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Lightlike Hypersurfaces of Semi-Euclidean Spaces

Satisfying Curvature Conditions of Semisymmetry

Type
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Abstract

In this paper, we investigate lightlike hypersurfaces which are semi-symmetric,

Ricci semi-symmetric, parallel or semi-parallel in a semi-Euclidean space. We obtain

that every screen conformal lightlike hypersurface of the Minkowski spacetime is

semi-symmetric. For higher dimensions, we show that the semi-symmetry condition

of a screen conformal lightlike hypersurface reduces to the semi-symmetry condition

of a leaf of its screen distribution. We also obtain that semi-symmetric and Ricci

semi-symmetric lightlike hypersurfaces are totally geodesic under certain conditions.

Moreover, we show that there exist no non-totally geodesic parallel hypersurfaces in

a Lorentzian space.

Key Words: Degenerate metric, Screen conformal lightlike hypersurface, Parallel

lightlike hypersurface, Semi-symmetric lightlike hypersurface.

1. Introduction

The class of semi-Riemannian manifolds, satisfying the condition

∇R = 0, (1.1)

is a natural generalization of the class of manifolds of constant curvature, where ∇ is
the Levi-Civita connection on semi-Riemannian manifold and R is the corresponding
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curvature tensor. For precise definitions of the symbols used, we refer to Section 2.1.
A semi-Riemannian manifold is called semi-symmetric if

R·R = 0, (1.2)

where R is the curvature operator corresponding to R and the · operation is defined in
Section 2.1. Semi-symmetric hypersurfaces of Euclidean spaces were classified by Nomizu
[15] and a general study of semi-symmetric Riemannian manifolds was made by Szabo
[17].

A semi-Riemannian manifold is said to be Ricci semi-symmetric [7], if the following
condition is satisfied:

R · Ric = 0. (1.3)

It is clear that every semi-symmetric manifold is Ricci semi-symmetric; the converse is
not true in general and a brief discussion of this issue is given in Section 2.1.

If a manifoldM is immersed into a manifold M̄, the immersion is said to be parallel
if the second fundamental form is covariantly constant, i.e., ∇h = 0, where ∇ is an
affine connection M̄ and h is the second fundamental form of the immersion. The
general classification of parallel submanifolds of Euclidean space was obtained in [13]
by D. Ferus. He showed that such an immersion is an isometric immersion into an n-
dimensional symmetric R-space imbedded in Rn+p in the standard way. The general
theory of lightlike submanifolds was introduced and presented in a book by Duggal-
Bejancu [10]. The theory of lightlike submanifolds is a new area of differential geometry
and it is very different from Riemannian geometry as well as semi-Riemannian geometry.

In third section of this paper, we consider a lightlike hypersurface of the semi-
Euclidean space and study semi-symmetry conditions on this hypersurface. Our main
result, in this section, states that every screen conformal lightlike hypersurface (Defini-
tion 3) of the Minkowski spacetime R4

1 is semi-symmetric. For Rn+2
q ,n ≥ 3 we show that

semi-symmetry of a lightlike hypersurface depends on the geometry of a leaf of screen
distribution.

In section four, we study Ricci semi-symmetric lightlike hypersurfaces and obtain
that Ricci semi-symmetric lightlike hypersurfaces are totally geodesic under a certain
condition. In this section, we also obtain that semi-symmetric lightlike hypersurfaces are
totally geodesic under a condition in terms of the Ricci tensor.

In section five, we investigate parallel hypersurface of a Lorentzian manifold. In fact,
we show that every parallel lightlike hypersurface must be totally geodesic. Then we
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study semi-parallel lightlike hypersurfaces in a semi-Euclidean space. We note that the
semi-parallel hypersurfaces were defined in [8] as a generalization of parallel hypersurfaces
for Riemannian case.

2. Preliminaries

In this section, we will give a brief review of curvature conditions of semi-symmetry
type and lightlike submanifolds of semi-Riemannian manifolds. A full discussion of the
contents of this section can be found in [7] and [10], respectively. In this paper, we will
assume that every object in hand is smooth.

2.1. Curvature Conditions of Symmetry Type

Let (M, g) be a semi-Riemannian manifold. We denote its curvature operator by R(X, Y )

R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]

for X, Y ∈ Γ(TM), where ∇ denotes the Levi-Civita connection on M. Then the Rie-
mannian Christoffel curvature tensor R and the Ricci tensor Ric are defined by

R(X, Y, Z,W ) = g(R(X, Y )Z,W ), (2.4)

Ric(X, Y ) = trace{Z → R(X, Y )Z}, (2.5)

respectively.
For a (0, k)-tensor field T on M , k ≥ 1, the (0, k + 2) tensor field R · T is defined by

(R · T )(X1 , ..., Xk, X, Y ) = −T (R(X, Y )X1 , X2, ..., Xk)

−...− T (X1 , ..., Xk−1, R(X, Y )Xk) (2.6)

for X, Y,X1, ..., Xk ∈ Γ(TM). Curvature conditions, involving the form R · T = 0 , are
called curvature conditions of semi-symmetric type [7].

A semi-Riemannian manifoldM is said to be semi-symmetric if it satisfies the condi-
tion R · R = 0. Thus, from (2.6) and properties of curvature tensor, we have

(R(X, Y ) · R)(U, V )W = R(X, Y )R(U, V )W −R(U, V )R(X, Y )W
− R(R(X, Y )U, V )W −R(U,R(X, Y )V )W = 0 (2.7)

for any X, Y, U, V,W ∈ Γ(TM).
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A semi-Riemannian manifoldM is said to be Ricci semi-symmetric if it satisfies the
condition R ·Ric = 0, i.e.,

(R(X, Y ) · Ric)(X1, X2) = −Ric(R(X, Y )X1, X2)

− Ric(X1, R(X, Y )X2) = 0, (2.8)

for X, Y,X1, X2 ∈ Γ(TM).
In [8], Deprez defined and studied semi-paralel hypersurfaces in Euclidean n space.

We recall that a hypersurface M of a semi-Riemannian manifold M̄ is said to be semi-
parallel if the following condition is satisfied for every point p ∈M and every vector fields
X, Y, Z,W ∈ Γ(TM):

(R(X, Y )h)(Z,W ) = −h(R(X, Y )Z,W )− h(Z,R(X, Y )W ) = 0, (2.9)

where h is the second fundamental form and R is the curvature tensor field of M.
Although conditions (1.2) and (1.3) are not equivalent for manifolds in general, P.J.

Ryan [16] raised the following question for hypersurfaces of Euclidean spaces in 1972:
“Are the conditions R ·R = 0 and R · Ric = 0 equivalent for hypersurfaces of Euclidean
spaces?” Although there are many results which contributed to the solution of the above
question in the affirmative under some conditions (see [5], [6], [14], [19]), Abdalla and
Dillen [1] gave an explicit example of a hypersurface in Euclidean space En+1 (n ≥ 4)
that is Ricci semi-symmetric but not semi-symmetric (See also [7] for another example.).
This result shows that the conditions R · R = 0 and R · Ric = 0 are not equivalent for
hypersurfaces of Euclidean space in general. A recent survey on Ricci semi-symmetric
spaces and contributions to the solution of above problem can be found in [7]. We
note that, in [20], I. Van de Woestijne and L. Verstraelen used the standard forms of a
symmetric operator in a Lorentzian vector space to give an algebraic proof that the shape
operator of a semisymmetric hypersurface at a point with type number greater than 2 is
diagonalizable with exactly two eigenvalues, one of which is zero.

2.2. Lightlike Hypersurfaces

Let (M̄, ḡ) be an (m+2)-dimensional semi-Riemannianmanifoldwith the indefinite metric
ḡ of index q ∈ {1, ..., m+1} andM be a hypersurface of M̄ . We denote the tangent space
at x ∈ M by TxM . Then

TxM
⊥ = {Vx ∈ TxM̄ |ḡx(Vx,Wx) = 0, ∀Wx ∈ TxM}
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and

RadTxM = TxM ∩ TxM
⊥.

Then, M is called a lightlike hypersurface of M̄ if RadTxM �= {0} for any x ∈ M . Thus
TM⊥ =

⋂
x∈M TxM

⊥ becomes a one- dimensional distribution on M . We denote F (M)
the algebra of differential functions onM and by Γ(E) the F (M)- module of differentiable
sections of a vector bundle E over M .

Definition 1. ([10], p:78): Let M be a lightlike hypersurface of a semi-Riemannian

manifold M̄. A complementary vector subbundle S(TM) to TM⊥ in TM is called a

screen distribution of M.

It is known from ([10], Proposition 2.1, p:5) that S(TM) is non-degenerate. Thus,
we have the orthogonal direct sum

TM = TM⊥⊕⊥S(TM), (2.10)

where ⊕⊥ denotes the orthogonal direct sum. From (2.10), we observe that TM⊥ lies
in the tangent bundle of the lightlike hypersurface M. Thus a vital problem of this
theory is to replace the intersecting part by a vector bundle of TM̄ |M whose sections
are nowhere tangent to M. Next theorem shows that there exists a such complementary
(non-orthogonal ) vector bundle to M in TM̄.

Theorem 2.1. ([10], p: 79): Let M be a lightlike hypersurface of a semi-Riemannian

manifold M̄. Then there exists a unique vector bundle tr(TM) of rank 1 over M , such

that for any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there

exists a unique section N of tr(TM) on U such that

ḡ(ξ, N) = 1, ḡ(N,N) = ḡ(N,X) = 0 ∀X ∈ Γ(S(TM |U )). (2.11)

It follows from (2.11) that tr(TM) is a lightlike vector bundle such that tr(TM)x ∩
TxM = {0} for any x ∈M.Thus from (2.10) and (2.11) we have

TM̄ |M = S(TM)⊕⊥(TM⊥ ⊕ tr(TM))
= TM ⊕ tr(TM). (2.12)

Definition 2. ([10], p:79): LetM be a lightlike hypersurface of a semi-Riemannian mani-

fold M̄. Then the complementary (non-orthogonal) vector bundle tr(TM) to the tangent

bundle TM in TM̄ |M is called the lightlike transversal bundle of M with respect to
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screen distribution S(TM).

Suppose M is a lightlike hypersurface of M̄ and ∇̄ is the Levi-Civita connection on
M̄ . Then according to the decomposition (2.12) we have

∇̄XY = ∇XY + h(X, Y ) (2.13)

and

∇̄XV = −AVX +∇t
XV (2.14)

for any X, Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where ∇XY and AVX belong to Γ(TM),
h(X, Y ) and ∇t

XV belong to Γ(tr(TM)).We note that it is easy to see that ∇ is a torsion
free connection, h is a tr(TM) valued, symmetric F (M)− bilinear form on TM , AV is a
F (M)− linear operator on Γ(TM) and ∇t is a linear connection on tr(TM). h and AV

are called the second fundamental form and shape operator of the lightlike hypersurface
M , respectively.

Locally suppose {ξ, N} is a pair of vector fields on U in Theorem 2.1. Then we define
a symmetric bilinear form B and 1− form τ on U by

B(X, Y ) = ḡ(h(X, Y ), ξ) and τ (X) = ḡ(∇t
XN, ξ)

for X, Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). Thus (2.13) and (2.14) become

∇̄XY = ∇XY + B(X, Y )N (2.15)

and

∇̄XN = −ANX + τ (X)N (2.16)

for any X, Y ∈ Γ(TM) and N ∈ Γ(tr(TM)).
Let P denote the projection morphism of Γ(TM) on Γ(S(TM)) with respect to the

decomposition (2.10). We obtain

∇XPY = ∇∗
XPY +C(X, PY )ξ (2.17)

and

∇Xξ = −A∗
ξX + υ(X)ξ (2.18)
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for any X, Y ∈ Γ(TM), where ∇∗
XPY, A

∗
ξX ∈ Γ(S(TM)) and C is a 1− form on U

defined by

C(X, PY ) = ḡ(∇XPY,N) (2.19)

for X, Y ∈ Γ(TM). C and A∗ are called the second fundamental form and shape operator
of the screen distribution S(TM), respectively. From (2.11), (2.15),(2.16) and (2.18) we
obtain υ(X) = −τ (X), thus (2.18) becomes

∇Xξ = −A∗
ξX − τ (X)ξ. (2.20)

By direct calculations, using (2.15),(2.16), (2.17) and (2.20) we obtain the following
lemma.

Lemma 2.1. ([10], p:85) LetM be a lightlike hypersurface of a semi-Riemannianmanifold

M̄. Then we have

g(ANY, PW ) = C(Y, PW ), g(ANY,N) = 0 (2.21)

g(A∗
ξX, PY ) = B(X, PY ) (2.22)

for X, Y,W ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM).
We note that the second equation of (2.21) implies that ANX ∈ Γ(S(TM)) for

X ∈ Γ(TM), i.e., AN is Γ(S(TM))− valued. On the other hand, from ḡ(∇̄Xξ, ξ) = 0 we
have

B(X, ξ) = 0. (2.23)

We now recall the definition of screen conformal lightlike hypersurfaces of a semi-
Riemannian manifold M̄.
Definition 3. [2]. A lightlike hypersurface (M, g, S(TM)) of a semi-Riemannian

manifold is screen conformal if the shape operators AN and A∗
ξ of M and its screen

distribution S(TM) are related by

AN = ϕA∗
ξ , (2.24)

where ϕ is a non-vanishing smooth function on a neighborhood U in M . In case U =M
the screen conformality is said to be global.
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We note that there are many examples of screen conformal lightlike hypersurfaces of
semi-Riemannian manifolds. Next, we give two examples of screen conformal lightlike
hypersurfaces of semi-Euclidean spaces; for more examples, see [2].

Examples.(1) The Lightlike Cone
∧3

0 of R
4
1: Let R

4
1 be the space R

4 endowed
with the semi-Euclidean metric

ḡ(x, y) = −x1y1 + x2 y2 + x3y3 + x4 y4, x =
4∑

i=1

xi ∂

∂ xi
.

The lightlike cone is given by the equation −(x1)2 + (x2)2 + (x3)2 + (x4)2 = 0, x �= 0. It
is known that the lightlike cone is a screen conformal lightlike hypersurface [2].

(2) Lightlike Monge Hypersurfaces of R4
1: Let D be an open set of R4

1 and
F : D → R be a smooth function on D. Then the set

M = {(x1, x2, x3, x4) ∈ R4 : x1 = F (x2, x3, x4)}

is called a Monge hypersurface. A Monge hypersurface of R4
1 is lightlike if and only if F

is a solution of the partial differential equation

1 + (
∂ F

∂x1
)2 = (

∂ F

∂x2
)2 + (

∂ F

∂x3
)2 + (

∂ F

∂x4
)2.

It is known that a lightlike Monge hypersurface is screen conformal [2].

3. Semi-symmetric Lightlike Hypersurfaces in Semi-Euclidean Spaces

In this section, we consider semi-symmetric lightlike hypersurfaces in a semi-Euclidean
space. First, we give the Gauss equation for a lightlike hypersurface of a semi-Euclidean

space R(n+2)
q . Then we show that every screen conformal lightlike hypersurface of the

Minkowski spacetime is semi-symmetric. For higher dimensions, we show that the semi-
symmetry condition of a screen conformal lightlike hypersurface M has close relation with
the semi-symmetry condition of a leaf of its screen distribution. From now on, we denote
a lightlike hypersurface by M and use A for AN .
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Proposition 3.1. Let M be a lightlike hypersurface of a semi-Euclidean space R
(n+2)
q .

Then the Gauss equation of M is given by

R(X, Y )Z = B(Y, Z)AX − B(X,Z)AY (3.1)

for any X, Y, Z ∈ Γ(TM) and N ∈ Γ(tr(TM)).

Proof. For a lightlike hypersurface of a semi-Riemannian manifold M̄, from ([10], p:93)
we have

R̄(X, Y )Z = R(X, Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇Xh)(Y, Z)− (∇Y h)(X,Z), (3.2)

where R̄ and R are curvature tensor fields of M̄ and M, respectively. We note that
(∇Xh)(Y, Z) is defined by

(∇Xh)(Y, Z) = ∇t
Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (3.3)

By assumption, M̄ = R(n+2)
q is a semi-Euclidean space, hence R̄ = 0. Then (3.2) becomes

R(X, Y )Z +Ah(X,Z)Y −Ah(Y,Z)X + (∇Xh)(Y, Z) − (∇Y h)(X,Z) = 0.

On the other hand, (2.13) and (2.15) imply that h(X, Y ) = B(X, Y )N for X, Y ∈ Γ(TM)
and N ∈ Γ(tr(TM). Thus, we get

R(X, Y )Z + B(X,Z)ANY − B(Y, Z)ANX + (∇Xh)(Y, Z) − (∇Y h)(X,Z) = 0.

Then comparing the tangential and transversal parts of the above equation, we obtain
(3.1).

We note that g(R(X, Y )Z,W ) �= −g(R(X, Y )W,Z), ∀X, Y, Z,W ∈ Γ(TM), for a
lightlike hypersurface in general.

Definition 4. Let M be a lightlike hypersurface of a semi-Euclidean space. We say

that M is a semi-symmetric if the following condition is satisfied

(R(X, Y ) ·R)(X1 , X2, X3, X4) = 0 (3.4)

for X, Y,X1, X2, X3, X4 ∈ Γ(TM).
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Notice that it is easy to see that

(R(X, Y ) · R)(X1, X2, X3, ξ) = 0

for ξ ∈ Γ(TM⊥). Thus the condition (3.4) is equivalent to the following condition

(R(X, Y ) · R)(X1, X2, X3, PX4) = 0 (3.5)

for X, Y,X1, X2, X3, X4 ∈ Γ(TM). We also note that (3.4) and (3.5) do not imply the
equation (2.7) due to g(R(X, Y )Z,W ) �= −g(R(X, Y )W,Z) in general, for X, Y, Z,W ∈
Γ(TM).

Now, from (3.5) and (3.1), we obtain

(R(X, Y ) · R) (X1, X2, X3, PX4) = B(Y,X1)[B(AX,X3)g(AX2 , PX4)

− B(X2, X3)g(A2X,PX4)] +B(X,X1)[B(X2, X3)g(A2Y, PX4)

− B(AY,X3)g(AX2 , PX4)] + g(AX1 , PX4)[−B(Y,X2)B(AX,X3)

+ B(X,X2)B(AY,X3)] + B(X1, X3)[B(Y,X2)g(A2X, PX4)

− B(X,X2)g(A2Y, PX4)] + g(AX1 , PX4)[−B(X3, Y )B(X2 , AX)

+ B(X,X3)B(X2 , AY )] + g(AX2 , PX4)[B(X3, Y )B(X1 , AX)

− B(X,X3)B(X1 , AY )] +B(X2 , X3)[−B(Y,X4)g(AX1 , AX)

+ B(X, PX4)g(AX1, AY )] + B(X1, X3)[B(Y, PX4)g(AX2, AX)

− B(X, PX4)g(AX2, AY )] (3.6)

for any X, Y,X1, X2, X3, X4 ∈ Γ(TM).

Proposition 3.2. Every screen conformal lightlike hypersurface of the Minkowski space-

time is a semi-symmetric lightlike hypersurface.
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Proof. First, from (3.6), we have

(R(X, Y ) · R) (ξ, X2, X3, PX4) = B(Y, ξ)[B(AX,X3)g(AX2 , PX4)

− B(X2, X3)g(A2X, PX4)]

+ B(X, ξ)[B(X2 , X3)g(A2Y, PX4)− B(AY,X3)g(AX2 , PX4)]

+ g(Aξ, PX4)[−B(Y,X2)B(AX,X3) +B(X,X2)B(AY,X3)]

+ B(ξ, X3)[B(Y,X2)g(A2X, PX4)− B(X,X2)g(A2Y, PX4)]

+ g(Aξ, PX4)[−B(X3 , Y )B(X2 , AX) + B(X,X3)B(X2 , AY )]

+ g(AX2, PX4)[B(X3 , Y )B(ξ, AX) −B(X,X3)B(ξ, AY )]

+ B(X2, X3)[−B(Y, PX4)B(Aξ, AX + B(X, PX4)g(Aξ, AY )]

+ B(ξ, X3)[B(Y, PX4)g(AX2, AX) −B(X, PX4)g(AX2 , AY )]

for any X, Y,X2, X3, X4 ∈ Γ(TM) and ξ ∈ Γ(RadTM). Then, from (2.23), we get

(R(X, Y ) · R) (ξ, X2, X3, PX4) = g(Aξ, PX4)[−B(Y,X2)B(AX,X3)

+ B(X,X2)B(AY,X3)]

+ g(Aξ, PX4)[−B(X3 , Y )B(X2 , AX) + B(X,X3)B(X2 , AY )]

+ B(X2, X3)[−B(Y, PX4)B(Aξ, AX + B(X, PX4)g(Aξ, AY )].

Then, (2.24) implies that

(R(X, Y ) · R) (ξ, X2, X3, PX4) = ϕg(A∗
ξξ, PX4)[−B(Y,X2)B(AX,X3)

+ B(X,X2)B(AY,X3)]

+ ϕg(A∗
ξξ, PX4)[−B(X3 , Y )B(X2 , AX) + B(X,X3)B(X2 , AY )]

+ ϕB(X2 , X3)[−B(Y, PX4)B(A∗
ξξ, AX +B(X, PX4)g(A∗

ξξ, AY )].

From (2.22) and (2.23), we have A∗
ξξ = 0. Thus, we derive

(R(X, Y ) · R)(ξ, X2, X3, PX4) = 0.

In a similar way, we obtain

(R(X, Y ) ·R)(X1, X2, ξ, PX4) = 0, (R(ξ, Y ) · R)(X1, X2, X3, PX4) = 0

and
(R(X, Y ) · R)(X1, ξ, X3, PX4) = 0, (R(X, ξ) ·R)(X1 , X2, X3, PX4) = 0.
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forX1, X2, X3, X4 ∈ Γ(TM) and ξ ∈ Γ(TM⊥). Let {X1, X2, ξ, N} be a quasi-orthonormal
basis of R4

1 such that S(TM) = span{X1, X2} and tr(TM) = span{N}. From (3.6), we
have

(R(X1, X2) ·R) (X1, X2, X1, X2) = B(X2 , X1)[B(AX1 , X1)g(AX2 , X2)

− B(X2 , X1)g(A2X1, PX2)]

+ B(X1 , X1)[B(X2 , X1)g(A2X2, X2)− B(AX2 , X31)g(AX2 , PX2)]

+ g(AX1 , X2)[−B(X2 , X2)B(AX1 , X1) + B(X1, X2)B(AX2 , X1)]

+ B(X1 , X1)[B(X2 , X2)g(A2X1, X2)− B(X1 , X2)g(A2X2, X2)]

+ g(AX1 , X2)[−B(X1 , X2)B(X2 , AX1) + B(X1, X1)B(X2 , AX2)]

+ g(AX2 , X2)[B(X1 , X2)B(X1 , AX1) −B(X1 , X1)B(X1, AX2)]

+ B(X2 , X1)[−B(X2 , X2)B(AX1 , AX1 + B(X1, X2)g(AX1 , AX2)]

+ B(X1 , X1)[B(X2 , X2)g(AX2 , AX1) −B(X1 , X2)g(AX2, AX2)].

Since ANX ∈ Γ(S(TM)) for any X ∈ Γ(TM) and N ∈ Γ(tr(TM)) and A = AN is
self-adjoint on S(TM), we get

(R(X1, X2) ·R) (X1, X2, X1, X2) = B(X2 , X1)[B(AX1 , X1)g(AX2 , X2)

− B(X2 , X1)g(AX1 , AX2)]

+ B(X1 , X1)[B(X2 , X1)g(AX2 , AX2) −B(AX2 , X1)g(AX2, X2)]

+ g(AX1 , X2)[−B(X2 , X2)B(AX1 , X1) + B(X1, X2)B(AX2 , X1)]

+ B(X1 , X1)[B(X2 , X2)g(AX1 , AX2) −B(X1 , X2)g(AX2, AX2)]

+ g(AX1 , X2)[−B(X1 , X2)B(X2 , AX1) + B(X1, X1)B(X2 , AX2)]

+ g(AX2 , X2)[B(X1 , X2)B(X1 , AX1) −B(X1 , X1)B(X1, AX2)]

+ B(X2 , X1)[−B(X2 , X2)g(AX1 , AX1 +B(X1 , X2)g(AX1, AX2)]

+ B(X1 , X1)[B(X2 , X2)g(AX2 , AX1) −B(X1 , X2)g(AX2, AX2)].
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Then, using (2.24), we arrive at

(R(X1, X2) ·R) (X1, X2, X1, X2) = ϕB(X2 , X1)[B(AX1 , X1)g(A∗
ξX2, X2)

− B(X2 , X1)g(A∗
ξX1, AX2)]

+ ϕB(X1 , X1)[B(X2 , X1)g(A∗
ξX2, AX2)− B(AX2, X1)g(A∗

ξX2, X2)]

+ ϕg(A∗
ξX1, X2)[−B(X2 , X2)B(AX1 , X1) + B(X1 , X2)B(AX2 , X1)]

+ ϕB(X1 , X1)[B(X2 , X2)g(A∗ξX1, AX2)− B(X1, X2)g(A∗
ξX2, AX2)]

+ ϕg(A∗
ξX1, X2)[−B(X1 , X2)B(X2, AX1) + B(X1 , X1)B(X2 , AX2)]

+ ϕg(A∗
ξX2, X2)[B(X1 , X2)B(X1 , AX1)− B(X1, X1)B(X1 , AX2)]

+ ϕB(X2 , X1)[−B(X2 , X2)g(A∗
ξX1, AX1 + B(X1, X2)g(A∗

ξX1, AX2)]

+ ϕB(X1 , X1)[B(X2 , X2)g(A∗
ξX2, AX1)− B(X1, X2)g(A∗

ξX2, AX2)].

Thus, using (2.22), we obtain

(R(X1, X2) ·R) (X1, X2, X1, X2) = ϕB(X2 , X1)[B(AX1 , X1)B(X2 , X2)

− B(X2 , X1)B(X1 , AX2)]

+ ϕB(X1 , X1)[B(X2 , X1)B(X2 , AX2)− B(AX2 , X1)B(X2 , X2)]

+ ϕB(X1 , X2)[−B(X2 , X2)B(AX1 , X1) + B(X1 , X2)B(AX2 , X1)]

+ ϕB(X1 , X1)[B(X2 , X2)B(X1 , AX2)− B(X1, X2)B(X2 , AX2)]

+ ϕB(X1 , X2)[−B(X1 , X2)B(X2, AX1) + B(X1 , X1)B(X2 , AX2)]

+ ϕB(X2 , X2)[B(X1 , X2)B(X1 , AX1)− B(X1, X1)B(X1 , AX2)]

+ ϕB(X2 , X1)[−B(X2 , X2)B(X1, AX1 + B(X1 , X2)B(X1 , AX2)]

+ ϕB(X1 , X1)[B(X2 , X2)B(X2 , AX1)− B(X1, X2)B(X2 , AX2)].

Since B is symmetric, by direct computations, we get

(R(X1, X2) ·R) (X1, X2, X1, X2) = ϕ{(B(X2 , X1))2B(X1 , AX2)

− (B(X1 , X2))2B(X2 , AX1)

− B(X2 , X2)B(X1 , X1)B(X1, AX2)

+ B(X1 , X1)B(X2 , X2)B(X2, AX1)}. (3.7)

On the other hand, from (2.22) and (2.24), we have

B(AX2 , X1) = g(A∗
ξX1, AX2) = g(ϕA∗

ξX1, A
∗
ξX2) = g(AX1 , A

∗
ξX2).
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Thus, using again (2.22), we get

B(AX2 , X1) = B(X2, AX1). (3.8)

Then, from (3.7) and (3.8), we obtain

(R(X1, X2) ·R)(X1 , X2, X1, X2) = 0.

In a similar way, we have

(R(X1, X2) · R)(X1, X1, X2, X2) = (R(X1, X2) · R)(X2, X1, X1, X2) = 0,

(R(X1, X2) · R)(X2, X1, X2, X1) = (R(X1, X2) · R)(X2, X2, X1, X1) = 0.

and

(R(X1, X2).R)(X1, X2, X2, X1) = 0.

Thus proof is complete. ✷

Remark 1. From Proposition 3.2, it follows that lightlike cone of R4
1, lightlike Monge

hypersurface of R4
1 and lightlike surfaces of R

3
1 are examples of semi-symmetric lightlike

hypersurfaces. We also note that Proposition 3.1 is valid for a semi-Euclidean space R4
q,

1 ≤ q < 4.

Let M be a screen conformal lightlike hypersurface of an (n + 2) dimensional semi-
Euclidean space. Then, it is known that the screen distribution of M is integrable [2].
We denote a leaf of the screen distribution by M ′. Then, we have the following theorem.

Theorem 3.1. Let M be a screen conformal lightlike hypersurface of an (n+2) dimen-

sional semi-Euclidean space,n ≥ 3. Then M is semi-symmetric if and only if any leaf M ′

of S(TM) is semi-symmetric in semi-Euclidean space, that is, the curvature tensor ofM ′

satisfies the condition (2.7) in semi-Euclidean space.

Proof. Using (3.1) and (2.24) we obtain

g(R(X, Y )PZ, PW ) = ϕ{B(Y, Z)B(X, PW ) −B(X,Z)B(Y, PW )} (3.9)
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for any X, Y, Z,W ∈ Γ(TM). Then, by straightforward computations, using (2.17),
(2.20),(2.21),(2.23) and (2.24), we get

g(R(X, Y )PZ, PW ) = g(R∗(X, Y )PZ, PW )− ϕ{B(Y, PZ)B(X, PW )
+ B(X, PZ)B(Y, PW )} (3.10)

for any X, Y, Z,W ∈ Γ(TM). Thus, from (3.9) and (3.10), we derive

g(R(X, Y )PZ, PW ) =
1

1 + ϕ
g(R∗(X, Y )PZ, PW ) (3.11)

On the other hand, from (2.21) and (3.1), we get

g(R(X, Y )Z,N) = 0, ∀X, Y, Z ∈ Γ(TM), N ∈ Γ(tr(TM)). (3.12)

Thus, from (3.11) and (3.12), we conclude that

R(X, Y )PZ =
1

1 + ϕ
R∗(X, Y )PZ (3.13)

Hence, using algebraic properties of the curvature tensor field, we have

(R(X, Y ) ·R)(U, V,W, Z) = 1
(1 + ϕ)2

(R∗(X, Y ) ·R∗)(U, V,W, Z) (3.14)

for any X, Y, U, V,W ∈ Γ(S(TM)). Thus the proof is complete. ✷

Remark 2. The above theorem shows us that the semi-symmetry of a screen conformal
lightlike hypersurface of an (n+2) semi-Euclidean space is related with the semi-symmetry
of a leafM ′ of its integrable screen distribution. In Lorentzian case, since screen distribu-
tion is Riemannian, studying semi-symmetry of a screen conformal lightlike hypersurface
is exactly same with a Riemannian manifold. In fact, we can see from proof of Theo-
rem 3.1. the curvature conditions of a screen conformal lightlike hypersurface reduces to
the curvature conditions of a leaf of its screen distribution.

4. Ricci Semi-symmetric Lightlike Hypersurfaces in Semi-Euclidean Spaces

In this section, we study Ricci semi-symmetric lightlike hypersurfaces of semi-Euclidean
spaces and obtain that Ricci semi-symmetric lightlike hypersurfaces are totally geodesic
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under a condition. We also give a theorem on semi-symmetric lightlike hypersurfaces of
semi-Euclidean spaces in terms of the Ricci tensor. First, we need the expression of the
Ricci tensor of a lightlike hypersurface.

Lemma 4.1. Let M be a lightlike hypersurface of semi-Euclidean (n + 2) space. Then

the Ricci tensor Ric of M is given by

Ric(X, Y ) = −
n∑

i=1

εi{B(X, Y )C(wi, wi)} − g(A∗
ξY, AX) (4.1)

for any X, Y ∈ Γ(TM), where εi = ±1 and {wi}n
i=1 is an orthonormal basis of S(TM)

Proof. The Ricci tensor of a lightlike hypersurface is given by

Ric(X, Y ) =
n∑

i=1

εig(R(X,wi)Y, wi)− ḡ(R(X, ξ)Y,N)}

for any X, Y ∈ Γ(TM), ξ ∈ Γ(TM⊥ and N ∈ Γ(tr(TM), where {wi}n
i=1 is a basis of

S(TM). Then, from (2.21) and (3.1), we have

Ric(X, Y ) = −
n∑

i=1

εi{B(X, Y )C(wi, wi)− B(Y, wi)C(X,wi).

Using (2.21) and (2.22), we get

Ric(X, Y ) = −
n∑

i=1

εi{B(X, Y )C(wi, wi)} − g(
n∑

i=1

εig(A∗
ξY, wi)wi, AX).

Hence, we have (4.1). ✷

Definition 5. Let M be a lightlike hypersurface of a semi-Euclidean space. Then we

say that M is Ricci semi-symmetric if the following condition is satisfied

(R(X, Y ) · Ric)(X1, X2) = 0 (4.2)

for X, Y,X1, X2 ∈ Γ(TM).
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Next we give a theorem which shows the effect of Ricci semi-symmetric condition on
the geometry of lightlike hypersurfaces of a semi-Euclidean space.

Theorem 4.1. Let M be a Ricci semi-symmetric lightlike hypersurface of an (n + 2)-
dimensional semi-Euclidean space. Then either M is totally geodesic or Ric(ξ, Aξ) = 0
for ξ ∈ Γ(TM⊥),where Ric is the Ricci tensor of M and A denotes the shape operator

defined in (2.16)

Proof. From (3.1), (2.8) and (4.2), we obtain

(R(X, Y ) · Ric)(X1, X2) = α{−B(X,X1)B(AY,X2) + B(Y,X1)B(AX,X2)

− B(X,X2)B(X1 , AY ) +B(Y,X2)B(X1 , AX)}
− B(X,X1)B(X2 , A

2Y ) + B(Y,X1)B(X2, A
2X)

− B(X,X2)B(AY,AX1) + B(Y,X2)B(AX,AX1)

for X, Y,X1, X2 ∈ Γ(TM), where α = ∑n
i=1 εiC(wi, wi). Now, suppose that M is Ricci

semi-symmetric lightlike hypersurface. Taking X1 = ξ in the above equation and using
(2.23), we obtain

−B(X,X2)B(AY,Aξ) +B(Y,X2)B(AX,Aξ) = 0.

Hence for Y = ξ we derive

B(X,X2)B(Aξ, Aξ) = 0.

So, if B(X,X2) = 0 for any X,X2 ∈ Γ(TM), then M is totally geodesic. If M is not
totally geodesic, it follows that B(Aξ, Aξ) = 0, then from (4.1) we obtain Ric(ξ, Aξ) = 0.
✷

Theorem 4.2. Let M be a lightlike hypersurface of a semi-Euclidean (n+2) space such

that Ric(ξ, X) = 0, ∀X ∈ Γ(TM) , ξ ∈ Γ(TM⊥ and Aξ is a non-null vector field. Then

M is semi-symmetric if and only if M is totally geodesic, where Ric is the Ricci tensor

of M and A is the shape operator of M.

Proof. Suppose that M is a semi-symmetric lightlike hypersurface of a semi-Euclidean
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(n + 2) space. Taking X1 = ξ in (3.6), we obtain

{−B(Y,X2)B(AX,X3) + B(X,X2)B(AY,X3)}g(Aξ, PX4)

{−B(X3, Y )B(X2 , AX) + B(X,X3)B(X2 , AY )}g(Aξ, PX4)

{−B(Y, PX4)g(Aξ, AX) + B(X, PX4)g(Aξ, AY )}B(X2, X3) = 0.

Then, for Y = ξ, we have

B(X,X2)B(Aξ,X3)g(Aξ, PX4) + B(X,X3)B(X2 , Aξ)g(Aξ, PX4)

+ B(X, PX4)g(Aξ, Aξ)B(X2 , X3) = 0.

Thus, by assumption, R(ξ, X) = 0, we have B(X,Aξ) = 0. Hence, we get

B(X, PX4)g(Aξ, Aξ)B(X2 , X3) = 0.

Since Aξ is a non-null vector field by hypothesis, for X = X3 and X4 = X2 we arrive at

B(X2, X3) = 0.

Thus, M is totally geodesic. The converse is clear from (3.6).

For Lorentzian space R(n+2)
1 , we have the following corollary. ✷

Corollary 4.1. Let M be a lightlike hypersurface of a Lorentzian space R
(n+2)
1 such that

Ric(ξ, X) = 0, ∀X ∈ Γ(TM), ξ ∈ Γ(TM⊥). Then M is totally geodesic if and only if M

is semi-symmetric, where Ric is the Ricci tensor of M .

Proof. If M is a lightlike hypersurface of R(n+2)
1 . Then the screen distribution of M is a

Riemannian vector bundle. From (2.21), we can see that AX ∈ Γ(S(TM)), ∀X ∈ Γ(TM).
Then, the proof follows from Theorem 4.2. ✷

5. Parallel and Semi-Parallel Lightlike Hypersurfaces

In this section, we give a characterization on parallel lightlike hypersurfaces of a
Lorentzian manifold. In fact, it shows that there do not exist non-totally geodesic par-
allel lightlike hypersurfaces in a Lorentzian manifold. Moreover, we investigate the effect
of semi-parallel condition on the geometry of lightlike hypersurfaces in a semi-Euclidean
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space.

Theorem 5.1. Let M be a lightlike hypersurface of a Lorentzian manifold M̄. Then

the second fundamental form of M is parallel if and only if M is totally geodesic.

Proof. Let M be a lightlike hypersurface of a Lorentzian manifold. We suppose that
the second fundamental form h is parallel. Then, from (3.3) and (2.15) we have

(∇Xh)(Y, Z) = X(B(Y, Z)N) − B(∇XY, Z)N − B(Y,∇XZ)N = 0. (5.1)

Thus, from (2.23), for Y = ξ, we obtain

−B(∇Xξ, Z)N = 0.

By using (2.18), we have

B(A∗
ξX,Z)N = 0.

Hence we derive B(A∗
ξX,Z) = 0. Considering (2.23) we can assume that Z ∈ Γ(S(TM)).

Thus, from (2.22), we obtain g(A∗
ξX,A

∗
ξZ) = 0. Then, for X = Z we get g(A∗

ξX,A
∗
ξX) =

0. On the other hand, any screen distribution S(TM) of a lightlike hypersurface of a
Lorentzian manifold is Riemannian. Then, we have A∗

ξX = 0 for any X ∈ Γ(TM). Thus,
proof follows from this and (2.23). The converse is clear. ✷

In [8], Deprez defined and studied semi-paralel hypersurface in Euclidean n space.
In the rest of this section, we investigate semi-parallel lightlike hypersurface in semi-
Euclidean (n + 2) space.

Theorem 5.2. Let M be a semi-parallel lightlike hypersurface of semi-Euclidean (n+2)
space. Then either M is totally geodesic or C(ξ, A∗

ξU) = 0 for any U ∈ Γ(S(TM)) and

ξ ∈ Γ(TM⊥), where C and A∗
ξ are the second fundamental form and shape operator of

the screen distribution S(TM) defined in (2.19) and (2.18), respectively.

Proof. Since M is a semi-parallel lightlike hypersurface, we have

h(R(X, Y )Z,W ) + h(Z,R(X, Y )W ) = 0.
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By using (3.1), we obtain

B(X,Z)B(AY,W ) − B(Y, Z)B(AX,W ) +B(X,W )B(Z,AY )

− B(Y,W )B(AX,Z) = 0 (5.2)

for any X, Y, Z,W ∈ Γ(TM). Then, from (2.23) and (5.2), for X = ξ, we have

B(Y, Z)B(Aξ,W ) +B(Y,W )B(Aξ, Z) = 0.

Thus, for Z = W, we obtain B(Y, Z)B(Aξ, Z) = 0. Now, if B(Y, Z) = 0, then M is
totally geodesic. If B(Y, Z) �= 0, then from (2.21), we have C(ξ, A∗

ξU) = 0 for any
U ∈ Γ(S(TM)).

Example 3. Consider a hypersurface M in R4
2 given by

x1 = x2 +
√
2
√
x3

2 + x4
2.

Then, it is easy to check that M is a lightlike hypersurface. Its radical distribution is
spanned by

ξ =
√
x3

2 + x4
2
∂

∂x1
−

√
x3

2 + x4
2
∂

∂x2
+
√
2x3

∂

∂x3
+

√
2x4

∂

∂x4
.

Then the lightlike transversal vector bundle is spanned by

tr(TM) = span{N =
1

4(x3
2 + x4

2)
(−

√
x3

2 + x4
2
∂

∂x1
+

√
x3

2 + x4
2
∂

∂x2

+
√
2x3

∂

∂x3
+

√
2x4

∂

∂x4
)}.

It follows that the corresponding screen distribution S(TM) is spanned by

{Z1 =
∂

∂x1
+

∂

∂x2
, Z2 = −x4

∂

∂x3
+ x3

∂

∂x4
}.

By direct computations, we obtain

∇̄XZ1 = ∇̄Z1X = 0, ∇̄ξξ =
√
2ξ , ∇̄Z2ξ = ∇̄ξZ2 =

√
2Z2,

and

∇̄Z2Z2 = −x3
∂

∂x3
− x4

∂

∂x4
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for any X ∈ Γ(TM). Then, by using Gauss formula, we obtain

∇XZ1 = 0, ∇Z2Z2 = − 1
2
√
2
ξ ,∇ξZ2 = ∇Z2ξ =

√
2Z2, ∇Z1Z = 0

and

B(Z2 , Z2) = −
√
2(x3

2 + x4
2), B(Z1, Z2) = 0, B(Z1, Z1) = 0.

On the other hand, we have

∇̄ξN =
1

2
√
2
√
x3

2 + x4
2

∂

∂x1
− 1
2
√
2
√
x3

2 + x4
2

∂

∂x2

− 1
2

x3

(x3
2 + x4

2)
∂

∂ x3
− 1
2

x4

(x3
2 + x4

2)
∂

∂ x4
,

∇̄Z1N = 0,

∇̄Z2N = − x4

2
√
2(x3

2 + x4
2)

∂

∂x3
+

x3

2
√
2(x3

2 + x4
2)

∂

∂x4
.

Thus, from Weingarten formula (2.16), we have

ANξ = 0, ANZ1 = 0, ANZ2 =
1

2
√
2(x3

2 + x4
2)
Z2.

Then, from the above equations, one can show that the following equations are satisfied

(R(Z1, Z2)h)(Z1 , Z1) = 0 , (R(Z1, Z2)h)(Z1, Z2) = 0 , (R(Z1, Z2)h)(Z2, Z2) = 0.

Finally, using (2.23) and definition of (R(X, Y ).h), we have R(X, Y )h)(U, ξ) = 0 for any
X, Y, U ∈ Γ(TM) and ξ ∈ Γ(TM⊥). Thus, M is a non-totally geodesic semi-parallel
hypersurface of R4

2.

6. Concluding Remarks

It is known that the second fundamental forms of a lightlike hypersurface M do not
depend on the vector bundles S(TM), S(TM⊥) and tr(TM). Thus, the results of this
paper are stable with respect to any change in the above vector bundles.
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In [10], Duggal-Bejancu showed that the geometry of a Monge lightlike hypersurface of
R4

1 essentially reduces to the geometry of a leaf of its canonical screen distribution. Thus
the following question naturally arises: Are there other classes of lightlike hypersurfaces
whose geometry is essentially the same as that of their chosen screen distribution?

The above problem has been studied in [3], [4], [11], [12] and [18]. On the other hand
it is known that the shape operator plays a key role in studying geometry of submani-
folds. In [2], Atindogbe and Duggal introduced screen conformal lightlike hypersurfaces
whose shape operators are conformal to shape operators of their corresponding screen dis-
tributions. Moreover, they showed that lightlike hypersurface M of a semi-Riemannian
manifoldM̄ is totally geodesic, totally umbilical or minimal if and only if any leaf M ′

of its integrable distribution is so immersed in M̄ as a codimension 2 non-degenerate
submanifold.

In this paper, we have shown that the curvature tensor field of a screen conformal
lightlike hypersurface in a semi-Euclidean space has directly related with the curvature
tensor field of a leaf of its screen distribution S(TM) (Theorem 3.1). Thus we have made
further progress in solving above stated problem.

Finally, we note that the results of this paper are valid for a lightlike hypersurface of
a flat semi-Riemannian manifold.
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