805   | 0.624805         | 0.605627   | 0.605626         |
| (0.7, 0.3)   | 0.594202   | 0.594202         | 0.576840   | 0.576840         |
| (0.1, 0.5)   | 0.655431   | 0.655431         | 0.636685   | 0.636685         |
| (0.5, 0.5)   | 0.624805   | 0.624805         | 0.605628   | 0.605626         |
| (0.9, 0.5)   | 0.594202   | 0.594202         | 0.576840   | 0.576840         |
| (0.3, 0.7)   | 0.655431   | 0.655431         | 0.636687   | 0.636685         |
| (0.7, 0.7)   | 0.624805   | 0.624805         | 0.605629   | 0.605626         |
| (0.1, 0.9)   | 0.682611   | 0.682611         | 0.666353   | 0.666353         |
| (0.5, 0.9)   | 0.655431   | 0.655431         | 0.636687   | 0.636685         |
| (0.9, 0.9)   | 0.624805   | 0.624805         | 0.605627   | 0.605626         |
| $L_2$        | 8.649162 > | $\times 10^{-8}$ | 2.409775 > | $\times 10^{-6}$ |
| $L_{\infty}$ | 6.878261 > | $\times 10^{-8}$ | 2.872069 > | $\times 10^{-6}$ |

Tablo 4.11: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u için CNSFY ile elde edilen nümerik çözümleri.

Tablo 4.12: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için CNSFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =        | 0.01             | t =        | 1.0              |
|--------------|------------|------------------|------------|------------------|
|              | Nümerik    | Tam              | Nümerik    | Tam              |
| (0.1, 0.1)   | 0.875195   | 0.875195         | 0.894374   | 0.894374         |
| (0.5, 0.1)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.9, 0.1)   | 0.932918   | 0.932918         | 0.946983   | 0.946983         |
| (0.3, 0.3)   | 0.875195   | 0.875195         | 0.894373   | 0.894374         |
| (0.7, 0.3)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.1, 0.5)   | 0.844569   | 0.844569         | 0.863315   | 0.863315         |
| (0.5, 0.5)   | 0.875195   | 0.875195         | 0.894372   | 0.894374         |
| (0.9, 0.5)   | 0.905798   | 0.905798         | 0.923160   | 0.923160         |
| (0.3, 0.7)   | 0.844569   | 0.844569         | 0.863313   | 0.863315         |
| (0.7, 0.7)   | 0.875195   | 0.875195         | 0.894371   | 0.894374         |
| (0.1, 0.9)   | 0.817389   | 0.817389         | 0.833647   | 0.833647         |
| (0.5, 0.9)   | 0.844569   | 0.844569         | 0.863313   | 0.863315         |
| (0.9, 0.9)   | 0.875195   | 0.875195         | 0.894373   | 0.894374         |
| $L_2$        | 6.178088 > | $\times 10^{-8}$ | 1.637351 > | $\times 10^{-6}$ |
| $L_{\infty}$ | 6.878261 > | $\times 10^{-8}$ | 2.872070 > | $\times 10^{-6}$ |

|          |                                                                                                         | u                                                                                                                                                                                                                                                                                                                   |                                                        |
|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Nümerik  | Nümerik[13]                                                                                             | Nümerik[29]                                                                                                                                                                                                                                                                                                         | Nümerik[29]N=40                                        |
| 0.960816 | 0.96650                                                                                                 | 0.95691                                                                                                                                                                                                                                                                                                             | 0.96066                                                |
| 0.970640 | 1.02970                                                                                                 | 0.95616                                                                                                                                                                                                                                                                                                             | 0.96852                                                |
| 0.844383 | 0.84449                                                                                                 | 0.84257                                                                                                                                                                                                                                                                                                             | 0.84104                                                |
| 0.869119 | 0.87631                                                                                                 | 0.86399                                                                                                                                                                                                                                                                                                             | 0.86866                                                |
| 0.678638 | 0.67809                                                                                                 | 0.67667                                                                                                                                                                                                                                                                                                             | 0.67792                                                |
| 0.773943 | 0.79792                                                                                                 | 0.76876                                                                                                                                                                                                                                                                                                             | 0.77254                                                |
| 0.546989 | 0.54601                                                                                                 | 0.54408                                                                                                                                                                                                                                                                                                             | 0.54543                                                |
| 0.587350 | 0.58874                                                                                                 | 0.58778                                                                                                                                                                                                                                                                                                             | 0.58564                                                |
|          | Nümerik<br>).960816<br>).970640<br>).844383<br>).869119<br>).678638<br>).773943<br>).546989<br>).587350 | Nümerik         Nümerik[13]           ).960816         0.96650           ).970640         1.02970           ).844383         0.84449           ).869119         0.87631           ).678638         0.67809           ).773943         0.79792           ).546989         0.54601           ).587350         0.58874 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Tablo 4.13: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için ASFY ile elde edilen nümerik çözümleri ile bu çözümlerin Ref. [13, 29] ile karşılaştırılması.

 $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında Tablo 4.11 ve 4.12' de sunuldu. Bu tablolardan Reynolds sayısının bu seçimine karşılık u ve v çözümleri için hesaplanan noktasal değerlerin tam çözüme daha fazla yakın olduğu  $L_2$ ,  $L_{\infty}$ hata normlarının oldukça küçülmesiyle de görülmektedir.

Sonuç olarak, Problem 1' in ASFY, KSFY ve CNSFY ile farklı parametre değerleri ve Reynolds sayıları için elde edilen nümerik sonuçlar yukarıda verilen Tablo 4.1-4.12' de sunuldu. Bu tablolardan elde edilen nümerik sonuçların tam çözüm ile oldukça uyum içinde olduğu ve bu yöntemler için elde edilen  $L_2$ ,  $L_{\infty}$ hata normlarının da birbirlerine oldukça yakın olduğu görüldü.

Şimdi de ikinci olarak, Problem 2' nin ASFY, KSFY ve CNSFY ile elde edilen nümerik sonuçlarını inceleyelim.

Tablo 4.13 ve 4.14' de sırasıyla Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleriyle t = 0.625 zamanında u ve v için ASFY ile elde edilen nümerik sonuçları tam kapalı yöntem kullanan Ref. [13] ve kübik spline fonksiyon tekniğine dayalı iki yeni algoritma kullanan Ref. [29]' de N = 20 ve 40 için verilenlerle karşılaştırıldı. Her iki tablodan ASFY ile elde edilen nümerik sonuçların Ref. [13, 29]' de verilenlerle oldukça iyi uyum içinde oldukları görülmektedir.

| (x,y)       |          |             | v           |                                |
|-------------|----------|-------------|-------------|--------------------------------|
|             | Nümerik  | Nümerik[13] | Nümerik[29] | $N \ddot{u} merik [29] N = 40$ |
| (0.15, 0.1) | 0.086537 | 0.09020     | 0.10177     | 0.08612                        |
| (0.3, 0.1)  | 0.077333 | 0.10690     | 0.13287     | 0.07712                        |
| (0.1, 0.2)  | 0.178903 | 0.17972     | 0.18503     | 0.17828                        |
| (0.2, 0.2)  | 0.162634 | 0.16777     | 0.18169     | 0.16202                        |
| (0.1, 0.3)  | 0.261786 | 0.26222     | 0.26560     | 0.26094                        |
| (0.3, 0.3)  | 0.216238 | 0.23497     | 0.25142     | 0.21542                        |
| (0.15, 0.4) | 0.314844 | 0.31753     | 0.32084     | 0.31360                        |
| (0.2, 0.4)  | 0.299024 | 0.30371     | 0.30927     | 0.29776                        |

Tablo 4.14: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v için ASFY ile elde edilen nümerik çözümleri ile bu çözümlerin Ref. [13, 29] ile karşılaştırılması.

Tablo 4.15: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için ASFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | u           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.97146 | 0.97146    | 0.96688     | 0.97258     |
| (0.3, 0.1) | 1.15281 | 1.15280    | 1.14827     | 1.16214     |
| (0.2, 0.2) | 0.86307 | 0.86308    | 0.85911     | 0.86281     |
| (0.4, 0.2) | 0.97978 | 0.97984    | 0.97637     | 0.96483     |
| (0.1, 0.3) | 0.66316 | 0.66316    | 0.66019     | 0.66318     |
| (0.3, 0.3) | 0.77227 | 0.77232    | 0.76932     | 0.77030     |
| (0.2, 0.4) | 0.58179 | 0.58181    | 0.57966     | 0.58070     |
| (0.4, 0.4) | 0.75850 | 0.75860    | 0.75678     | 0.74435     |

Tablo 4.16: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v için ASFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | v           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.09869 | 0.09869    | 0.09824     | 0.09773     |
| (0.3, 0.1) | 0.14158 | 0.14158    | 0.14112     | 0.14039     |
| (0.2, 0.2) | 0.16754 | 0.16754    | 0.16681     | 0.16660     |
| (0.4, 0.2) | 0.17108 | 0.17110    | 0.17065     | 0.17397     |
| (0.1, 0.3) | 0.26378 | 0.26378    | 0.26261     | 0.26294     |
| (0.3, 0.3) | 0.22653 | 0.22655    | 0.22576     | 0.22463     |
| (0.2, 0.4) | 0.32850 | 0.32851    | 0.32745     | 0.32402     |
| (0.4, 0.4) | 0.32498 | 0.32501    | 0.32441     | 0.31822     |

Tablo 4.17: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için KSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)       |         |            | u           |             |
|-------------|---------|------------|-------------|-------------|
|             | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.15, 0.1) | 0.96870 | 0.96870    | 0.96650     | 0.95691     |
| (0.3, 0.1)  | 1.03203 | 1.03200    | 1.02970     | 0.95616     |
| (0.1, 0.2)  | 0.84619 | 0.86178    | 0.84449     | 0.84257     |
| (0.2, 0.2)  | 0.87813 | 0.87813    | 0.87631     | 0.86399     |
| (0.1, 0.3)  | 0.67920 | 0.67920    | 0.67809     | 0.67667     |
| (0.3, 0.3)  | 0.79945 | 0.79945    | 0.79792     | 0.76876     |
| (0.15, 0.4) | 0.54675 | 0.66039    | 0.54601     | 0.54408     |
| (0.2, 0.4)  | 0.58958 | 0.58958    | 0.58874     | 0.58778     |

Tablo 4.18: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v için KSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)       |         |            | v           |             |
|-------------|---------|------------|-------------|-------------|
|             | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.15, 0.1) | 0.09043 | 0.09043    | 0.09020     | 0.10177     |
| (0.3, 0.1)  | 0.10728 | 0.10728    | 0.10690     | 0.13287     |
| (0.1, 0.2)  | 0.18010 | 0.17295    | 0.17972     | 0.18503     |
| (0.2, 0.2)  | 0.16816 | 0.16816    | 0.16777     | 0.18169     |
| (0.1, 0.3)  | 0.26268 | 0.26268    | 0.26222     | 0.26560     |
| (0.3, 0.3)  | 0.23550 | 0.23550    | 0.23497     | 0.25142     |
| (0.15, 0.4) | 0.31799 | 0.29022    | 0.31753     | 0.32084     |
| (0.2, 0.4)  | 0.30418 | 0.30418    | 0.30371     | 0.30927     |

Problem 2' nin farklı bir Reynolds sayısında fiziksel davranışını incelemek için Re= 50 alındı. Bu amaçla Tablo 4.15 ve 4.16' da  $h_x = h_y = 0.025$ ,  $\Delta t = 10^{-4}$ değerleri için t = 0.625 zamanında u ve v için ASFY yöntemiyle elde edilen nümerik sonuçlar Ref. [6, 13, 29]' de verilen noktasal değerlerle karşılaştırıldı. u ve v çözümleri için verilen her iki tablodan da ASFY ile elde edilen nümerik sonuçların karşılaştırma yapılan referanslardaki sonuçlarla uyum içinde olduğu açıktır.

Problem 2' nin sırasıyla Re= 500 ve 50 için u ve v çözümlerinin KSFY ile elde edilen sonuçları ile aynı yöntemi kullanan Ref. [6] ve farklı yöntemler kullanarak hesaplanan ve Ref. [13, 29]' de verilen sonuçlarla karşılaştırılmaları

Tablo 4.19: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için KSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | u           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.97146 | 0.97146    | 0.96688     | 0.97258     |
| (0.3, 0.1) | 1.15282 | 1.15280    | 1.14827     | 1.16214     |
| (0.2, 0.2) | 0.86308 | 0.86308    | 0.85911     | 0.86281     |
| (0.4, 0.2) | 0.97984 | 0.97984    | 0.97637     | 0.96483     |
| (0.1, 0.3) | 0.66316 | 0.66316    | 0.66019     | 0.66318     |
| (0.3, 0.3) | 0.77232 | 0.77232    | 0.76932     | 0.77030     |
| (0.2, 0.4) | 0.58181 | 0.58181    | 0.57966     | 0.58070     |
| (0.4, 0.4) | 0.75860 | 0.75860    | 0.75678     | 0.74435     |

Tablo 4.20: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanlarında v için KSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | v           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.09869 | 0.09869    | 0.09824     | 0.09773     |
| (0.3, 0.1) | 0.14158 | 0.14158    | 0.14112     | 0.14039     |
| (0.2, 0.2) | 0.16754 | 0.16754    | 0.16681     | 0.16660     |
| (0.4, 0.2) | 0.17110 | 0.17110    | 0.17065     | 0.17397     |
| (0.1, 0.3) | 0.26378 | 0.26378    | 0.26261     | 0.26294     |
| (0.3, 0.3) | 0.22655 | 0.22655    | 0.22576     | 0.22463     |
| (0.2, 0.4) | 0.32851 | 0.32851    | 0.32745     | 0.32402     |
| (0.4, 0.4) | 0.32501 | 0.32501    | 0.32441     | 0.31822     |

Tablo 4.21: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | u           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.96870 | 0.96870    | 0.96650     | 0.95691     |
| (0.3, 0.1) | 1.03202 | 1.03200    | 1.02970     | 0.95616     |
| (0.2, 0.2) | 0.84619 | 0.86178    | 0.84449     | 0.84257     |
| (0.4, 0.2) | 0.87814 | 0.87813    | 0.87631     | 0.86399     |
| (0.1, 0.3) | 0.67920 | 0.67920    | 0.67809     | 0.67667     |
| (0.3, 0.3) | 0.79947 | 0.79945    | 0.79792     | 0.76876     |
| (0.2, 0.4) | 0.54674 | 0.66039    | 0.54601     | 0.54408     |
| (0.4, 0.4) | 0.58959 | 0.58958    | 0.58874     | 0.58778     |

Tablo 4.22: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x, y)     | v       |            |             |             |  |
|------------|---------|------------|-------------|-------------|--|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |  |
| (0.1, 0.1) | 0.09043 | 0.09043    | 0.09020     | 0.10177     |  |
| (0.3, 0.1) | 0.10728 | 0.10728    | 0.10690     | 0.13287     |  |
| (0.2, 0.2) | 0.18010 | 0.17295    | 0.17972     | 0.18503     |  |
| (0.4, 0.2) | 0.16816 | 0.16816    | 0.16777     | 0.18169     |  |
| (0.1, 0.3) | 0.26268 | 0.26268    | 0.26222     | 0.26560     |  |
| (0.3, 0.3) | 0.23550 | 0.23550    | 0.23497     | 0.25142     |  |
| (0.2, 0.4) | 0.31799 | 0.29022    | 0.31753     | 0.32084     |  |
| (0.4, 0.4) | 0.30419 | 0.30418    | 0.30371     | 0.30927     |  |

Tablo 4.17-4.20' de sunuldu. Reynolds sayısının her iki değeri için de hesaplanan nümerik sonuçların karşılaştırma yapılan Ref. [13, 29] çalışmalarda verilen noktasal değerlerle oldukça yakın olduğu görüldü. Her ne kadar Ref. [6]' da kullanılan yöntem aynı olsa da, referans çalışmada verilen çoğu noktasal değerlerin aynı olmasına karşın bazı noktasal değerlerde sonuçlarda yazım hatasından kaynaklanan farklılıklar olduğu görüldü.

Tablo 4.21 ve 4.22' de sırasıyla Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için CNSFY ile t = 0.625 zamanında elde edilen sırasıyla uve v çözümleri ile Ref. [6, 13, 29]' de verilenlerle karşılaştırıldı. Her iki tablodan da Re= 500 için elde edilen nümerik sonuçların referanslarda verilenlerle uyum

Tablo 4.23: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | u           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.97146 | 0.97146    | 0.96688     | 0.97258     |
| (0.3, 0.1) | 1.15282 | 1.15280    | 1.14827     | 1.16214     |
| (0.2, 0.2) | 0.86307 | 0.86308    | 0.85911     | 0.86281     |
| (0.4, 0.2) | 0.97981 | 0.97984    | 0.97637     | 0.96483     |
| (0.1, 0.3) | 0.66316 | 0.66316    | 0.66019     | 0.66318     |
| (0.3, 0.3) | 0.77230 | 0.77232    | 0.76932     | 0.77030     |
| (0.2, 0.4) | 0.58180 | 0.58181    | 0.57966     | 0.58070     |
| (0.4, 0.4) | 0.75855 | 0.75860    | 0.75678     | 0.74435     |

Tablo 4.24: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v için CNSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29] ile karşılaştırılması.

| (x,y)      |         |            | v           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.09869 | 0.09869    | 0.09824     | 0.09773     |
| (0.3, 0.1) | 0.14158 | 0.14158    | 0.14112     | 0.14039     |
| (0.2, 0.2) | 0.16754 | 0.16754    | 0.16681     | 0.16660     |
| (0.4, 0.2) | 0.17109 | 0.17110    | 0.17065     | 0.17397     |
| (0.1, 0.3) | 0.26378 | 0.26378    | 0.26261     | 0.26294     |
| (0.3, 0.3) | 0.22654 | 0.22655    | 0.22576     | 0.22463     |
| (0.2, 0.4) | 0.32851 | 0.32851    | 0.32745     | 0.32402     |
| (0.4, 0.4) | 0.32499 | 0.32501    | 0.32441     | 0.31822     |

| (x,y)        | t =                     | 0.01      | t =                     | t = 0.5                 |                         | t = 1.0                 |  |
|--------------|-------------------------|-----------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|              | Nümerik                 | Tam       | Nümerik                 | Tam                     | Nümerik                 | Tam                     |  |
| (0.1, 0.1)   | -0.001439               | -0.001439 | -0.001408               | -0.001408               | -0.001376               | -0.001376               |  |
| (0.5, 0.1)   | 0.001941                | 0.001941  | 0.001895                | 0.001894                | 0.001849                | 0.001848                |  |
| (0.9, 0.1)   | -0.001727               | -0.001727 | -0.001682               | -0.001682               | -0.001638               | -0.001637               |  |
| (0.3, 0.3)   | 0.001134                | 0.001134  | 0.001114                | 0.001114                | 0.001094                | 0.001094                |  |
| (0.7, 0.3)   | 0.002551                | 0.002551  | 0.002458                | 0.002453                | 0.002368                | 0.002359                |  |
| (0.1, 0.5)   | -0.003927               | -0.003927 | -0.003854               | -0.003854               | -0.003780               | -0.003781               |  |
| (0.5, 0.5)   | 0.006280                | 0.006280  | 0.006130                | 0.006130                | 0.005981                | 0.005981                |  |
| (0.9, 0.5)   | -0.007194               | -0.007194 | -0.006960               | -0.006953               | -0.006731               | -0.006718               |  |
| (0.3, 0.7)   | 0.001134                | 0.001134  | 0.001114                | 0.001114                | 0.001094                | 0.001094                |  |
| (0.7, 0.7)   | 0.002551                | 0.002551  | 0.002458                | 0.002453                | 0.002368                | 0.002359                |  |
| (0.1, 0.9)   | -0.001439               | -0.001439 | -0.001408               | -0.001408               | -0.001376               | -0.001376               |  |
| (0.5, 0.9)   | 0.001941                | 0.001941  | 0.001895                | 0.001894                | 0.001849                | 0.001848                |  |
| (0.9, 0.9)   | -0.001727               | -0.001727 | -0.001682               | -0.001682               | -0.001638               | -0.001637               |  |
| $L_2$        | $2.2056 \times 10^{-5}$ |           | $1.0288 \times 10^{-1}$ | $1.0288 \times 10^{-3}$ |                         | $1.9240 \times 10^{-3}$ |  |
| $L_{\infty}$ | $2.8195 \times 10^{-5}$ | -7        | $1.2635 \times 10^{-1}$ | -5                      | $2.2887 \times 10^{-1}$ | -5                      |  |

Tablo 4.25: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u için ASFY ile elde edilen nümerik çözümleri.

içinde olduğu görüldü. Bu problemin Reynolds 50 değeri için parametrelerin aynı değerlerinde hesaplanan sonuçlarının aynı referans çalışmalarla karşılaştırmaları Tablo 4.23 ve 4.24' de verildi. Reynolds sayısının bu değeri için de noktasal değerlerin referans çalışmalardakilerle uyum içinde olduğu görülmektedir.

Sonuç olarak Problem 2' nin ASFY, KSFY ve CNSFY ile hesaplanan nümerik sonuçları bu problemin tam çözümü mevcut olmadığından sadece bazı referans çalışmalardaki noktasal değerlerle karşılaştırıldı. Her üç yöntem içinde elde edilen nümerik sonuçların referans çalışmalarla uyum içinde olduğu görüldü.

Son ve üçüncü olarak, Problem 3' ün ASFY, KSFY ve CNSFY ile elde edilen nümerik sonuçlarına bakalım.

Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamalarında u ve v için ASFY ile elde edilen nümerik çözümleri ile tam çözümün karşılaştırılması  $L_2$ ,  $L_\infty$  hata normları ile birlikte Tablo 4.25 ve 4.26' da sunuldu. Tablolardan görüleceği üzere u ve v bileşenlerinin nümerik çözümleri ile tam çözümleri birbirleriyle oldukça iyi uyum içerisinde ve hata normları oldukça düşüktür.

Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u ve v için KSFY ile elde edilen nümerik çözümleri

| (x,y)        | t = 0.01                 |           | t =                     | t = 0.5   |                         | t = 1.0   |  |
|--------------|--------------------------|-----------|-------------------------|-----------|-------------------------|-----------|--|
|              | Nümerik                  | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |  |
| (0.1, 0.1)   | -0.016028                | -0.016027 | -0.012825               | -0.012813 | -0.001539               | -0.001539 |  |
| (0.5, 0.1)   | -0.000001                | -0.000000 | -0.000013               | -0.000000 | -0.000001               | -0.000000 |  |
| (0.9, 0.1)   | 0.019212                 | 0.019212  | 0.014793                | 0.014770  | 0.001830                | 0.001830  |  |
| (0.3, 0.3)   | -0.012637                | -0.012638 | -0.010547               | -0.010551 | -0.001223               | -0.001224 |  |
| (0.7, 0.3)   | 0.028321                 | 0.028315  | 0.019761                | 0.019619  | 0.002643                | 0.002637  |  |
| (0.1, 0.5)   | -0.000000                | -0.000000 | -0.000000               | -0.000000 | -0.000000               | -0.000000 |  |
| (0.5, 0.5)   | -0.000000                | -0.000000 | -0.000000               | -0.000000 | -0.000000               | -0.000000 |  |
| (0.9, 0.5)   | 0.000000                 | 0.000000  | 0.000000                | 0.000000  | 0.000000                | 0.000000  |  |
| (0.3, 0.7)   | 0.012637                 | 0.012638  | 0.010547                | 0.010551  | 0.001223                | 0.001224  |  |
| (0.7, 0.7)   | -0.028321                | -0.028315 | -0.019761               | -0.019619 | -0.002643               | -0.002637 |  |
| (0.1, 0.9)   | 0.016028                 | 0.016027  | 0.012825                | 0.012813  | 0.001539                | 0.001539  |  |
| (0.5, 0.9)   | 0.000001                 | 0.000000  | 0.000013                | 0.000000  | 0.000001                | 0.000000  |  |
| (0.9, 0.9)   | -0.019212                | -0.019212 | -0.014793               | -0.014770 | -0.001830               | -0.001830 |  |
| $L_2$        | $1.2471 \times 10^{-1}$  | -4        | $3.7432 \times 10^{-5}$ | -3        | $1.1292 \times 10^{-1}$ | -3        |  |
| $L_{\infty}$ | $9.0080 \times 10^{-10}$ | -6        | $1.7461 \times 10^{-1}$ | -4        | $7.3589 \times 10^{-1}$ | -6        |  |

Tablo 4.26: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında v için ASFY ile elde edilen nümerik çözümleri.

Tablo 4.27: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u için KSFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =                     | 0.01      | t =                     | 0.5       | t =                     | t = 1.0   |  |
|--------------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|--|
|              | Nümerik                 | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |  |
| (0.1, 0.1)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |  |
| (0.5, 0.1)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |  |
| (0.9, 0.1)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |  |
| (0.3, 0.3)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |  |
| (0.7, 0.3)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |  |
| (0.1, 0.5)   | -0.003927               | -0.003927 | -0.003854               | -0.003854 | -0.003780               | -0.003781 |  |
| (0.5, 0.5)   | 0.006280                | 0.006280  | 0.006130                | 0.006130  | 0.005981                | 0.005981  |  |
| (0.9, 0.5)   | -0.007194               | -0.007194 | -0.006960               | -0.006953 | -0.006731               | -0.006718 |  |
| (0.3, 0.7)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |  |
| (0.7, 0.7)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |  |
| (0.1, 0.9)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |  |
| (0.5, 0.9)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |  |
| (0.9, 0.9)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |  |
| $L_2$        | $2.2108 \times 10^{-5}$ | -5        | $1.0313 \times 10^{-1}$ | -3        | $1.9289 \times 10^{-1}$ | -3        |  |
| $L_{\infty}$ | $2.8246 \times 10^{-5}$ | -7        | $1.2665 \times 10^{-1}$ | -5        | $2.2943 \times 10^{-1}$ | -5        |  |

Tablo 4.28: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında v için KSFY ile elde edilen nümerik çözümleri.

| (x, y)       | t =                     | 0.01      | t =                     | t = 0.5   |                         | t = 1.0   |  |
|--------------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|--|
|              | Nümerik                 | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |  |
| (0.1, 0.1)   | -0.001609               | -0.001609 | -0.001574               | -0.001574 | -0.001539               | -0.001539 |  |
| (0.5, 0.1)   | -0.000000               | -0.000000 | -0.000000               | -0.000000 | -0.000001               | -0.000000 |  |
| (0.9, 0.1)   | 0.001931                | 0.001931  | 0.001880                | 0.001880  | 0.001830                | 0.001830  |  |
| (0.3, 0.3)   | -0.001268               | -0.001268 | -0.001246               | -0.001246 | -0.001223               | -0.001224 |  |
| (0.7, 0.3)   | 0.002852                | 0.002852  | 0.002746                | 0.002743  | 0.002643                | 0.002637  |  |
| (0.1, 0.5)   | -0.000000               | -0.000000 | -0.000000               | -0.000000 | 0.000000                | -0.000000 |  |
| (0.5, 0.5)   | -0.000000               | -0.000000 | 0.000000                | -0.000000 | -0.000000               | -0.000000 |  |
| (0.9, 0.5)   | 0.000000                | 0.000000  | 0.000000                | 0.000000  | 0.000000                | 0.000000  |  |
| (0.3, 0.7)   | 0.001268                | 0.001268  | 0.001246                | 0.001246  | 0.001223                | 0.001224  |  |
| (0.7, 0.7)   | -0.002852               | -0.002852 | -0.002746               | -0.002743 | -0.002643               | -0.002637 |  |
| (0.1, 0.9)   | 0.001609                | 0.001609  | 0.001574                | 0.001574  | 0.001539                | 0.001539  |  |
| (0.5, 0.9)   | 0.000000                | 0.000000  | 0.000000                | 0.000000  | 0.000001                | 0.000000  |  |
| (0.9, 0.9)   | -0.001931               | -0.001931 | -0.001880               | -0.001880 | -0.001830               | -0.001830 |  |
| $L_2$        | $1.2862 \times 10^{-5}$ | -5        | $6.0288 \times 10^{-5}$ | -4        | $1.1333 \times 10^{-1}$ | -3        |  |
| $L_{\infty}$ | $9.3521 \times 10^{-5}$ | -8        | $4.1488 \times 10^{-5}$ | -6        | $7.3822 \times 10^{-5}$ | -6        |  |

| (x,y)        | t =                     | 0.01      | t =                     | 0.5       | t =                     | t = 1.0   |  |
|--------------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|--|
|              | Nümerik                 | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |  |
| (0.1, 0.1)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |  |
| (0.5, 0.1)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |  |
| (0.9, 0.1)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |  |
| (0.3, 0.3)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |  |
| (0.7, 0.3)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |  |
| (0.1, 0.5)   | -0.003927               | -0.003927 | -0.003854               | -0.003854 | -0.003780               | -0.003781 |  |
| (0.5, 0.5)   | 0.006280                | 0.006280  | 0.006130                | 0.006130  | 0.005981                | 0.005981  |  |
| (0.9, 0.5)   | -0.007194               | -0.007194 | -0.006960               | -0.006953 | -0.006731               | -0.006718 |  |
| (0.3, 0.7)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |  |
| (0.7, 0.7)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |  |
| (0.1, 0.9)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |  |
| (0.5, 0.9)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |  |
| (0.9, 0.9)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |  |
| $L_2$        | $2.2082 \times 10^{-5}$ | -5        | $1.0301 \times 10^{-1}$ | -3        | $1.9265 \times 10^{-1}$ | -3        |  |
| $L_{\infty}$ | $2.8221 \times 10^{-5}$ | -7        | $1.2650 \times 10^{-1}$ | -5        | $2.2915 \times 10^{-1}$ | -5        |  |

Tablo 4.29: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u için CNSFY ile elde edilen nümerik çözümleri.

Tablo 4.30: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında v için CNSFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =                     | 0.01      | t =                     | 0.5                     | t =                     | t = 1.0                 |  |
|--------------|-------------------------|-----------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|              | Nümerik                 | Tam       | Nümerik                 | Tam                     | Nümerik                 | Tam                     |  |
| (0.1, 0.1)   | -0.001609               | -0.001609 | -0.001574               | -0.001574               | -0.001539               | -0.001539               |  |
| (0.5, 0.1)   | -0.000000               | -0.000000 | -0.000000               | -0.000000               | -0.000001               | -0.000000               |  |
| (0.9, 0.1)   | 0.001931                | 0.001931  | 0.001880                | 0.001880                | 0.001830                | 0.001830                |  |
| (0.3, 0.3)   | -0.001268               | -0.001268 | -0.001246               | -0.001246               | -0.001223               | -0.001224               |  |
| (0.7, 0.3)   | 0.002852                | 0.002852  | 0.002743                | 0.002743                | 0.002643                | 0.002637                |  |
| (0.1, 0.5)   | -0.000000               | -0.000000 | -0.000000               | -0.000000               | 0.000000                | -0.000000               |  |
| (0.5, 0.5)   | -0.000000               | -0.000000 | 0.000000                | -0.000000               | -0.000000               | -0.000000               |  |
| (0.9, 0.5)   | 0.000000                | 0.000000  | 0.000000                | 0.000000                | 0.000000                | 0.000000                |  |
| (0.3, 0.7)   | 0.001268                | 0.001268  | 0.001246                | 0.001246                | 0.001223                | 0.001224                |  |
| (0.7, 0.7)   | -0.002852               | -0.002852 | -0.002746               | -0.002743               | -0.002643               | -0.002637               |  |
| (0.1, 0.9)   | 0.001609                | 0.001609  | 0.001574                | 0.001574                | 0.001539                | 0.001539                |  |
| (0.5, 0.9)   | 0.000000                | 0.000000  | 0.000000                | 0.000000                | 0.000001                | 0.000000                |  |
| (0.9, 0.9)   | -0.001931               | -0.001931 | -0.001880               | -0.001880               | -0.001830               | -0.001830               |  |
| $L_2$        | $1.2840 \times 10^{-5}$ |           | $6.0180 \times 10^{-5}$ | $6.0180 \times 10^{-4}$ |                         | $1.1312 \times 10^{-3}$ |  |
| $L_{\infty}$ | $9.3384 \times 10^{-5}$ | -8        | $4.1425 \times 10^{-1}$ | -6                      | $7.3706 \times 10^{-1}$ | -6                      |  |

ile tam çözümün karşılaştırılması  $L_2$ ,  $L_\infty$  hata normları ile birlikte Tablo 4.27 ve 4.28' de verildi. Tablolardan KSFY ile elde edilen hata normlarının ASFY ile elde edilen hata normlarıyla uyum içinde olduğu anlaşılmaktadır. Ayrıca bu problem Ref. [6]' da aynı şema kullanılarak çözülmüş ve çözümler sadece grafikler halinde sunulmuştur. Dolayısıyla, bu yöntem için verilen tablolarda bu çalışma ile noktasal karşılaştırma yapılamamıştır.

Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u ve v için CNSFY ile elde edilen nümerik çözümleri ile tam çözümün karşılaştırılması  $L_2$ ,  $L_\infty$  hata normları ile birlikte Tablo 4.29 ve 4.30' da verildi. Bu yöntemle hem u hem de v için elde edilen  $L_2$  ve  $L_\infty$  hata normlarının ASFY ve KSFY ile elde edilenlerle uyum içinde olduğu tablolardan görülmektedir.

Sonuç olarak, Problem 3' ün ASFY, KSFY ve CNSFY ile elde edilen nümerik sonuçları incelendiğinde tam çözümle oldukça uyum içinde olduğu ve  $L_2$ ,  $L_{\infty}$ hata normlarının da oldukça küçük olduğu görüldü. Ayrıca yöntemler birbiri arasında karşılaştırıldığında üç yönteminde birbirlerine yakın sonuçlar verdiği görülmektedir.

# 5. BİR LİNEERLEŞTİRME TEKNİĞİ İLE MODEL PROBLEMLERİN NÜMERİK ÇÖZÜMLERİ

## 5.1 Rubin-Graves Tipi Lineerleştirilmiş Sonlu Fark Yaklaşımı (RGSFY)

Tezin bu bölümünde

$$U_t + UU_x + VU_y = \varepsilon (U_{xx} + U_{yy})$$
$$V_t + UV_x + VV_y = \varepsilon (V_{xx} + V_{yy})$$

biçiminde ele alınan 2-boyutlu coupled Burgers' denklemindeki  $UU_x$ ,  $VU_y$ ,  $UV_x$  ve  $VV_y$  lineer olmayan terimleri için Rubin-Graves [1] tipi lineerleştirme tekniği kullanıldı ve Bölüm 3' de tanıtılan farklı başlangıç ve sınır şartlarına sahip üç model problem için nümerik çözümler elde edildi.

Şimdi yukarıda verilen 2-boyutlu viskoz coupled Burgers' denklemindeki  $U_t$ yerine  $U_t \cong (U_{i,j}^{n+1} - U_{i,j}^n)/k$  ve  $V_t$  yerine  $V_t \cong (V_{i,j}^{n+1} - V_{i,j}^n)/k$  ile  $UU_x$ ,  $VU_y$ ,  $UV_x$ ve  $VV_y$  lineer olmayan terimleri için sırasıyla

$$\begin{aligned} UU_x &\cong U_{i,j}^{n+1} \left[ \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x} \right] + U_{i,j}^n \left[ \frac{U_{i+1,j}^{n+1} - U_{i-1,j}^{n+1}}{2h_x} \right] - U_{i,j}^n \left[ \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x} \right] \\ VU_y &\cong V_{i,j}^{n+1} \left[ \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_y} \right] + V_{i,j}^n \left[ \frac{U_{i+1,j}^{n+1} - U_{i-1,j}^{n+1}}{2h_y} \right] - V_{i,j}^n \left[ \frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_y} \right] \\ UV_x &\cong U_{i,j}^{n+1} \left[ \frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_x} \right] + U_{i,j}^n \left[ \frac{V_{i+1,j}^{n+1} - V_{i-1,j}^{n+1}}{2h_x} \right] - U_{i,j}^n \left[ \frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_x} \right] \\ VV_y &\cong V_{i,j}^{n+1} \left[ \frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_y} \right] + V_{i,j}^n \left[ \frac{V_{i+1,j}^{n+1} - V_{i-1,j}^{n+1}}{2h_y} \right] - V_{i,j}^n \left[ \frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_y} \right] \end{aligned}$$

şeklinde verilen Rubin-Graves tipi lineerleştirme tekniği kullanılırsa ve $U_{xx}$ ,  $U_{yy}$ ,  $V_{xx}$  ve  $V_{yy}$  türevleri yerine ise sırasıyla

$$U_{xx} \cong \frac{U_{i-1,j}^{n+1} - 2U_{i,j}^{n+1} + U_{i+1,j}^{n+1}}{h_x^2}$$
$$U_{yy} \cong \frac{U_{i,j-1}^{n+1} - 2U_{i,j}^{n+1} + U_{i,j+1}^{n+1}}{h_y^2}$$
$$V_{xx} \cong \frac{V_{i-1,j}^{n+1} - 2V_{i,j}^{n+1} + V_{i+1,j}^{n+1}}{h_x^2}$$
$$V_{yy} \cong \frac{V_{i,j-1}^{n+1} - 2V_{i,j}^{n+1} + V_{i,j+1}^{n+1}}{h_y^2}$$

merkezi kapalı sonlu fark yaklaşımları yazılır ve (n + 1)' li terimler sol tarafta ve (n)' li terimler sağ tarafta olacak şekilde yeniden düzenlenirse

$$\begin{split} U_{i-1,j}^{n+1} &(-\frac{k}{2h_x}U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) + U_{i,j}^{n+1} (1 + k(\frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x}) + 4\frac{\varepsilon k}{h_x^2}) \\ &+ U_{i+1,j}^{n+1} (\frac{k}{2h_x}U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) + U_{i,j-1}^{n+1} (-\frac{k}{2h_y}V_{i,j}^n - \frac{\varepsilon k}{h_y^2}) \\ &+ U_{i,j+1}^{n+1} (\frac{k}{2h_y}V_{i,j}^n - \frac{\varepsilon k}{h_y^2}) + V_{i,j}^{n+1} (\frac{k(U_{i,j+1}^n - U_{i,j-1}^n)}{2h_y}) \\ &= U_{i,j}^n \left[ 1 + k(\frac{U_{i+1,j}^n - U_{i-1,j}^n}{2h_x}) \right] + V_{i,j}^n \left[ k(\frac{U_{i,j+1}^n - U_{i,j-1}^n}{2h_y}) \right] \end{split}$$

ve

$$\begin{split} V_{i-1,j}^{n+1} &(-\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) + V_{i,j}^{n+1} (1 + k(\frac{V_{i,j+1}^n - V_{i,j-1}^n}{2h_y}) + 4\frac{\varepsilon k}{h_x^2}) \\ &+ V_{i+1,j}^{n+1} (\frac{k}{2h_x} U_{i,j}^n - \frac{\varepsilon k}{h_x^2}) - V_{i,j-1}^{n+1} (\frac{k}{2h_y} V_{i,j}^n + \frac{\varepsilon k}{h_y^2}) \\ &+ V_{i,j+1}^{n+1} (\frac{k}{2h_y} V_{i,j}^n - \frac{\varepsilon k}{h_y^2}) + U_{i,j}^{n+1} (\frac{k(V_{i+1,j}^n - U_{i-1,j}^n)}{2h_x}) \\ &= V_{i,j}^n \left[ 1 + k(\frac{V_{i+1,j}^n - V_{i-1,j}^n}{2h_x}) \right] + U_{i,j}^n \left[ k(\frac{V_{i,j+1}^n - V_{i,j-1}^n}{2h_y}) \right] \end{split}$$

lineerleştirilmiş şemalar elde edilir. Burada i, j = 1(1)M - 1 dir. Bu şemalarda  $h_x = h_y, \ \varepsilon k/h_x^2 = \varepsilon k/h_y^2 = a, \ k/2h_x = k/2h_y = b$  ve  $\varepsilon = 1/\text{Re}$  alınır ve gerekli

| (x,y)        | t =      | 0.01               | t =      | t = 0.5            |          | t = 2.0            |  |
|--------------|----------|--------------------|----------|--------------------|----------|--------------------|--|
|              | Nümerik  | Tam                | Nümerik  | Tam                | Nümerik  | Tam                |  |
| (0.1, 0.1)   | 0.623106 | 0.623047           | 0.543002 | 0.543322           | 0.500470 | 0.500482           |  |
| (0.5, 0.1)   | 0.501617 | 0.501622           | 0.500341 | 0.500353           | 0.500003 | 0.500003           |  |
| (0.9, 0.1)   | 0.500011 | 0.500011           | 0.500002 | 0.500002           | 0.500000 | 0.500000           |  |
| (0.3, 0.3)   | 0.623106 | 0.623047           | 0.642692 | 0.543322           | 0.500441 | 0.500482           |  |
| (0.7, 0.3)   | 0.501617 | 0.501622           | 0.500317 | 0.500353           | 0.500003 | 0.500003           |  |
| (0.1, 0.5)   | 0.748272 | 0.748274           | 0.742150 | 0.742214           | 0.555153 | 0.555675           |  |
| (0.5, 0.5)   | 0.623106 | 0.623047           | 0.542509 | 0.543322           | 0.500414 | 0.500482           |  |
| (0.9, 0.5)   | 0.501617 | 0.501622           | 0.500304 | 0.500353           | 0.500003 | 0.500003           |  |
| (0.3, 0.7)   | 0.748272 | 0.748274           | 0.742114 | 0.742214           | 0.554816 | 0.555675           |  |
| (0.7, 0.7)   | 0.623106 | 0.623047           | 0.542463 | 0.543322           | 0.500384 | 0.500482           |  |
| (0.1, 0.9)   | 0.749988 | 0.749988           | 0.749945 | 0.749946           | 0.744196 | 0.744256           |  |
| (0.5, 0.9)   | 0.748272 | 0.748274           | 0.742103 | 0.742214           | 0.554504 | 0.555675           |  |
| (0.9, 0.9)   | 0.623106 | 0.623047           | 0.542282 | 0.543322           | 0.500525 | 0.500482           |  |
| $L_2$        | 3.811712 | $2 \times 10^{-5}$ | 1.070747 | $' \times 10^{-3}$ | 1.097702 | $2 \times 10^{-3}$ |  |
| $L_{\infty}$ | 6.071263 | $3 \times 10^{-5}$ | 2.031654 | $1 \times 10^{-3}$ | 2.240898 | $3 \times 10^{-3}$ |  |

Tablo 5.1: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 2.0 zamanlarında u için RGSFY ile elde edilen nümerik çözümler.

düzenlemeler yapılırsa;

$$\begin{split} &-U_{i-1,j}^{n+1}\left[bU_{i,j}^{n}+a\right]+U_{i,j}^{n+1}\left[1+4a+b(U_{i+1,j}^{n}-U_{i-1,j}^{n})\right]+U_{i+1,j}^{n+1}\left[bU_{i,j}^{n}-a\right]\\ &-U_{i,j-1}^{n+1}\left[bV_{i,j}^{n}+a\right]+U_{i,j+1}^{n+1}\left[bV_{i,j}^{n}-a\right]+V_{i,j}^{n+1}\left[b(U_{i,j+1}^{n}-U_{i,j-1}^{n})\right]\\ &=U_{i,j}^{n}\left[1+b(U_{i+1,j}^{n}-U_{i-1,j}^{n})\right]+V_{i,j}^{n}\left[b(U_{i,j+1}^{n}-U_{i,j-1}^{n})\right] \end{split}$$

ve

$$\begin{aligned} &-V_{i-1,j}^{n+1} \left[ bU_{i,j}^n + a \right] + V_{i,j}^{n+1} \left[ 1 + 4a + b(V_{i,j+1}^n - V_{i,j-1}^n) \right] + V_{i+1,j}^{n+1} \left[ bU_{i,j}^n - a \right] \\ &-V_{i,j-1}^{n+1} \left[ bV_{i,j}^n + a \right] \right] + V_{i,j+1}^{n+1} \left[ bV_{i,j}^n - a \right] + U_{i,j}^{n+1} \left[ b(V_{i+1,j}^n - U_{i-1,j}^n) \right] \\ &= V_{i,j}^n \left[ 1 + b(V_{i,j+1}^n - V_{i,j-1}^n) \right] + U_{i,j}^n \left[ b(V_{i+1,j}^n - V_{i-1,j}^n) \right] \end{aligned}$$

şemaları elde edilir. Bu lineerleştirme sonucunda elde edilen sonlu fark şemalarında bilinen  $U^n$  ve  $V^n$  değerleri kullanılarak istenilen t zamanındaki  $U^{n+1}$  ve  $V^{n+1}$  bilinmeyen değerleri her üç model problem için elde edildi.

#### 5.2 Nümerik Sonuçlar

Şimdi ilk olarak Problem 1'in nümerik çözümlerini inceleyelim.

Problem 1' in sırasıyla u ve v çözümlerinin  $h_x = h_y = 0.05$ , Re= 100 ve 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında RGSFY ile elde edilen

| ,            |            |             | 5                 |             |                   |             |
|--------------|------------|-------------|-------------------|-------------|-------------------|-------------|
| (x,y)        | t =        | 0.01        | t =               | 0.5         | t =               | 2.0         |
|              | Nümerik    | Tam         | Nümerik           | Tam         | Nümerik           | Tam         |
| (0.1, 0.1)   | 0.876894   | 0.876953    | 0.956998          | 0.956678    | 0.999530          | 0.999518    |
| (0.5, 0.1)   | 0.998383   | 0.998378    | 0.999659          | 0.999647    | 0.999997          | 0.999997    |
| (0.9, 0.1)   | 0.999989   | 0.999989    | 0.999998          | 0.999998    | 1.000000          | 1.000000    |
| (0.3, 0.3)   | 0.876894   | 0.876953    | 0.957308          | 0.956678    | 0.999559          | 0.999518    |
| (0.7, 0.3)   | 0.998383   | 0.998378    | 0.999683          | 0.999647    | 0.999997          | 0.999997    |
| (0.1, 0.5)   | 0.751728   | 0.751726    | 0.757850          | 0.757786    | 0.944847          | 0.944325    |
| (0.5, 0.5)   | 0.876894   | 0.876953    | 0.957491          | 0.956678    | 0.999586          | 0.999518    |
| (0.9, 0.5)   | 0.998383   | 0.998378    | 0.999696          | 0.999647    | 0.999997          | 0.999997    |
| (0.3, 0.7)   | 0.751728   | 0.751726    | 0.757886          | 0.757786    | 0.945184          | 0.944325    |
| (0.7, 0.7)   | 0.876894   | 0.876953    | 0957537           | 0.956678    | 0.999616          | 0.999518    |
| (0.1, 0.9)   | 0.750012   | 0.750012    | 0.750055          | 0.750054    | 0.755804          | 0.755744    |
| (0.5, 0.9)   | 0.751728   | 0.751726    | 0.757897          | 0.757786    | 0.945496          | 0.944325    |
| (0.9, 0.9)   | 0.876894   | 0.876953    | 0.957718          | 0.956678    | 0.999475          | 0.999518    |
| $L_2$        | 2.736786 > | $(10^{-5})$ | $7.126002 \times$ | $10^{-4}$   | 6.043011 ×        | $< 10^{-4}$ |
| $L_{\infty}$ | 6.071263 > | $(10^{-5})$ | $2.031654 \times$ | $(10^{-3})$ | $2.240898 \times$ | $(10^{-3})$ |

Tablo 5.2: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 2.0 zamanlarında v için RGSFY ile elde edilen nümerik çözümler.

Tablo 5.3: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında u için RGSFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =        | 0.01        | t =               | 0.5         | t =               | t = 1.0     |  |
|--------------|------------|-------------|-------------------|-------------|-------------------|-------------|--|
|              | Nümerik    | Tam         | Nümerik           | Tam         | Nümerik           | Tam         |  |
| (0.1, 0.1)   | 0.624805   | 0.624805    | 0.615254          | 0.615254    | 0.605626          | 0.605626    |  |
| (0.5, 0.1)   | 0.594202   | 0.594202    | 0.585396          | 0.585396    | 0.576840          | 0.576840    |  |
| (0.9, 0.1)   | 0.567082   | 0.567082    | 0.559837          | 0.559837    | 0.553017          | 0.553017    |  |
| (0.3, 0.3)   | 0.624805   | 0.624805    | 0.615255          | 0.615254    | 0.605627          | 0.605626    |  |
| (0.7, 0.3)   | 0.594202   | 0.594202    | 0.585396          | 0.585396    | 0.576840          | 0.576840    |  |
| (0.1, 0.5)   | 0.655431   | 0.655431    | 0.646276          | 0.646275    | 0.636685          | 0.636685    |  |
| (0.5, 0.5)   | 0.624805   | 0.624805    | 0.615256          | 0.615254    | 0.605628          | 0.605626    |  |
| (0.9, 0.5)   | 0.594202   | 0.594202    | 0.585396          | 0.585396    | 0.576840          | 0.576840    |  |
| (0.3, 0.7)   | 0.655431   | 0.655431    | 0.646277          | 0.646275    | 0.636687          | 0.636685    |  |
| (0.7, 0.7)   | 0.624805   | 0.624805    | 0.615256          | 0.615254    | 0.605629          | 0.605626    |  |
| (0.1, 0.9)   | 0.682611   | 0.682611    | 0.674814          | 0.674814    | 0.666353          | 0.666353    |  |
| (0.5, 0.9)   | 0.655431   | 0.655431    | 0.646277          | 0.646275    | 0.636687          | 0.636685    |  |
| (0.9, 0.9)   | 0.624805   | 0.624805    | 0.615255          | 0.615254    | 0.605627          | 0.605626    |  |
| $L_2$        | 8.419211 > | $(10^{-8})$ | $2.169158 \times$ | $(10^{-6})$ | $2.354379 \times$ | $(10^{-6})$ |  |
| $L_{\infty}$ | 6.693449 × | $(10^{-8})$ | $2.451640 \times$ | $(10^{-6})$ | $2.804863 \times$ | $(10^{-6})$ |  |

Tablo 5.4: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 ve 1.0 zamanlarında v için RGSFY ile elde edilen nümerik çözümleri.

| (x,y)        | t =        | 0.01        | t =               | t = 0.5   |                   | t = 1.0     |  |
|--------------|------------|-------------|-------------------|-----------|-------------------|-------------|--|
|              | Nümerik    | Tam         | Nümerik           | Tam       | Nümerik           | Tam         |  |
| (0.1, 0.1)   | 0.875195   | 0.875195    | 0.884746          | 0.884746  | 0.894374          | 0.894374    |  |
| (0.5, 0.1)   | 0.905798   | 0.905798    | 0.914604          | 0.914604  | 0.923160          | 0.923160    |  |
| (0.9, 0.1)   | 0.932918   | 0.932918    | 0.940163          | 0.940163  | 0.946983          | 0.946983    |  |
| (0.3, 0.3)   | 0.875195   | 0.875195    | 0.884745          | 0.884746  | 0.894373          | 0.894374    |  |
| (0.7, 0.3)   | 0.905798   | 0.905798    | 0.914604          | 0.914604  | 0.923160          | 0.923160    |  |
| (0.1, 0.5)   | 0.844569   | 0.844569    | 0.853724          | 0.853725  | 0.863315          | 0.863315    |  |
| (0.5, 0.5)   | 0.875195   | 0.875195    | 0.884744          | 0.884746  | 0.894372          | 0.894374    |  |
| (0.9, 0.5)   | 0.905798   | 0.905798    | 0.914604          | 0.914604  | 0.923160          | 0.923160    |  |
| (0.3, 0.7)   | 0.844569   | 0.844569    | 0.853723          | 0.853725  | 0.863313          | 0.863315    |  |
| (0.7, 0.7)   | 0.875195   | 0.875195    | 0.884744          | 0.884746  | 0.894371          | 0.894374    |  |
| (0.1, 0.9)   | 0.817389   | 0.817389    | 0.825186          | 0.825186  | 0.833647          | 0.833647    |  |
| (0.5, 0.9)   | 0.844569   | 0.844569    | 0.853723          | 0.853725  | 0.863313          | 0.863315    |  |
| (0.9, 0.9)   | 0.875195   | 0.875195    | 0.884145          | 0.884146  | 0.894373          | 0.894374    |  |
| $L_2$        | 6.013832 × | $(10^{-8})$ | $1.511454 \times$ | $10^{-6}$ | $1.599711 \times$ | $(10^{-6})$ |  |
| $L_{\infty}$ | 6.693447 × | $(10^{-8})$ | $2.451640 \times$ | $10^{-6}$ | $2.804862 \times$ | $(10^{-6})$ |  |



Şekil 5.1: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi

sonuçlarının tam çözümlerle karşılaştırılması  $L_2$ ,  $L_{\infty}$  hata normları ile birlikte Tablo 5.1-5.4' de sunuldu. Reynolds sayısının her iki değeri içinde hesaplanan nümerik sonuçların, karşılaştırma yapılan tam çözümün noktasal değerleriyle oldukça uyum içinde olduğu görüldü. Re sayısı 100' den 10' a küçültüldüğünde tablolardan da görüleceği üzere hata normları da kayda değer ölçüde küçülmüştür. Ayrıca bu problemin RGSFY ile elde edilen sonuçlarının Bölüm 4' de verilen ASFY, KSFY ve CNSFY ile elde edilen nümerik sonuçlarla oldukça iyi uyum içinde olduğu ilgili tablolara bakıldığında anlaşılmaktadır.

Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01, 0.5 ve 2.0 zamanlarında u ve v çözümlerinin fiziksel davranışını göstermek için nümerik ve tam çözüm grafiksel olarak Şekil 5.1-5.6' da verildi. Her bir zaman için verilen nümerik ve tam çözüm grafikleri incelendiğinde çözümlerin ayırt edilemeyecek kadar yakın olduğu görüldü.

Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için RGSFY ile t = 0.625 zamanında u ve v çözümleri için elde edilen nümerik sonuçlar ile Ref. [6, 13, 29]' de verilenlerin karşılaştırılması sırasıyla Tablo 5.5 ve 5.6' da yapıldı. Bu iki tablo incelendiğinde Re = 500 için elde edilen nümerik sonuçların referanslarda



Şekil 5.2: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.01 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.3: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.5 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi

Tablo 5.5: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında *u* çözümü için RGSFY ve N = 40 için ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29]' de verilenlerle karşılaştırılması.

| (x,y)       |         |            | u           |             |                  |
|-------------|---------|------------|-------------|-------------|------------------|
|             | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] | Nümerik[29] N=40 |
| (0.15, 0.1) | 0.96870 | 0.96870    | 0.96650     | 0.95691     | 0.96066          |
| (0.3, 0.1)  | 1.03204 | 1.03200    | 1.02970     | 0.95616     | 0.96852          |
| (0.1, 0.2)  | 0.84618 | 0.86178    | 0.84449     | 0.84257     | 0.84104          |
| (0.2, 0.2)  | 0.87813 | 0.87813    | 0.87631     | 0.86399     | 0.86866          |
| (0.1, 0.3)  | 0.67920 | 0.67920    | 0.67809     | 0.67667     | 0.67792          |
| (0.3, 0.3)  | 0.79944 | 0.79945    | 0.79792     | 0.76876     | 0.77254          |
| (0.15, 0.4) | 0.54675 | 0.66039    | 0.54601     | 0.54408     | 0.54543          |
| (0.2, 0.4)  | 0.58958 | 0.58958    | 0.58874     | 0.58778     | 0.58564          |



Şekil 5.4: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.5 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.5: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 1.0 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi

Tablo 5.6: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v çözümü için RGSFY ve N = 40 için ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29]' de verilenlerle karşılaştırılması.

| (x,y)       |         |            | v           |             |                  |
|-------------|---------|------------|-------------|-------------|------------------|
|             | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] | Nümerik[29] N=40 |
| (0.15, 0.1) | 0.09044 | 0.09043    | 0.09020     | 0.10177     | 0.08612          |
| (0.3, 0.1)  | 0.10730 | 0.10728    | 0.10690     | 0.13287     | 0.07712          |
| (0.1, 0.2)  | 0.18010 | 0.17295    | 0.17972     | 0.18503     | 0.17828          |
| (0.2, 0.2)  | 0.16816 | 0.16816    | 0.16777     | 0.18169     | 0.16202          |
| (0.1, 0.3)  | 0.26268 | 0.26268    | 0.26222     | 0.26560     | 0.26094          |
| (0.3, 0.3)  | 0.23550 | 0.23550    | 0.23497     | 0.25142     | 0.21542          |
| (0.15, 0.4) | 0.31799 | 0.29022    | 0.31753     | 0.32084     | 0.31360          |
| (0.2, 0.4)  | 0.30418 | 0.30418    | 0.30371     | 0.30927     | 0.29776          |



Şekil 5.6: Problem 1' in  $h_x = h_y = 0.05$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 1.0 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi

Tablo 5.7: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında u çözümü için RGSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29]' de verilenlerle karşılaştırılması.

| (x, y)     |         |            | u           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.97146 | 0.97146    | 0.96688     | 0.97258     |
| (0.3, 0.1) | 1.15282 | 1.15280    | 1.14827     | 1.16214     |
| (0.2, 0.2) | 0.86308 | 0.86308    | 0.85911     | 0.86281     |
| (0.4, 0.2) | 0.97984 | 0.97984    | 0.97637     | 0.96483     |
| (0.1, 0.3) | 0.66316 | 0.66316    | 0.66019     | 0.66318     |
| (0.3, 0.3) | 0.77232 | 0.77232    | 0.76932     | 0.77030     |
| (0.2, 0.4) | 0.58181 | 0.58181    | 0.57966     | 0.58070     |
| (0.4, 0.4) | 0.75861 | 0.75860    | 0.75678     | 0.74435     |

Tablo 5.8: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında v çözümü için RGSFY ile elde edilen nümerik çözümlerinin Ref. [6, 13, 29]' de verilenlerle karşılaştırılması.

| (x,y)      |         |            | v           |             |
|------------|---------|------------|-------------|-------------|
|            | Nümerik | Nümerik[6] | Nümerik[13] | Nümerik[29] |
| (0.1, 0.1) | 0.09869 | 0.09869    | 0.09824     | 0.09773     |
| (0.3, 0.1) | 0.14158 | 0.14158    | 0.14112     | 0.14039     |
| (0.2, 0.2) | 0.16754 | 0.16754    | 0.16681     | 0.16660     |
| (0.4, 0.2) | 0.17110 | 0.17110    | 0.17065     | 0.17397     |
| (0.1, 0.3) | 0.26378 | 0.26378    | 0.26261     | 0.26294     |
| (0.3, 0.3) | 0.22654 | 0.22655    | 0.22576     | 0.22463     |
| (0.2, 0.4) | 0.32851 | 0.32851    | 0.32745     | 0.32402     |
| (0.4, 0.4) | 0.32500 | 0.32501    | 0.32441     | 0.31822     |



Şekil 5.7: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 50,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında (a) u ve (b) v için RGSFY ile elde edilen nümerik çözümlerin gösterimi

verilenlerle oldukça uyum içinde olduğu görüldü. Bu problemin Re= 50 için parametrelerin aynı değerlerinde hesaplanan sonuçlarının yine Ref. [6, 13, 29]' dekilerle karşılaştırmaları Tablo 5.7 ve 5.8 'de verildi. Re= 50 değeri için de Re= 500' de olduğu gibi noktasal değerlerin referans çalışmalardakilerle iyi uyum içinde olduğu görülmektedir. Yine bu problem için RGSFY ile elde edilen sonuçların aynı problem için Bölüm 4' de verilen ASFY, KSFY ve CNSFY ile elde edilen nümerik sonuçlarla iyi uyum içinde olduğu ilgili tablolardan anlaşılmaktadır.

Problem 2' nin  $h_x = h_y = 0.025$ ,  $\Delta t = 10^{-4}$  ve t = 0.625 zamanında Re= 50, 100 ve 500 değerleri için u ve v çözümlerinin fiziksel davranışını göstermek için nümerik çözümler grafiksel olarak Şekil 5.7-5.9' da verildi. Bu problemin Re= 50, 100 ve 500 değerleri için gösterilen grafiklerinin Ref. [11]' da aynı Reynolds sayıları ve parametreleri için verilen grafiklerle birebir aynı olduğu görüldü.

Tablo 5.9 ve 5.10 'da Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u ve v çözümlerinin RGSFY ile elde edilen nümerik sonuçları ile tam çözümün karşılaştırılması ve  $L_2$ ,  $L_{\infty}$  hata normları verildi. Tablolara bakıldığında hem u hem de v için elde edilen nümerik sonuçların tam çözüme oldukça yakın olduğu ve  $L_2$ ,  $L_{\infty}$  hata normlarının



Şekil 5.8: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 100,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında (a) u ve (b) v için RGSFY ile elde edilen nümerik çözümlerin gösterimi



Şekil 5.9: Problem 2' nin  $h_x = h_y = 0.025$ , Re= 500,  $\Delta t = 10^{-4}$  değerleri için t = 0.625 zamanında (a) u ve (b) v için RGSFY ile elde edilen nümerik çözümlerin gösterimi

| (x,y)        | t =                     | 0.01      | t =                     | 0.5       | t =                     | 1.0       |
|--------------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|
|              | Nümerik                 | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |
| (0.1, 0.1)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |
| (0.5, 0.1)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |
| (0.9, 0.1)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |
| (0.3, 0.3)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |
| (0.7, 0.3)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |
| (0.1, 0.5)   | -0.003927               | -0.003927 | -0.003854               | -0.003854 | -0.003780               | -0.003781 |
| (0.5, 0.5)   | 0.006280                | 0.006280  | 0.006130                | 0.006130  | 0.005981                | 0.005981  |
| (0.9, 0.5)   | -0.007194               | -0.007194 | -0.006960               | -0.006953 | -0.006731               | -0.006718 |
| (0.3, 0.7)   | 0.001134                | 0.001134  | 0.001114                | 0.001114  | 0.001094                | 0.001094  |
| (0.7, 0.7)   | 0.002551                | 0.002551  | 0.002458                | 0.002453  | 0.002368                | 0.002359  |
| (0.1, 0.9)   | -0.001439               | -0.001439 | -0.001408               | -0.001408 | -0.001376               | -0.001376 |
| (0.5, 0.9)   | 0.001941                | 0.001941  | 0.001895                | 0.001894  | 0.001849                | 0.001848  |
| (0.9, 0.9)   | -0.001727               | -0.001727 | -0.001682               | -0.001682 | -0.001638               | -0.001637 |
| $L_2$        | $2.2105 \times 10^{-5}$ | -5        | $1.0312 \times 10^{-1}$ | -3        | $1.9287 \times 10^{-1}$ | -3        |
| $L_{\infty}$ | $2.8241 \times 10^{-5}$ | -7        | $1.2663 \times 10^{-1}$ | -5        | $2.2938 \times 10^{-1}$ | -5        |

Tablo 5.9: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında *u* için RGSFY ile elde edilen nümerik çözümleri.

Tablo 5.10: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında v için RGSFY ile elde edilen nümerik çözümleri.

| ```````````````````````````````` |                         |           |                         |           |                         |           |  |
|----------------------------------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|--|
| (x,y)                            | t =                     | 0.01      | t =                     | 0.5       | t =                     | t = 1.0   |  |
|                                  | Nümerik                 | Tam       | Nümerik                 | Tam       | Nümerik                 | Tam       |  |
| (0.1, 0.1)                       | -0.001609               | -0.001609 | -0.001574               | -0.001574 | -0.001539               | -0.001539 |  |
| (0.5, 0.1)                       | -0.000000               | -0.000000 | -0.000000               | -0.000000 | -0.000001               | -0.000000 |  |
| (0.9, 0.1)                       | 0.001931                | 0.001931  | 0.001880                | 0.001880  | 0.001830                | 0.001830  |  |
| (0.3, 0.3)                       | -0.001268               | -0.001268 | -0.001246               | -0.001246 | -0.001223               | -0.001224 |  |
| (0.7, 0.3)                       | 0.002852                | 0.002852  | 0.002746                | 0.002743  | 0.002643                | 0.002637  |  |
| (0.1, 0.5)                       | -0.000000               | -0.000000 | -0.000000               | -0.000000 | -0.000000               | -0.000000 |  |
| (0.5, 0.5)                       | -0.000000               | -0.000000 | 0.000000                | -0.000000 | -0.000000               | -0.000000 |  |
| (0.9, 0.5)                       | 0.000000                | 0.000000  | 0.000000                | 0.000000  | 0.000000                | 0.000000  |  |
| (0.3, 0.7)                       | 0.001268                | 0.001268  | 0.001246                | 0.001246  | 0.001223                | 0.001224  |  |
| (0.7, 0.7)                       | -0.002852               | -0.002852 | -0.002746               | -0.002743 | -0.002643               | -0.002637 |  |
| (0.1, 0.9)                       | 0.001609                | 0.001609  | 0.001574                | 0.001574  | 0.001539                | 0.001539  |  |
| (0.5, 0.9)                       | 0.000000                | 0.000000  | 0.000000                | 0.000000  | 0.000001                | 0.000000  |  |
| (0.9, 0.9)                       | -0.001931               | -0.001931 | -0.001880               | -0.001880 | -0.001830               | -0.001830 |  |
| $L_2$                            | $1.2846 \times 10^{-5}$ | -5        | $6.0214 \times 10^{-1}$ | -4        | $1.1320 \times 10^{-5}$ | -3        |  |
| $L_{\infty}$                     | $9.3390 \times 10^{-5}$ | -8        | $4.1431 \times 10^{-1}$ | -6        | $7.3722 \times 10^{-1}$ | -6        |  |

yeterince küçük olduğu görülmektedir.

Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01, 0.5 ve 1.0 zamanlarında u ve v için elde edilen nümerik çözümlerin tam çözümle uyumunu görsel olarak sergilemek için nümerik ve tam çözüm grafiksel olarak Şekil 5.10-5.15' de verildi. Her bir zaman için verilen nümerik ve tam çözümlerin grafikleri incelendiğinde birbirleriyle ayırt edilemeyecek kadar aynı olduğu ayrıca aynı parametreler için t = 1.0 zamanında Ref. [6]' da verilen grafiklerle de oldukça benzer olduğu görüldü.

Sonuç olarak, Rubin-Graves tipi lineerleştirme tekniği uygulanarak elde edilen RGSFY nümerik şemaları ile her üç model problem için elde edilen nümerik



Şekil 5.10: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.11: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.01 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.12: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.5 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.13: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 0.5 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.14: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 1.0 zamanında u' nun RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi



Şekil 5.15: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için t = 1.0 zamanında v' nin RGSFY ile elde edilen (a) tam ve (b) nümerik çözümlerinin gösterimi

çözümlerin mevcut tam çözümlerle ve literatürdeki diğer çalışmalarla oldukça uyum içinde olduğu ve hesaplanan  $L_2$ ,  $L_\infty$  hata normlarınında kayda değer ölçüde küçük olduğu görüldü.

Tablo 5.11: Problem 1' in RGSFY için  $h_x = h_y = 0.05$ , Re= 100 ve 10,  $\Delta t = 10^{-4}$  değerleri için farklı t zamanlarında u ve v için elde edilen  $L_2$  ve  $L_\infty$  hata normlarının karşılaştırılmaları.

|                     | $u$ için $L_2$ değerleri  |                                 |                           |  |
|---------------------|---------------------------|---------------------------------|---------------------------|--|
| Reynold Sayısı      | t = 0.01                  | t = 0.5                         | t = 2.0                   |  |
| $\mathrm{Re} = 100$ | $3.811712 \times 10^{-5}$ | $1.070747 \times 10^{-3}$       | $1.097702 \times 10^{-3}$ |  |
| $\mathrm{Re} = 10$  | $8.419211 \times 10^{-8}$ | $2.169158 \times 10^{-6}$       | $2.354379 \times 10^{-6}$ |  |
|                     |                           | $v$ için ${\cal L}_2$ değerleri |                           |  |
|                     | t = 0.01                  | t = 0.5                         | t = 2.0                   |  |
| $\mathrm{Re} = 100$ | $2.736786 \times 10^{-5}$ | $7.126002 \times 10^{-4}$       | $6.043011 \times 10^{-4}$ |  |
| $\mathrm{Re} = 10$  | $6.013832 \times 10^{-8}$ | $1.511454 \times 10^{-6}$       | $1.599711 \times 10^{-6}$ |  |

Tablo 5.12: Problem 1' in RGSFY için  $h_x = h_y = 0.05$ , Re= 100 ve 10,  $\Delta t = 10^{-4}$  değerleri için farklı t zamanlarında u ve v için elde edilen  $L_2$  ve  $L_{\infty}$  hata normlarının karşılaştırılmaları.

|                     | $u$ için $L_{\infty}$ değerleri |                                 |                           |  |
|---------------------|---------------------------------|---------------------------------|---------------------------|--|
| Reynold Sayısı      | t = 0.01                        | t = 0.5                         | t = 2.0                   |  |
| $\mathrm{Re} = 100$ | $6.071263 \times 10^{-5}$       | $2.031654 \times 10^{-3}$       | $2.240898 \times 10^{-3}$ |  |
| $\mathrm{Re} = 10$  | $6.693449 \times 10^{-8}$       | $2.451640 \times 10^{-6}$       | $2.804863 \times 10^{-6}$ |  |
|                     | ,                               | $v$ için $L_{\infty}$ değerleri |                           |  |
|                     | t = 0.01                        | t = 0.5                         | t = 2.0                   |  |
| $\mathrm{Re} = 100$ | $6.071263 \times 10^{-5}$       | $2.031654 \times 10^{-3}$       | $2.240898 \times 10^{-3}$ |  |
| $\mathrm{Re} = 10$  | $6.693447 \times 10^{-8}$       | $2.451640 \times 10^{-6}$       | $2.804862 \times 10^{-6}$ |  |

Tablo 5.13: Problem 3' ün RGSFY için  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için farklı t zamanlarında u ve v için elde edilen  $L_2$  ve  $L_{\infty}$  hata normlarının karşılaştırılmaları.

|                      | $u$ için $L_2$ değerleri |                        |                         |  |
|----------------------|--------------------------|------------------------|-------------------------|--|
| Reynold Sayısı       | t = 0.01                 | t = 0.5                | t = 1.0                 |  |
| $\mathrm{Re} = 1000$ | $2.2105\times10^{-5}$    | $1.0312\times 10^{-3}$ | $1.9287\times 10^{-3}$  |  |
|                      | $v$ için $L_2$ değerleri |                        |                         |  |
|                      | t = 0.01                 | t = 0.5                | t = 1.0                 |  |
| $\mathrm{Re} = 1000$ | $1.2846 \times 10^{-5}$  | $6.0214\times10^{-4}$  | $1.1320 \times 10^{-3}$ |  |
Tablo 5.14: Problem 3' ün RGSFY için  $h_x=h_y=0.05,$  Re= 1000,  $\Delta t=10^{-3}$  değerleri için farklı tzamanlarında u veviçin elde edilen $L_2$  ve $L_\infty$ hata normlarının karşılaştırılmaları.

|                | $u$ için $L_{\infty}$ değerleri |                                     |                         |
|----------------|---------------------------------|-------------------------------------|-------------------------|
| Reynold Sayısı | t = 0.01                        | t = 0.5                             | t = 1.0                 |
| Re = 1000      | $2.8241 \times 10^{-7}$         | $1.2663 \times 10^{-5}$             | $2.2938 \times 10^{-5}$ |
|                |                                 |                                     |                         |
|                | v                               | için $L_{\infty}$ değerle           | ri                      |
|                | v = 0.01                        | için $L_{\infty}$ değerle $t = 0.5$ | ri t = 1.0              |

Ayrıca Tablo 5.11 ve 5.14' de tam çözümü mevcut olan model Problem 1 ve Problem 3' ün farklı zaman ve Reynolds sayıları için yukarıdaki tablolarda verilen hata normları özet olarak sunuldu.

## 6. SONUÇ

Bu tezde 2-boyutlu lineer olmayan coupled viskoz Burgers' denklemi için Bölüm 3' de farklı başlangıç ve sınır şartları ile birlikte verilen üç model problem ele alındı. Bu model problemlerin açık, kapalı ve Crank-Nicolson klasik sonlu fark yöntemleri ile elde edilen nümerik çözümleri mevcut tam çözümlerle ve Ref. [6, 13, 29]' de verilenlerle Bölüm 4' de ayrıntılı olarak karşılaştırıldı. Bölüm 5' de ise 2-boyutlu lineer olmayan coupled viskoz Burgers' denklemindeki lineer olmayan terimler yerine literatürde yaygın olarak kullanılan Rubin-Graves tipi bir lineerleştirme tekniği kullanılarak elde edilen sonlu fark şemasıyla model problemlerin nümerik çözümleri elde edildi. Ayrıca farklı t zamanlarında ve Reynolds sayıları için nümerik ve/veya tam çözüm grafiksel olarak sunuldu.

Bölüm 4' de verilen klasik sonlu fark yöntemleri üç model problem için elde edilen nümerik sonuçlar incelendiğinde açık, kapalı ve Crank-Nicolson yöntemlerinin her üç problem içinde oldukça iyi sonuçlar verdiği tablolarda sunulan noktasal değerlerden ve hesaplanan  $L_2$ ,  $L_{\infty}$  hata normlarının kayda değer ölçüde küçük olmasından anlaşılmaktadır. Ayrıca bu üç yöntem kendi içerisinde değerlendirildiğinde göz önüne alınan parametreler için verilen nümerik sonuçların birbirleriyle iyi uyum içinde oldukları görülmektedir.

Bölüm 5' de verilen lineerleştirme tekniği kullanılarak elde edilen şemanın model problemlere uygulanmasıyla hesaplanan nümerik sonuçların, Bölüm 4' de sunulan klasik sonlu fark yöntemleriyle hesaplanan sonuçlarla uyum içinde olduğu her bir problem için verilen tablolar incelendiğinde noktasal değerlerin tam çözüme oldukça yakın ve dolayısıyla hata normlarının da oldukça küçük olmasından açıkca görülmektedir. Bu amaçla tam çözümleri mevcut olan Problem 1 ve Problem 3' ün Bölüm 4'de açık, kapalı ve Crank-Nicolson yöntemleriyle ve Bölüm 5' de lineerleştirilmiş sonlu fark şemasıyla elde edilen

| $t$ zamanlarında $u$ için elde edilen $L_2$ ve $L_\infty$ hata normlarının l |                         |                         |                         | k |
|------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|---|
|                                                                              |                         | $L_2$                   |                         |   |
| Yöntem                                                                       | t = 0.01                | t = 0.5                 | t = 1.0                 |   |
| ASFY                                                                         | $8.4660 \times 10^{-8}$ | $2.1632 \times 10^{-6}$ | $2.3304 \times 10^{-6}$ |   |
| KSFY                                                                         | $8.8346 \times 10^{-8}$ | $2.2839 \times 10^{-6}$ | $2.4896 \times 10^{-6}$ |   |
| CNSFY                                                                        | $8.6492\times 10^{-8}$  | $2.2234\times10^{-6}$   | $2.4098 \times 10^{-6}$ |   |
| RGSFY                                                                        | $8.4192\times 10^{-8}$  | $2.1692\times10^{-6}$   | $2.3544\times10^{-6}$   |   |
|                                                                              |                         | $L_{\infty}$            |                         |   |
| Yöntem                                                                       | t = 0.01                | t = 0.5                 | t = 1.0                 |   |

 $2.4585 \times 10^{-6}$ 

 $2.5716 \times 10^{-6}$ 

 $2.5151 \times 10^{-6}$ 

 $2.4516 \times 10^{-6}$ 

 $6.7675 \times 10^{-8}$ 

 $6.9891 \times 10^{-8}$ 

 $6.8783 \times 10^{-8}$ 

 $6.6934 \times 10^{-8}$ 

ASFY

KSFY

CNSFY

RGSFY

Tablo 6.1: Problem 1' in  $h_x = h_y = 0.05$ , Re= 10,  $\Delta t = 10^{-4}$  değerleri için farklı t zamanlarında u için elde edilen  $L_2$  ve  $L_{\infty}$  hata normlarının karşılaştırılmaları.

| Tablo 6.2: Problem 1' in $h_x = h_y = 0.05$ , Re= 10, $\Delta t = 10^{-4}$ | değerleri için farklı |
|----------------------------------------------------------------------------|-----------------------|
| $t$ zamanlarında $v$ için elde edilen $L_2$ ve $L_\infty$ hata normlarının | karşılaştırılmaları.  |

 $2.7897 \times 10^{-6}$ 

 $2.9559 \times 10^{-6}$ 

 $2.8721 \times 10^{-6}$ 

 $2.8049 \times 10^{-6}$ 

|                         | $L_2$                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t = 0.01                | t = 0.5                                                                                                                                                                                                                                                                                                                    | t = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $6.0473 \times 10^{-8}$ | $1.5073 \times 10^{-6}$                                                                                                                                                                                                                                                                                                    | $1.5834 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $6.3105\times10^{-8}$   | $1.5914\times10^{-6}$                                                                                                                                                                                                                                                                                                      | $1.6916\times10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $6.1781\times 10^{-8}$  | $1.5493\times10^{-6}$                                                                                                                                                                                                                                                                                                      | $1.6374\times10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $6.0138\times10^{-8}$   | $1.5115 \times 10^{-6}$                                                                                                                                                                                                                                                                                                    | $1.5997 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | $L_{\infty}$                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| t = 0.01                | t = 0.5                                                                                                                                                                                                                                                                                                                    | t = 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $6.7675 \times 10^{-8}$ | $2.4585 \times 10^{-6}$                                                                                                                                                                                                                                                                                                    | $2.7897 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $6.9891\times10^{-8}$   | $2.5716\times10^{-6}$                                                                                                                                                                                                                                                                                                      | $2.9559\times10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $6.8783\times10^{-8}$   | $2.5151\times10^{-6}$                                                                                                                                                                                                                                                                                                      | $2.8721\times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $6.6934\times10^{-8}$   | $2.4516\times10^{-6}$                                                                                                                                                                                                                                                                                                      | $2.8049\times10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | $\begin{array}{c} t = 0.01 \\ \hline 6.0473 \times 10^{-8} \\ \hline 6.3105 \times 10^{-8} \\ \hline 6.1781 \times 10^{-8} \\ \hline 6.0138 \times 10^{-8} \\ \hline t = 0.01 \\ \hline 6.7675 \times 10^{-8} \\ \hline 6.9891 \times 10^{-8} \\ \hline 6.8783 \times 10^{-8} \\ \hline 6.6934 \times 10^{-8} \end{array}$ | $\begin{array}{c c} & L_2 \\ \hline t = 0.01 & t = 0.5 \\ \hline 6.0473 \times 10^{-8} & 1.5073 \times 10^{-6} \\ \hline 6.3105 \times 10^{-8} & 1.5914 \times 10^{-6} \\ \hline 6.1781 \times 10^{-8} & 1.5493 \times 10^{-6} \\ \hline 6.0138 \times 10^{-8} & 1.5115 \times 10^{-6} \\ \hline & L_{\infty} \\ \hline t = 0.01 & t = 0.5 \\ \hline 6.7675 \times 10^{-8} & 2.4585 \times 10^{-6} \\ \hline 6.9891 \times 10^{-8} & 2.5716 \times 10^{-6} \\ \hline 6.8783 \times 10^{-8} & 2.5151 \times 10^{-6} \\ \hline 6.6934 \times 10^{-8} & 2.4516 \times 10^{-6} \\ \hline \end{array}$ |

 $L_2$ ,  $L_\infty$  hata normları tablolar halinde sunuldu. Tablo 6.1 ve 6.2' de Problem 1' in sırasıyla u ve v bileşenleri için t = 0.01, 0.5 ve 1.0 zamanlarında ASFY, KSFY, CNSFY ve RGSFY yaklaşımları ile elde edilen  $L_2$  ve  $L_\infty$  hata normlarının karşılaştırılmaları verildi. Tablo 6.3 ve 6.4' de ise Problem 3' ün sırasıyla u ve v bileşenleri için t = 0.01, 0.5 ve 1.0 zamanlarında ASFY, KSFY, CNSFY ve RGSFY yaklaşımları ile elde edilen  $L_2$  ve  $L_\infty$  hata normlarının karşılaştırılmaları verildi.

Tablolardan tüm sonlu fark yaklaşımlarının oldukça iyi sonuç verdiği ve hata normlarının birbiriyle uyum içerisinde olduğu görüldü.

Tablo 6.3: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için farklı t zamanlarında u için elde edilen  $L_2$  ve  $L_\infty$  hata normlarının karşılaştırılmaları.

|        |                         | $L_2$                   |                         |
|--------|-------------------------|-------------------------|-------------------------|
| Yöntem | t = 0.01                | t = 0.5                 | t = 1.0                 |
| ASFY   | $2.2056 \times 10^{-5}$ | $1.0288 \times 10^{-3}$ | $1.9240 \times 10^{-3}$ |
| KSFY   | $2.2108 \times 10^{-5}$ | $1.0313 \times 10^{-3}$ | $1.9289 \times 10^{-3}$ |
| CNSFY  | $2.2082 \times 10^{-5}$ | $1.0301 \times 10^{-3}$ | $1.9265 \times 10^{-3}$ |
| RGSFY  | $2.2105 \times 10^{-5}$ | $1.0312 \times 10^{-3}$ | $1.9287\times10^{-3}$   |
|        |                         | $L_{\infty}$            |                         |
| Yöntem | t = 0.01                | t = 0.5                 | t = 1.0                 |
| ASFY   | $2.8195 \times 10^{-7}$ | $1.2635 \times 10^{-5}$ | $2.2887 \times 10^{-5}$ |
| KSFY   | $2.8246 \times 10^{-7}$ | $1.2665\times10^{-5}$   | $2.2943\times10^{-5}$   |
| CNSFY  | $2.8221 \times 10^{-7}$ | $1.2650 \times 10^{-5}$ | $2.2943\times10^{-5}$   |
| RGSFY  | $2.8241\times 10^{-7}$  | $1.2663 \times 10^{-5}$ | $2.2938\times10^{-5}$   |

Tablo 6.4: Problem 3' ün  $h_x = h_y = 0.05$ , Re= 1000,  $\Delta t = 10^{-3}$  değerleri için farklı t zamanlarında v için elde edilen  $L_2$  ve  $L_{\infty}$  hata normlarının karşılaştırılmaları.

|        |                         | $L_2$                   |                         |
|--------|-------------------------|-------------------------|-------------------------|
| Yöntem | t = 0.01                | t = 0.5                 | t = 1.0                 |
| ASFY   | $1.2818 \times 10^{-5}$ | $6.0072 \times 10^{-4}$ | $1.1292 \times 10^{-3}$ |
| KSFY   | $1.2862 \times 10^{-5}$ | $6.0288\times10^{-4}$   | $1.1333 \times 10^{-3}$ |
| CNSFY  | $1.2840 \times 10^{-5}$ | $6.0180\times10^{-4}$   | $1.1312\times10^{-3}$   |
| RGSFY  | $1.2846\times 10^{-5}$  | $6.0214\times10^{-4}$   | $1.1320\times10^{-3}$   |
|        |                         | $L_{\infty}$            |                         |
| Yöntem | t = 0.01                | t = 0.5                 | t = 1.0                 |
| ASFY   | $9.3247 \times 10^{-8}$ | $4.1361 \times 10^{-6}$ | $7.3589 \times 10^{-6}$ |
| KSFY   | $9.3521 \times 10^{-8}$ | $4.1488 \times 10^{-6}$ | $7.3822 \times 10^{-6}$ |
| CNSFY  | $9.3384 \times 10^{-8}$ | $4.1425 \times 10^{-6}$ | $7.3706 \times 10^{-6}$ |
| RGSFY  | $9.3390 \times 10^{-8}$ | $4.1431 \times 10^{-6}$ | $7.3722\times10^{-6}$   |

Sonuç olarak bu tezde 2-boyutlu lineer olmayan coupled viskoz Burgers' denklemine başarılı bir şekilde uygulanan sonlu fark yaklaşımlarının fizik ve mühendisliğin çeşitli alanlarında karşılaşılan 2-boyutlu ve lineer olmayan farklı problemlere de uygulanabileceği ve 2-boyutlu problemler ile sonlu fark yöntemleri çalışan araştırmacılara iyi bir referans olacağı düşünülmektedir.

## KAYNAKLAR

- S.G. Rubin and R.A. Graves, A Cubic Spline Approximation for Problems in Fluid Mechanics, NASA, Washington, D.C., October, 1975.
- [2] J. N. Reddy, An introduction to the fininite element method, Mcgraw-Hill Book Company, Singapore, 1993.
- [3] J. M. Burger, A mathematical Model Illustrating the Theory of Turbulence, Adv. in Appl. Math., 3, 1950, 201-230.
- [4] H. Bateman, Some recent researches on the motion of fluids, Mon. Weather Rev., 43 (1915) 163-170.
- [5] A.H. Khater, R.S. Temsah and M.M. Hassan, A Chebyshev spectral collocation method for solving Burgers'-type equations, J. Comput. Appl. Math., 222 (2008) 333-350.
- [6] M. Tamsir, V.K. Srivastava, A semi-implicit finite-difference approach for two-dimensional coupled Burgers' equations, Int. J. of Sci. and Eng. R., Volume 2, Issue 6, June-2011.
- [7] G.D. Smith, Numerical solution of partial differential equations, Finite Difference Method, Third Edition, Brunel University, 1985.
- [8] S. Kutluay, Klasik Sonlu Fark Yöntemlerine Giriş Ders Notları, İnönü University, Turkey.
- M.A. Yükselen, HM504 Uygulamalı Sayısal Yöntemler Ders Notları, Bölüm5, 2008, 31-34.
- [10] N. Ozışık, Heat Conduction, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh.
- [11] H.S. Shukla, M. Tamsir, V.K. Srivastava, J. Kumar, Numerical Solution of two dimensional coupled viscous Burgers' Equation using the Modified Cubic B-Spline Differential Quadrature Method, ArciheX
- [12] C.A.J. Fletcher, A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers' equations, J. Comput. Phys., Volume 51, Issue 1, July 1983, pp 159-188.
- [13] A.R. Bahadır, A fully implicit finite-difference scheme for two-dimensional Burgers' equations, Appl. Math. and Comp., 137 (2003) 131-137.

- [14] A.A. Soliman, On the solution of two-dimensional coupled Burgers' equations by variational iteration method, Chaos, Solitons & Fractals, 40 (2009) 1146-1155. doi:10.1016/j.chaos.2007.08.069.
- [15] A. Ali, Siraj-ul-Islam, and S. Haq, A Computational Meshfree Technique for the Numerical Solution of the Two-Dimensional Coupled Burgers' Equations, Int. J. for Comp. Meth. in Eng. Sci. and Mech., DOI: 10.1080/15502280903108016, 10, 2009, 406-422.
- [16] H. Zhu, H. Shu, M. Ding, Numerical solutions of two-dimensional Burgers' equations by discrete Adomian decomposition method, Comput. Math. Appl., 60 (2010) 840-848.
- [17] H. Kheiri and A. Jabbari, Homotopy analysis and Homotopy Pade methods for two-dimensional coupled Burgers' equations, Iranian J. of Math. Sci. and Inf., DOI: 10.7508/ijmsi.2011.01.003, Vol. 6, No. 1 (2011), pp 23-31.
- [18] A.J.S. Al-Saif and A. Abdul-Hussein, Generating exact solutions of two-dimensional coupled Burgers' equations by the first integral method, Res.
  J. Phys. Appl. Sci., Vol. 1(2), November 2012, pp. 029-033.
- [19] H. Aminikhah, A New Efficient Method for Solving Two-Dimensional Burgers' equation, Int. Sch. Res. Net., Volume 2012, Article ID 603280, 8 pages, doi:10.5402/2012/603280.
- [20] M.C. Kweyu, W. A. Manyonge, A. Koross and V. Ssemaganda, Numerical Solutions of the Burgers' System in Two Dimensional under Varied Initial and Boundary Conditions, Appl. Math. Sci., Vol. 6, no. 113, 2012, 5603 -5615.
- [21] V.K. Srivastava, M.K. Awasthi and M. Tamsir, A fully implicit Finite-difference solution to one dimensional Coupled Nonlinear Burgers' equations, Acad. Sci., Eng. Technol., Int. J. Math. Comput. Sci., Vol:7, No:4, 2013.
- [22] V.K. Srivastava, M.K. Awasthi and S. Singh, An implicit logarithmic finite-difference technique for two dimensional coupled viscous Burgers' equation, AIP Advances, Conference Proceedings 3, 122105 (2013).
- [23] L. Zhang, L. Wang Х. Ding, Exact *finite-difference* and scheme andnonstandard finite-difference scheme for Adv. coupled Burgers' equation. Difference Equ., http://www.advancesindifferenceequations.com/content/2014/1/122, 2014, 122.
- [24] R.C. Mittal and A. Tripathi, Numerical solutions of two-dimensional Burgers' equations using modified Bi-cubic B-spline finite elements,

Eng. Comput., Int. J. Computer-Aided Eng. Software, DOI 10.1108/EC-04-2014-0067, Vol. 32, No. 5, 2015, pp. 1275-1306.

- [25] T. Zhanlav, O. Chuluunbaatar, V. Ulziibayar, Higher-Order Numerical Solution of Two-Dimensional Coupled Burgers' Equations, Amer.
  J. Comput. Math., http://dx.doi.org/10.4236/ajcm.2016.62013, 6, 2016,120-129.
- [26] I.A. Cristescu, Numerical resolution of coupled two-dimensional Burgers' equation, Rom. J. Phys. 62, (2017) 103.
- [27] M. Saqib, S. Hasnain and D. S. Mashat, Highly Efficient Computational Methods for Two Dimensional Coupled Nonlinear Unsteady Convection-Diffusion Problems, IEEE Access, Vol.5, 2017.
- [28] F.W. Wubs and E.D. de Goede, An explicit-implicit method for a class of time-dependent partial differential equations, Appl. Numer. Math., 9 (1992) 157-181.
- [29] P. C. Jain and D. N. Holla, Numerical Solution Of Coupled Burgers' Equation, Internat. J. Non-Linear Mech., 13 (1978) 213-222.

## ÖZGEÇMİŞ

25.04.1989 tarihinde Bingöl' de doğdu. 2004 yılında Servi YİBO İlköğretim Okulunu, 2007 yılında ise Mehmet Rauf Lisesini bitirdi. 2010 yılında başladığı Marmara Üniversitesi Fen-Edebiyat Fakültesi Matematik bölümünü 2015 yılında bitirdi ve aynı yıl İnönü Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim dalında yüksek lisansa başladı. İyi derecede ingilizce bilmektedir. Halen özel bir kurumda matematik öğretmenliği yapmaktadır.