Lightlike Hypersurfaces of Semi-Euclidean Spaces Satisfying Curvature Conditions of Semisymmetry Type

Bayram Şahin

Abstract

In this paper, we investigate lightlike hypersurfaces which are semi-symmetric, Ricci semi-symmetric, parallel or semi-parallel in a semi-Euclidean space. We obtain that every screen conformal lightlike hypersurface of the Minkowski spacetime is semi-symmetric. For higher dimensions, we show that the semi-symmetry condition of a screen conformal lightlike hypersurface reduces to the semi-symmetry condition of a leaf of its screen distribution. We also obtain that semi-symmetric and Ricci semi-symmetric lightlike hypersurfaces are totally geodesic under certain conditions. Moreover, we show that there exist no non-totally geodesic parallel hypersurfaces in a Lorentzian space.

Key Words: Degenerate metric, Screen conformal lightlike hypersurface, Parallel lightlike hypersurface, Semi-symmetric lightlike hypersurface.

1. Introduction

The class of semi-Riemannian manifolds, satisfying the condition

$$
\begin{equation*}
\nabla R=0, \tag{1.1}
\end{equation*}
$$

is a natural generalization of the class of manifolds of constant curvature, where ∇ is the Levi-Civita connection on semi-Riemannian manifold and R is the corresponding

[^0]
ŞAHIN

curvature tensor. For precise definitions of the symbols used, we refer to Section 2.1.
A semi-Riemannian manifold is called semi-symmetric if

$$
\begin{equation*}
\mathbf{R} \cdot R=0 \tag{1.2}
\end{equation*}
$$

where \mathbf{R} is the curvature operator corresponding to R and the • operation is defined in Section 2.1. Semi-symmetric hypersurfaces of Euclidean spaces were classified by Nomizu [15] and a general study of semi-symmetric Riemannian manifolds was made by Szabo [17].

A semi-Riemannian manifold is said to be Ricci semi-symmetric [7], if the following condition is satisfied:

$$
\begin{equation*}
\mathbf{R} \cdot R i c=0 . \tag{1.3}
\end{equation*}
$$

It is clear that every semi-symmetric manifold is Ricci semi-symmetric; the converse is not true in general and a brief discussion of this issue is given in Section 2.1.

If a manifold M is immersed into a manifold \bar{M}, the immersion is said to be parallel if the second fundamental form is covariantly constant, i.e., $\nabla h=0$, where ∇ is an affine connection \bar{M} and h is the second fundamental form of the immersion. The general classification of parallel submanifolds of Euclidean space was obtained in [13] by D. Ferus. He showed that such an immersion is an isometric immersion into an n dimensional symmetric R-space imbedded in R^{n+p} in the standard way. The general theory of lightlike submanifolds was introduced and presented in a book by DuggalBejancu [10]. The theory of lightlike submanifolds is a new area of differential geometry and it is very different from Riemannian geometry as well as semi-Riemannian geometry.

In third section of this paper, we consider a lightlike hypersurface of the semiEuclidean space and study semi-symmetry conditions on this hypersurface. Our main result, in this section, states that every screen conformal lightlike hypersurface (Definition 3) of the Minkowski spacetime R_{1}^{4} is semi-symmetric. For $R_{q}^{n+2}, n \geq 3$ we show that semi-symmetry of a lightlike hypersurface depends on the geometry of a leaf of screen distribution.

In section four, we study Ricci semi-symmetric lightlike hypersurfaces and obtain that Ricci semi-symmetric lightlike hypersurfaces are totally geodesic under a certain condition. In this section, we also obtain that semi-symmetric lightlike hypersurfaces are totally geodesic under a condition in terms of the Ricci tensor.

In section five, we investigate parallel hypersurface of a Lorentzian manifold. In fact, we show that every parallel lightlike hypersurface must be totally geodesic. Then we

ŞAHIN

study semi-parallel lightlike hypersurfaces in a semi-Euclidean space. We note that the semi-parallel hypersurfaces were defined in [8] as a generalization of parallel hypersurfaces for Riemannian case.

2. Preliminaries

In this section, we will give a brief review of curvature conditions of semi-symmetry type and lightlike submanifolds of semi-Riemannian manifolds. A full discussion of the contents of this section can be found in [7] and [10], respectively. In this paper, we will assume that every object in hand is smooth.

2.1. Curvature Conditions of Symmetry Type

Let (M, g) be a semi-Riemannian manifold. We denote its curvature operator by $R(X, Y)$

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

for $X, Y \in \Gamma(T M)$, where ∇ denotes the Levi-Civita connection on M. Then the Riemannian Christoffel curvature tensor R and the Ricci tensor Ric are defined by

$$
\begin{array}{r}
R(X, Y, Z, W)=g(R(X, Y) Z, W), \\
\operatorname{Ric}(X, Y)=\operatorname{trace}\{Z \rightarrow R(X, Y) Z\} \tag{2.5}
\end{array}
$$

respectively.
For a $(0, k)$-tensor field T on $M, k \geq 1$, the $(0, k+2)$ tensor field $R \cdot T$ is defined by

$$
\begin{align*}
(R \cdot T)\left(X_{1}, \ldots, X_{k}, X, Y\right)= & -T\left(R(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, \ldots, X_{k-1}, R(X, Y) X_{k}\right) \tag{2.6}
\end{align*}
$$

for $X, Y, X_{1}, \ldots, X_{k} \in \Gamma(T M)$. Curvature conditions, involving the form $R \cdot T=0$, are called curvature conditions of semi-symmetric type [7].

A semi-Riemannian manifold M is said to be semi-symmetric if it satisfies the condition $R \cdot R=0$. Thus, from (2.6) and properties of curvature tensor, we have

$$
\begin{align*}
(R(X, Y) & \cdot \\
& \quad R)(U, V) W=R(X, Y) R(U, V) W-R(U, V) R(X, Y) W \tag{2.7}\\
& -R(R(X, Y) U, V) W-R(U, R(X, Y) V) W=0
\end{align*}
$$

for any $X, Y, U, V, W \in \Gamma(T M)$.

ŞAHIN

A semi-Riemannian manifold M is said to be Ricci semi-symmetric if it satisfies the condition $R \cdot R i c=0$, i.e.,

$$
\begin{align*}
(R(X, Y) \cdot \operatorname{Ric})\left(X_{1}, X_{2}\right) & =-\operatorname{Ric}\left(R(X, Y) X_{1}, X_{2}\right) \\
& -\operatorname{Ric}\left(X_{1}, R(X, Y) X_{2}\right)=0 \tag{2.8}
\end{align*}
$$

for $X, Y, X_{1}, X_{2} \in \Gamma(T M)$.
In [8], Deprez defined and studied semi-paralel hypersurfaces in Euclidean n space. We recall that a hypersurface M of a semi-Riemannian manifold \bar{M} is said to be semiparallel if the following condition is satisfied for every point $p \in M$ and every vector fields $X, Y, Z, W \in \Gamma(T M):$

$$
\begin{equation*}
(R(X, Y) h)(Z, W)=-h(R(X, Y) Z, W)-h(Z, R(X, Y) W)=0 \tag{2.9}
\end{equation*}
$$

where h is the second fundamental form and R is the curvature tensor field of M.
Although conditions (1.2) and (1.3) are not equivalent for manifolds in general, P.J. Ryan [16] raised the following question for hypersurfaces of Euclidean spaces in 1972: "Are the conditions $\mathbf{R} \cdot R=0$ and $\mathbf{R} \cdot$ Ric $=0$ equivalent for hypersurfaces of Euclidean spaces?" Although there are many results which contributed to the solution of the above question in the affirmative under some conditions (see [5], [6], [14], [19]), Abdalla and Dillen [1] gave an explicit example of a hypersurface in Euclidean space $E^{n+1}(n \geq 4)$ that is Ricci semi-symmetric but not semi-symmetric (See also [7] for another example.). This result shows that the conditions $\mathbf{R} \cdot R=0$ and $\mathbf{R} \cdot$ Ric $=0$ are not equivalent for hypersurfaces of Euclidean space in general. A recent survey on Ricci semi-symmetric spaces and contributions to the solution of above problem can be found in [7]. We note that, in [20], I. Van de Woestijne and L. Verstraelen used the standard forms of a symmetric operator in a Lorentzian vector space to give an algebraic proof that the shape operator of a semisymmetric hypersurface at a point with type number greater than 2 is diagonalizable with exactly two eigenvalues, one of which is zero.

2.2. Lightlike Hypersurfaces

Let (\bar{M}, \bar{g}) be an $(m+2)$-dimensional semi-Riemannian manifold with the indefinite metric \bar{g} of index $q \in\{1, \ldots, m+1\}$ and M be a hypersurface of \bar{M}. We denote the tangent space at $x \in M$ by $T_{x} M$. Then

$$
T_{x} M^{\perp}=\left\{V_{x} \in T_{x} \bar{M} \mid \bar{g}_{x}\left(V_{x}, W_{x}\right)=0, \forall W_{x} \in T_{x} M\right\}
$$

ŞAHIN

and

$$
\operatorname{Rad} T_{x} M=T_{x} M \cap T_{x} M^{\perp} .
$$

Then, M is called a lightlike hypersurface of \bar{M} if $\operatorname{Rad} T_{x} M \neq\{0\}$ for any $x \in M$. Thus $T M^{\perp}=\bigcap_{x \in M} T_{x} M^{\perp}$ becomes a one- dimensional distribution on M. We denote $F(M)$ the algebra of differential functions on M and by $\Gamma(E)$ the $F(M)$ - module of differentiable sections of a vector bundle E over M.
Definition 1. ([10], p:78): Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M}. A complementary vector subbundle $S(T M)$ to $T M^{\perp}$ in $T M$ is called a screen distribution of M.

It is known from ([10], Proposition 2.1, p:5) that $S(T M)$ is non-degenerate. Thus, we have the orthogonal direct sum

$$
\begin{equation*}
T M=T M^{\perp} \oplus \perp S(T M) \tag{2.10}
\end{equation*}
$$

where $\oplus \perp$ denotes the orthogonal direct sum. From (2.10), we observe that $T M^{\perp}$ lies in the tangent bundle of the lightlike hypersurface M. Thus a vital problem of this theory is to replace the intersecting part by a vector bundle of $\left.T \bar{M}\right|_{M}$ whose sections are nowhere tangent to M. Next theorem shows that there exists a such complementary (non-orthogonal) vector bundle to M in $T \bar{M}$.
Theorem 2.1. ([10], p: 79): Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M}. Then there exists a unique vector bundle $\operatorname{tr}(T M)$ of rank 1 over M, such that for any non-zero section ξ of $T M^{\perp}$ on a coordinate neighborhood $U \subset M$, there exists a unique section N of $\operatorname{tr}(T M)$ on U such that

$$
\begin{equation*}
\bar{g}(\xi, N)=1, \bar{g}(N, N)=\bar{g}(N, X)=0 \quad \forall X \in \Gamma\left(S\left(\left.T M\right|_{U}\right)\right) . \tag{2.11}
\end{equation*}
$$

It follows from (2.11) that $\operatorname{tr}(T M)$ is a lightlike vector bundle such that $\operatorname{tr}(T M)_{x} \cap$ $T_{x} M=\{0\}$ for any $x \in M$. Thus from (2.10) and (2.11) we have

$$
\begin{align*}
\left.T \bar{M}\right|_{M} & =S(T M) \oplus \perp\left(T M^{\perp} \oplus \operatorname{tr}(T M)\right) \\
& =T M \oplus \operatorname{tr}(T M) \tag{2.12}
\end{align*}
$$

Definition 2. ([10], p:79): Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M}. Then the complementary (non-orthogonal) vector bundle $\operatorname{tr}(T M)$ to the tangent bundle $T M$ in $\left.T \bar{M}\right|_{M}$ is called the lightlike transversal bundle of M with respect to

ŞAHIN

screen distribution $S(T M)$.

Suppose M is a lightlike hypersurface of \bar{M} and $\bar{\nabla}$ is the Levi-Civita connection on \bar{M}. Then according to the decomposition (2.12) we have

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{t} V \tag{2.14}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma(\operatorname{tr}(T M))$, where $\nabla_{X} Y$ and $A_{V} X$ belong to $\Gamma(T M)$, $h(X, Y)$ and $\nabla_{X}^{t} V$ belong to $\Gamma(\operatorname{tr}(T M))$. We note that it is easy to see that ∇ is a torsion free connection, h is a $\operatorname{tr}(T M)$ valued, symmetric $F(M)-$ bilinear form on $T M, A_{V}$ is a $F(M)$ - linear operator on $\Gamma(T M)$ and ∇^{t} is a linear connection on $\operatorname{tr}(T M) . h$ and A_{V} are called the second fundamental form and shape operator of the lightlike hypersurface M, respectively.

Locally suppose $\{\xi, N\}$ is a pair of vector fields on U in Theorem 2.1. Then we define a symmetric bilinear form B and 1 - form τ on U by

$$
B(X, Y)=\bar{g}(h(X, Y), \xi) \quad \text { and } \quad \tau(X)=\bar{g}\left(\nabla_{X}^{t} N, \xi\right)
$$

for $X, Y \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right)$ and $N \in \Gamma(\operatorname{tr}(T M))$. Thus (2.13) and (2.14) become

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{2.16}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{tr}(T M))$.
Let P denote the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ with respect to the decomposition (2.10). We obtain

$$
\begin{equation*}
\nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X} \xi=-A_{\xi}^{*} X+v(X) \xi \tag{2.18}
\end{equation*}
$$

ŞAHIN

for any $X, Y \in \Gamma(T M)$, where $\nabla_{X}^{*} P Y, A_{\xi}^{*} X \in \Gamma(S(T M))$ and C is a $1-$ form on U defined by

$$
\begin{equation*}
C(X, P Y)=\bar{g}\left(\nabla_{X} P Y, N\right) \tag{2.19}
\end{equation*}
$$

for $X, Y \in \Gamma(T M) . C$ and A^{*} are called the second fundamental form and shape operator of the screen distribution $S(T M)$, respectively. From (2.11), (2.15), (2.16) and (2.18) we obtain $v(X)=-\tau(X)$, thus (2.18) becomes

$$
\begin{equation*}
\nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi \tag{2.20}
\end{equation*}
$$

By direct calculations, using (2.15),(2.16), (2.17) and (2.20) we obtain the following lemma.

Lemma 2.1. ([10], p:85) Let M be a lightlike hypersurface of a semi-Riemannian manifold \bar{M}. Then we have

$$
\begin{align*}
g\left(A_{N} Y, P W\right) & =C(Y, P W), \quad g\left(A_{N} Y, N\right)=0 \tag{2.21}\\
g\left(A_{\xi}^{*} X, P Y\right) & =B(X, P Y) \tag{2.22}
\end{align*}
$$

for $X, Y, W \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right)$ and $N \in \Gamma(\operatorname{tr}(T M)$.
We note that the second equation of (2.21) implies that $A_{N} X \in \Gamma(S(T M))$ for $X \in \Gamma(T M)$, i.e., A_{N} is $\Gamma(S(T M))$ - valued. On the other hand, from $\bar{g}\left(\bar{\nabla}_{X} \xi, \xi\right)=0$ we have

$$
\begin{equation*}
B(X, \xi)=0 \tag{2.23}
\end{equation*}
$$

We now recall the definition of screen conformal lightlike hypersurfaces of a semiRiemannian manifold \bar{M}.
Definition 3. [2]. A lightlike hypersurface ($M, g, S(T M)$) of a semi-Riemannian manifold is screen conformal if the shape operators A_{N} and A_{ξ}^{*} of M and its screen distribution $S(T M)$ are related by

$$
\begin{equation*}
A_{N}=\varphi A_{\xi}^{*} \tag{2.24}
\end{equation*}
$$

where φ is a non-vanishing smooth function on a neighborhood U in M. In case $U=M$ the screen conformality is said to be global.

ŞAHIN

We note that there are many examples of screen conformal lightlike hypersurfaces of semi-Riemannian manifolds. Next, we give two examples of screen conformal lightlike hypersurfaces of semi-Euclidean spaces; for more examples, see [2].

Examples.(1) The Lightlike Cone \bigwedge_{0}^{3} of R_{1}^{4} : Let R_{1}^{4} be the space R^{4} endowed with the semi-Euclidean metric

$$
\bar{g}(x, y)=-x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}+x^{4} y^{4}, x=\sum_{i=1}^{4} x^{i} \frac{\partial}{\partial x^{i}}
$$

The lightlike cone is given by the equation $-\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}+\left(x^{4}\right)^{2}=0, x \neq 0$. It is known that the lightlike cone is a screen conformal lightlike hypersurface [2].
(2) Lightlike Monge Hypersurfaces of R_{1}^{4} : Let D be an open set of R_{1}^{4} and $F: D \rightarrow R$ be a smooth function on D. Then the set

$$
M=\left\{\left(x^{1}, x^{2}, x^{3}, x^{4}\right) \in R^{4}: x^{1}=F\left(x^{2}, x^{3}, x^{4}\right)\right\}
$$

is called a Monge hypersurface. A Monge hypersurface of R_{1}^{4} is lightlike if and only if F is a solution of the partial differential equation

$$
1+\left(\frac{\partial F}{\partial x_{1}}\right)^{2}=\left(\frac{\partial F}{\partial x_{2}}\right)^{2}+\left(\frac{\partial F}{\partial x_{3}}\right)^{2}+\left(\frac{\partial F}{\partial x_{4}}\right)^{2}
$$

It is known that a lightlike Monge hypersurface is screen conformal [2].

3. Semi-symmetric Lightlike Hypersurfaces in Semi-Euclidean Spaces

In this section, we consider semi-symmetric lightlike hypersurfaces in a semi-Euclidean space. First, we give the Gauss equation for a lightlike hypersurface of a semi-Euclidean space $R_{q}^{(n+2)}$. Then we show that every screen conformal lightlike hypersurface of the Minkowski spacetime is semi-symmetric. For higher dimensions, we show that the semisymmetry condition of a screen conformal lightlike hypersurface M has close relation with the semi-symmetry condition of a leaf of its screen distribution. From now on, we denote a lightlike hypersurface by M and use A for A_{N}.

ŞAHIN

Proposition 3.1. Let M be a lightlike hypersurface of a semi-Euclidean space $R_{q}^{(n+2)}$. Then the Gauss equation of M is given by

$$
\begin{equation*}
R(X, Y) Z=B(Y, Z) A X-B(X, Z) A Y \tag{3.1}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{tr}(T M))$.

Proof. For a lightlike hypersurface of a semi-Riemannian manifold \bar{M}, from ([10], p:93) we have

$$
\begin{align*}
\bar{R}(X, Y) Z & =R(X, Y) Z+A_{h(X, Z)} Y-A_{h(Y, Z)} X \\
& +\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z) \tag{3.2}
\end{align*}
$$

where \bar{R} and R are curvature tensor fields of \bar{M} and M, respectively. We note that $\left(\nabla_{X} h\right)(Y, Z)$ is defined by

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=\nabla_{X}^{t} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{3.3}
\end{equation*}
$$

By assumption, $\bar{M}=R_{q}^{(n+2)}$ is a semi-Euclidean space, hence $\bar{R}=0$. Then (3.2) becomes

$$
R(X, Y) Z+A_{h(X, Z)} Y-A_{h(Y, Z)} X+\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=0
$$

On the other hand, (2.13) and (2.15) imply that $h(X, Y)=B(X, Y) N$ for $X, Y \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{tr}(T M)$. Thus, we get

$$
R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X+\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z)=0
$$

Then comparing the tangential and transversal parts of the above equation, we obtain (3.1).

We note that $g(R(X, Y) Z, W) \neq-g(R(X, Y) W, Z), \forall X, Y, Z, W \in \Gamma(T M)$, for a lightlike hypersurface in general.

Definition 4. Let M be a lightlike hypersurface of a semi-Euclidean space. We say that M is a semi-symmetric if the following condition is satisfied

$$
\begin{equation*}
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=0 \tag{3.4}
\end{equation*}
$$

for $X, Y, X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$.

ŞAHIN

Notice that it is easy to see that

$$
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, \xi\right)=0
$$

for $\xi \in \Gamma\left(T M^{\perp}\right)$. Thus the condition (3.4) is equivalent to the following condition

$$
\begin{equation*}
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, P X_{4}\right)=0 \tag{3.5}
\end{equation*}
$$

for $X, Y, X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$. We also note that (3.4) and (3.5) do not imply the equation (2.7) due to $g(R(X, Y) Z, W) \neq-g(R(X, Y) W, Z)$ in general, for $X, Y, Z, W \in$ $\Gamma(T M)$.

Now, from (3.5) and (3.1), we obtain

$$
\begin{align*}
(R(X, Y) \cdot R) & \left(X_{1}, X_{2}, X_{3}, P X_{4}\right)=B\left(Y, X_{1}\right)\left[B\left(A X, X_{3}\right) g\left(A X_{2}, P X_{4}\right)\right. \\
& \left.-B\left(X_{2}, X_{3}\right) g\left(A^{2} X, P X_{4}\right)\right]+B\left(X, X_{1}\right)\left[B\left(X_{2}, X_{3}\right) g\left(A^{2} Y, P X_{4}\right)\right. \\
& \left.-B\left(A Y, X_{3}\right) g\left(A X_{2}, P X_{4}\right)\right]+g\left(A X_{1}, P X_{4}\right)\left[-B\left(Y, X_{2}\right) B\left(A X, X_{3}\right)\right. \\
& \left.+B\left(X, X_{2}\right) B\left(A Y, X_{3}\right)\right]+B\left(X_{1}, X_{3}\right)\left[B\left(Y, X_{2}\right) g\left(A^{2} X, P X_{4}\right)\right. \\
& \left.-B\left(X, X_{2}\right) g\left(A^{2} Y, P X_{4}\right)\right]+g\left(A X_{1}, P X_{4}\right)\left[-B\left(X_{3}, Y\right) B\left(X_{2}, A X\right)\right. \\
& \left.+B\left(X, X_{3}\right) B\left(X_{2}, A Y\right)\right]+g\left(A X_{2}, P X_{4}\right)\left[B\left(X_{3}, Y\right) B\left(X_{1}, A X\right)\right. \\
& \left.-B\left(X, X_{3}\right) B\left(X_{1}, A Y\right)\right]+B\left(X_{2}, X_{3}\right)\left[-B\left(Y, X_{4}\right) g\left(A X_{1}, A X\right)\right. \\
& \left.+B\left(X, P X_{4}\right) g\left(A X_{1}, A Y\right)\right]+B\left(X_{1}, X_{3}\right)\left[B\left(Y, P X_{4}\right) g\left(A X_{2}, A X\right)\right. \\
& \left.-B\left(X, P X_{4}\right) g\left(A X_{2}, A Y\right)\right] \tag{3.6}
\end{align*}
$$

for any $X, Y, X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$.
Proposition 3.2. Every screen conformal lightlike hypersurface of the Minkowski spacetime is a semi-symmetric lightlike hypersurface.

ŞAHIN

Proof. First, from (3.6), we have

$$
\begin{aligned}
(R(X, Y) \cdot R) & \left(\xi, X_{2}, X_{3}, P X_{4}\right)=B(Y, \xi)\left[B\left(A X, X_{3}\right) g\left(A X_{2}, P X_{4}\right)\right. \\
& \left.-B\left(X_{2}, X_{3}\right) g\left(A^{2} X, P X_{4}\right)\right] \\
& +B(X, \xi)\left[B\left(X_{2}, X_{3}\right) g\left(A^{2} Y, P X_{4}\right)-B\left(A Y, X_{3}\right) g\left(A X_{2}, P X_{4}\right)\right] \\
& +g\left(A \xi, P X_{4}\right)\left[-B\left(Y, X_{2}\right) B\left(A X, X_{3}\right)+B\left(X, X_{2}\right) B\left(A Y, X_{3}\right)\right] \\
& +B\left(\xi, X_{3}\right)\left[B\left(Y, X_{2}\right) g\left(A^{2} X, P X_{4}\right)-B\left(X, X_{2}\right) g\left(A^{2} Y, P X_{4}\right)\right] \\
& +g\left(A \xi, P X_{4}\right)\left[-B\left(X_{3}, Y\right) B\left(X_{2}, A X\right)+B\left(X, X_{3}\right) B\left(X_{2}, A Y\right)\right] \\
& +g\left(A X_{2}, P X_{4}\right)\left[B\left(X_{3}, Y\right) B(\xi, A X)-B\left(X, X_{3}\right) B(\xi, A Y)\right] \\
& +B\left(X_{2}, X_{3}\right)\left[-B\left(Y, P X_{4}\right) B\left(A \xi, A X+B\left(X, P X_{4}\right) g(A \xi, A Y)\right]\right. \\
& +B\left(\xi, X_{3}\right)\left[B\left(Y, P X_{4}\right) g\left(A X_{2}, A X\right)-B\left(X, P X_{4}\right) g\left(A X_{2}, A Y\right)\right]
\end{aligned}
$$

for any $X, Y, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$ and $\xi \in \Gamma(R a d T M)$. Then, from (2.23), we get

$$
\begin{aligned}
(R(X, Y) \cdot R) & \left(\xi, X_{2}, X_{3}, P X_{4}\right)=g\left(A \xi, P X_{4}\right)\left[-B\left(Y, X_{2}\right) B\left(A X, X_{3}\right)\right. \\
& \left.+B\left(X, X_{2}\right) B\left(A Y, X_{3}\right)\right] \\
& +g\left(A \xi, P X_{4}\right)\left[-B\left(X_{3}, Y\right) B\left(X_{2}, A X\right)+B\left(X, X_{3}\right) B\left(X_{2}, A Y\right)\right] \\
& +B\left(X_{2}, X_{3}\right)\left[-B\left(Y, P X_{4}\right) B\left(A \xi, A X+B\left(X, P X_{4}\right) g(A \xi, A Y)\right] .\right.
\end{aligned}
$$

Then, (2.24) implies that

$$
\begin{aligned}
(R(X, Y) \cdot R) & \left(\xi, X_{2}, X_{3}, P X_{4}\right)=\varphi g\left(A_{\xi}^{*} \xi, P X_{4}\right)\left[-B\left(Y, X_{2}\right) B\left(A X, X_{3}\right)\right. \\
& \left.+B\left(X, X_{2}\right) B\left(A Y, X_{3}\right)\right] \\
& +\varphi g\left(A_{\xi}^{*} \xi, P X_{4}\right)\left[-B\left(X_{3}, Y\right) B\left(X_{2}, A X\right)+B\left(X, X_{3}\right) B\left(X_{2}, A Y\right)\right] \\
& +\varphi B\left(X_{2}, X_{3}\right)\left[-B\left(Y, P X_{4}\right) B\left(A_{\xi}^{*} \xi, A X+B\left(X, P X_{4}\right) g\left(A_{\xi}^{*} \xi, A Y\right)\right] .\right.
\end{aligned}
$$

From (2.22) and (2.23), we have $A_{\xi}^{*} \xi=0$. Thus, we derive

$$
(R(X, Y) \cdot R)\left(\xi, X_{2}, X_{3}, P X_{4}\right)=0
$$

In a similar way, we obtain

$$
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, \xi, P X_{4}\right)=0,(R(\xi, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, P X_{4}\right)=0
$$

and

$$
(R(X, Y) \cdot R)\left(X_{1}, \xi, X_{3}, P X_{4}\right)=0,(R(X, \xi) \cdot R)\left(X_{1}, X_{2}, X_{3}, P X_{4}\right)=0
$$

for $X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$ and $\xi \in \Gamma\left(T M^{\perp}\right)$. Let $\left\{X_{1}, X_{2}, \xi, N\right\}$ be a quasi-orthonormal basis of R_{1}^{4} such that $S(T M)=\operatorname{span}\left\{X_{1}, X_{2}\right\}$ and $\operatorname{tr}(T M)=\operatorname{span}\{N\}$. From (3.6), we have

$$
\begin{aligned}
\left(R\left(X_{1}, X_{2}\right) \cdot R\right) & \left(X_{1}, X_{2}, X_{1}, X_{2}\right)=B\left(X_{2}, X_{1}\right)\left[B\left(A X_{1}, X_{1}\right) g\left(A X_{2}, X_{2}\right)\right. \\
& \left.-B\left(X_{2}, X_{1}\right) g\left(A^{2} X_{1}, P X_{2}\right)\right] \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{1}\right) g\left(A^{2} X_{2}, X_{2}\right)-B\left(A X_{2}, X_{3} 1\right) g\left(A X_{2}, P X_{2}\right)\right] \\
& +g\left(A X_{1}, X_{2}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(A X_{1}, X_{1}\right)+B\left(X_{1}, X_{2}\right) B\left(A X_{2}, X_{1}\right)\right] \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A^{2} X_{1}, X_{2}\right)-B\left(X_{1}, X_{2}\right) g\left(A^{2} X_{2}, X_{2}\right)\right] \\
& +g\left(A X_{1}, X_{2}\right)\left[-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{1}\right)+B\left(X_{1}, X_{1}\right) B\left(X_{2}, A X_{2}\right)\right] \\
& +g\left(A X_{2}, X_{2}\right)\left[B\left(X_{1}, X_{2}\right) B\left(X_{1}, A X_{1}\right)-B\left(X_{1}, X_{1}\right) B\left(X_{1}, A X_{2}\right)\right] \\
& +B\left(X_{2}, X_{1}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(A X_{1}, A X_{1}+B\left(X_{1}, X_{2}\right) g\left(A X_{1}, A X_{2}\right)\right]\right. \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A X_{2}, A X_{1}\right)-B\left(X_{1}, X_{2}\right) g\left(A X_{2}, A X_{2}\right)\right]
\end{aligned}
$$

Since $A_{N} X \in \Gamma(S(T M))$ for any $X \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{tr}(T M))$ and $A=A_{N}$ is self-adjoint on $S(T M)$, we get

$$
\begin{aligned}
\left(R\left(X_{1}, X_{2}\right) \cdot R\right) & \left(X_{1}, X_{2}, X_{1}, X_{2}\right)=B\left(X_{2}, X_{1}\right)\left[B\left(A X_{1}, X_{1}\right) g\left(A X_{2}, X_{2}\right)\right. \\
& \left.-B\left(X_{2}, X_{1}\right) g\left(A X_{1}, A X_{2}\right)\right] \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{1}\right) g\left(A X_{2}, A X_{2}\right)-B\left(A X_{2}, X_{1}\right) g\left(A X_{2}, X_{2}\right)\right] \\
& +g\left(A X_{1}, X_{2}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(A X_{1}, X_{1}\right)+B\left(X_{1}, X_{2}\right) B\left(A X_{2}, X_{1}\right)\right] \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A X_{1}, A X_{2}\right)-B\left(X_{1}, X_{2}\right) g\left(A X_{2}, A X_{2}\right)\right] \\
& +g\left(A X_{1}, X_{2}\right)\left[-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{1}\right)+B\left(X_{1}, X_{1}\right) B\left(X_{2}, A X_{2}\right)\right] \\
& +g\left(A X_{2}, X_{2}\right)\left[B\left(X_{1}, X_{2}\right) B\left(X_{1}, A X_{1}\right)-B\left(X_{1}, X_{1}\right) B\left(X_{1}, A X_{2}\right)\right] \\
& +B\left(X_{2}, X_{1}\right)\left[-B\left(X_{2}, X_{2}\right) g\left(A X_{1}, A X_{1}+B\left(X_{1}, X_{2}\right) g\left(A X_{1}, A X_{2}\right)\right]\right. \\
& +B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A X_{2}, A X_{1}\right)-B\left(X_{1}, X_{2}\right) g\left(A X_{2}, A X_{2}\right)\right]
\end{aligned}
$$

ŞAHIN

Then, using (2.24), we arrive at

$$
\begin{aligned}
\left(R\left(X_{1}, X_{2}\right) \cdot R\right) & \left(X_{1}, X_{2}, X_{1}, X_{2}\right)=\varphi B\left(X_{2}, X_{1}\right)\left[B\left(A X_{1}, X_{1}\right) g\left(A_{\xi}^{*} X_{2}, X_{2}\right)\right. \\
& \left.-B\left(X_{2}, X_{1}\right) g\left(A_{\xi}^{*} X_{1}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{1}\right) g\left(A_{\xi}^{*} X_{2}, A X_{2}\right)-B\left(A X_{2}, X_{1}\right) g\left(A_{\xi}^{*} X_{2}, X_{2}\right)\right] \\
& +\varphi g\left(A_{\xi}^{*} X_{1}, X_{2}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(A X_{1}, X_{1}\right)+B\left(X_{1}, X_{2}\right) B\left(A X_{2}, X_{1}\right)\right] \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A^{*} \xi X_{1}, A X_{2}\right)-B\left(X_{1}, X_{2}\right) g\left(A_{\xi}^{*} X_{2}, A X_{2}\right)\right] \\
& +\varphi g\left(A_{\xi}^{*} X_{1}, X_{2}\right)\left[-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{1}\right)+B\left(X_{1}, X_{1}\right) B\left(X_{2}, A X_{2}\right)\right] \\
& +\varphi g\left(A_{\xi}^{*} X_{2}, X_{2}\right)\left[B\left(X_{1}, X_{2}\right) B\left(X_{1}, A X_{1}\right)-B\left(X_{1}, X_{1}\right) B\left(X_{1}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{2}, X_{1}\right)\left[-B\left(X_{2}, X_{2}\right) g\left(A_{\xi}^{*} X_{1}, A X_{1}+B\left(X_{1}, X_{2}\right) g\left(A_{\xi}^{*} X_{1}, A X_{2}\right)\right]\right. \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) g\left(A_{\xi}^{*} X_{2}, A X_{1}\right)-B\left(X_{1}, X_{2}\right) g\left(A_{\xi}^{*} X_{2}, A X_{2}\right)\right] .
\end{aligned}
$$

Thus, using (2.22), we obtain

$$
\begin{aligned}
\left(R\left(X_{1}, X_{2}\right) \cdot R\right) & \left(X_{1}, X_{2}, X_{1}, X_{2}\right)=\varphi B\left(X_{2}, X_{1}\right)\left[B\left(A X_{1}, X_{1}\right) B\left(X_{2}, X_{2}\right)\right. \\
& \left.-B\left(X_{2}, X_{1}\right) B\left(X_{1}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{1}\right) B\left(X_{2}, A X_{2}\right)-B\left(A X_{2}, X_{1}\right) B\left(X_{2}, X_{2}\right)\right] \\
& +\varphi B\left(X_{1}, X_{2}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(A X_{1}, X_{1}\right)+B\left(X_{1}, X_{2}\right) B\left(A X_{2}, X_{1}\right)\right] \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) B\left(X_{1}, A X_{2}\right)-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{1}, X_{2}\right)\left[-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{1}\right)+B\left(X_{1}, X_{1}\right) B\left(X_{2}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{2}, X_{2}\right)\left[B\left(X_{1}, X_{2}\right) B\left(X_{1}, A X_{1}\right)-B\left(X_{1}, X_{1}\right) B\left(X_{1}, A X_{2}\right)\right] \\
& +\varphi B\left(X_{2}, X_{1}\right)\left[-B\left(X_{2}, X_{2}\right) B\left(X_{1}, A X_{1}+B\left(X_{1}, X_{2}\right) B\left(X_{1}, A X_{2}\right)\right]\right. \\
& +\varphi B\left(X_{1}, X_{1}\right)\left[B\left(X_{2}, X_{2}\right) B\left(X_{2}, A X_{1}\right)-B\left(X_{1}, X_{2}\right) B\left(X_{2}, A X_{2}\right)\right] .
\end{aligned}
$$

Since B is symmetric, by direct computations, we get

$$
\begin{align*}
\left(R\left(X_{1}, X_{2}\right) \cdot R\right) & \left(X_{1}, X_{2}, X_{1}, X_{2}\right)=\varphi\left\{\left(B\left(X_{2}, X_{1}\right)\right)^{2} B\left(X_{1}, A X_{2}\right)\right. \\
& -\left(B\left(X_{1}, X_{2}\right)\right)^{2} B\left(X_{2}, A X_{1}\right) \\
& -B\left(X_{2}, X_{2}\right) B\left(X_{1}, X_{1}\right) B\left(X_{1}, A X_{2}\right) \\
& \left.+B\left(X_{1}, X_{1}\right) B\left(X_{2}, X_{2}\right) B\left(X_{2}, A X_{1}\right)\right\} \tag{3.7}
\end{align*}
$$

On the other hand, from (2.22) and (2.24), we have

$$
B\left(A X_{2}, X_{1}\right)=g\left(A_{\xi}^{*} X_{1}, A X_{2}\right)=g\left(\varphi A_{\xi}^{*} X_{1}, A_{\xi}^{*} X_{2}\right)=g\left(A X_{1}, A_{\xi}^{*} X_{2}\right)
$$

ŞAHIN

Thus, using again (2.22), we get

$$
\begin{equation*}
B\left(A X_{2}, X_{1}\right)=B\left(X_{2}, A X_{1}\right) \tag{3.8}
\end{equation*}
$$

Then, from (3.7) and (3.8), we obtain

$$
\left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{1}, X_{2}, X_{1}, X_{2}\right)=0
$$

In a similar way, we have

$$
\begin{aligned}
& \left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{1}, X_{1}, X_{2}, X_{2}\right)=\left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{2}, X_{1}, X_{1}, X_{2}\right)=0 \\
& \left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{2}, X_{1}, X_{2}, X_{1}\right)=\left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{2}, X_{2}, X_{1}, X_{1}\right)=0 .
\end{aligned}
$$

and

$$
\left(R\left(X_{1}, X_{2}\right) \cdot R\right)\left(X_{1}, X_{2}, X_{2}, X_{1}\right)=0
$$

Thus proof is complete.

Remark 1. From Proposition 3.2, it follows that lightlike cone of R_{1}^{4}, lightlike Monge hypersurface of R_{1}^{4} and lightlike surfaces of R_{1}^{3} are examples of semi-symmetric lightlike hypersurfaces. We also note that Proposition 3.1 is valid for a semi-Euclidean space R_{q}^{4}, $1 \leq q<4$.

Let M be a screen conformal lightlike hypersurface of an $(n+2)$ dimensional semiEuclidean space. Then, it is known that the screen distribution of M is integrable [2]. We denote a leaf of the screen distribution by M^{\prime}. Then, we have the following theorem.

Theorem 3.1. Let M be a screen conformal lightlike hypersurface of an $(n+2)$ dimensional semi-Euclidean space, $n \geq 3$. Then M is semi-symmetric if and only if any leaf M^{\prime} of $S(T M)$ is semi-symmetric in semi-Euclidean space, that is, the curvature tensor of M^{\prime} satisfies the condition (2.7) in semi-Euclidean space.

Proof. Using (3.1) and (2.24) we obtain

$$
\begin{equation*}
g(R(X, Y) P Z, P W)=\varphi\{B(Y, Z) B(X, P W)-B(X, Z) B(Y, P W)\} \tag{3.9}
\end{equation*}
$$

ŞAHIN

for any $X, Y, Z, W \in \Gamma(T M)$. Then, by straightforward computations, using (2.17), $(2.20),(2.21),(2.23)$ and (2.24), we get

$$
\begin{align*}
g(R(X, Y) P Z, P W) & =g\left(R^{*}(X, Y) P Z, P W\right)-\varphi\{B(Y, P Z) B(X, P W) \\
& +B(X, P Z) B(Y, P W)\} \tag{3.10}
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)$. Thus, from (3.9) and (3.10), we derive

$$
\begin{equation*}
g(R(X, Y) P Z, P W)=\frac{1}{1+\varphi} g\left(R^{*}(X, Y) P Z, P W\right) \tag{3.11}
\end{equation*}
$$

On the other hand, from (2.21) and (3.1), we get

$$
\begin{equation*}
g(R(X, Y) Z, N)=0, \forall X, Y, Z \in \Gamma(T M), N \in \Gamma(\operatorname{tr}(T M)) \tag{3.12}
\end{equation*}
$$

Thus, from (3.11) and (3.12), we conclude that

$$
\begin{equation*}
R(X, Y) P Z=\frac{1}{1+\varphi} R^{*}(X, Y) P Z \tag{3.13}
\end{equation*}
$$

Hence, using algebraic properties of the curvature tensor field, we have

$$
\begin{equation*}
(R(X, Y) \cdot R)(U, V, W, Z)=\frac{1}{(1+\varphi)^{2}}\left(R^{*}(X, Y) \cdot R^{*}\right)(U, V, W, Z) \tag{3.14}
\end{equation*}
$$

for any $X, Y, U, V, W \in \Gamma(S(T M))$. Thus the proof is complete.

Remark 2. The above theorem shows us that the semi-symmetry of a screen conformal lightlike hypersurface of an $(n+2)$ semi-Euclidean space is related with the semi-symmetry of a leaf M^{\prime} of its integrable screen distribution. In Lorentzian case, since screen distribution is Riemannian, studying semi-symmetry of a screen conformal lightlike hypersurface is exactly same with a Riemannian manifold. In fact, we can see from proof of Theorem 3.1. the curvature conditions of a screen conformal lightlike hypersurface reduces to the curvature conditions of a leaf of its screen distribution.

4. Ricci Semi-symmetric Lightlike Hypersurfaces in Semi-Euclidean Spaces

In this section, we study Ricci semi-symmetric lightlike hypersurfaces of semi-Euclidean spaces and obtain that Ricci semi-symmetric lightlike hypersurfaces are totally geodesic

ŞAHIN

under a condition. We also give a theorem on semi-symmetric lightlike hypersurfaces of semi-Euclidean spaces in terms of the Ricci tensor. First, we need the expression of the Ricci tensor of a lightlike hypersurface.

Lemma 4.1. Let M be a lightlike hypersurface of semi-Euclidean $(n+2)$ space. Then the Ricci tensor Ric of M is given by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=-\sum_{i=1}^{n} \epsilon_{i}\left\{B(X, Y) C\left(w_{i}, w i\right)\right\}-g\left(A_{\xi}^{*} Y, A X\right) \tag{4.1}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$, where $\epsilon_{i}= \pm 1$ and $\left\{w_{i}\right\}_{i=1}^{n}$ is an orthonormal basis of $S(T M)$

Proof. The Ricci tensor of a lightlike hypersurface is given by

$$
\left.\operatorname{Ric}(X, Y)=\sum_{i=1}^{n} \epsilon_{i} g\left(R\left(X, w_{i}\right) Y, w_{i}\right)-\bar{g}(R(X, \xi) Y, N)\right\}
$$

for any $X, Y \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right.$ and $N \in \Gamma\left(\operatorname{tr}(T M)\right.$, where $\left\{w_{i}\right\}_{i=1}^{n}$ is a basis of $S(T M)$. Then, from (2.21) and (3.1), we have

$$
\operatorname{Ric}(X, Y)=-\sum_{i=1}^{n} \epsilon_{i}\left\{B(X, Y) C\left(w_{i}, w i\right)-B\left(Y, w_{i}\right) C\left(X, w_{i}\right) .\right.
$$

Using (2.21) and (2.22), we get

$$
\operatorname{Ric}(X, Y)=-\sum_{i=1}^{n} \epsilon_{i}\left\{B(X, Y) C\left(w_{i}, w i\right)\right\}-g\left(\sum_{i=1}^{n} \epsilon_{i} g\left(A_{\xi}^{*} Y, w_{i}\right) w_{i}, A X\right)
$$

Hence, we have (4.1).

Definition 5. Let M be a lightlike hypersurface of a semi-Euclidean space. Then we say that M is Ricci semi-symmetric if the following condition is satisfied

$$
\begin{equation*}
(R(X, Y) \cdot R i c)\left(X_{1}, X_{2}\right)=0 \tag{4.2}
\end{equation*}
$$

for $X, Y, X_{1}, X_{2} \in \Gamma(T M)$.

ŞAHIN

Next we give a theorem which shows the effect of Ricci semi-symmetric condition on the geometry of lightlike hypersurfaces of a semi-Euclidean space.
Theorem 4.1. Let M be a Ricci semi-symmetric lightlike hypersurface of an $(n+2)$ dimensional semi-Euclidean space. Then either M is totally geodesic or $\operatorname{Ric}(\xi, A \xi)=0$ for $\xi \in \Gamma\left(T M^{\perp}\right)$,where Ric is the Ricci tensor of M and A denotes the shape operator defined in (2.16)

Proof. From (3.1), (2.8) and (4.2), we obtain

$$
\begin{aligned}
(R(X, Y) \cdot R i c)\left(X_{1}, X_{2}\right) & =\alpha\left\{-B\left(X, X_{1}\right) B\left(A Y, X_{2}\right)+B\left(Y, X_{1}\right) B\left(A X, X_{2}\right)\right. \\
& \left.-B\left(X, X_{2}\right) B\left(X_{1}, A Y\right)+B\left(Y, X_{2}\right) B\left(X_{1}, A X\right)\right\} \\
& -B\left(X, X_{1}\right) B\left(X_{2}, A^{2} Y\right)+B\left(Y, X_{1}\right) B\left(X_{2}, A^{2} X\right) \\
& -B\left(X, X_{2}\right) B\left(A Y, A X_{1}\right)+B\left(Y, X_{2}\right) B\left(A X, A X_{1}\right)
\end{aligned}
$$

for $X, Y, X_{1}, X_{2} \in \Gamma(T M)$, where $\alpha=\sum_{i=1}^{n} \epsilon_{i} C\left(w_{i}, w i\right)$. Now, suppose that M is Ricci semi-symmetric lightlike hypersurface. Taking $X_{1}=\xi$ in the above equation and using (2.23), we obtain

$$
-B\left(X, X_{2}\right) B(A Y, A \xi)+B\left(Y, X_{2}\right) B(A X, A \xi)=0
$$

Hence for $Y=\xi$ we derive

$$
B\left(X, X_{2}\right) B(A \xi, A \xi)=0
$$

So, if $B\left(X, X_{2}\right)=0$ for any $X, X_{2} \in \Gamma(T M)$, then M is totally geodesic. If M is not totally geodesic, it follows that $B(A \xi, A \xi)=0$, then from (4.1) we obtain $\operatorname{Ric}(\xi, A \xi)=0$.

Theorem 4.2. Let M be a lightlike hypersurface of a semi-Euclidean $(n+2)$ space such that $\operatorname{Ric}(\xi, X)=0, \forall X \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right.$ and $A \xi$ is a non-null vector field. Then M is semi-symmetric if and only if M is totally geodesic, where Ric is the Ricci tensor of M and A is the shape operator of M.

Proof. Suppose that M is a semi-symmetric lightlike hypersurface of a semi-Euclidean

ŞAHIN

$(n+2)$ space. Taking $X_{1}=\xi$ in (3.6), we obtain

$$
\begin{aligned}
& \left\{-B\left(Y, X_{2}\right) B\left(A X, X_{3}\right)+B\left(X, X_{2}\right) B\left(A Y, X_{3}\right)\right\} g\left(A \xi, P X_{4}\right) \\
& \left\{-B\left(X_{3}, Y\right) B\left(X_{2}, A X\right)+B\left(X, X_{3}\right) B\left(X_{2}, A Y\right)\right\} g\left(A \xi, P X_{4}\right) \\
& \left\{-B\left(Y, P X_{4}\right) g(A \xi, A X)+B\left(X, P X_{4}\right) g(A \xi, A Y)\right\} B\left(X_{2}, X_{3}\right)=0
\end{aligned}
$$

Then, for $Y=\xi$, we have

$$
\begin{aligned}
B\left(X, X_{2}\right) B\left(A \xi, X_{3}\right) g\left(A \xi, P X_{4}\right) & +B\left(X, X_{3}\right) B\left(X_{2}, A \xi\right) g\left(A \xi, P X_{4}\right) \\
& +B\left(X, P X_{4}\right) g(A \xi, A \xi) B\left(X_{2}, X_{3}\right)=0
\end{aligned}
$$

Thus, by assumption, $R(\xi, X)=0$, we have $B(X, A \xi)=0$. Hence, we get

$$
B\left(X, P X_{4}\right) g(A \xi, A \xi) B\left(X_{2}, X_{3}\right)=0
$$

Since $A \xi$ is a non-null vector field by hypothesis, for $X=X_{3}$ and $X_{4}=X_{2}$ we arrive at

$$
B\left(X_{2}, X_{3}\right)=0
$$

Thus, M is totally geodesic. The converse is clear from (3.6).
For Lorentzian space $R_{1}^{(n+2)}$, we have the following corollary.

Corollary 4.1. Let M be a lightlike hypersurface of a Lorentzian space $R_{1}^{(n+2)}$ such that $\operatorname{Ric}(\xi, X)=0, \forall X \in \Gamma(T M), \xi \in \Gamma\left(T M^{\perp}\right)$. Then M is totally geodesic if and only if M is semi-symmetric, where Ric is the Ricci tensor of M.

Proof. If M is a lightlike hypersurface of $R_{1}^{(n+2)}$. Then the screen distribution of M is a Riemannian vector bundle. From (2.21), we can see that $A X \in \Gamma(S(T M)), \forall X \in \Gamma(T M)$. Then, the proof follows from Theorem 4.2.

5. Parallel and Semi-Parallel Lightlike Hypersurfaces

In this section, we give a characterization on parallel lightlike hypersurfaces of a Lorentzian manifold. In fact, it shows that there do not exist non-totally geodesic parallel lightlike hypersurfaces in a Lorentzian manifold. Moreover, we investigate the effect of semi-parallel condition on the geometry of lightlike hypersurfaces in a semi-Euclidean

ŞAHIN

space.

Theorem 5.1. Let M be a lightlike hypersurface of a Lorentzian manifold \bar{M}. Then the second fundamental form of M is parallel if and only if M is totally geodesic.

Proof. Let M be a lightlike hypersurface of a Lorentzian manifold. We suppose that the second fundamental form h is parallel. Then, from (3.3) and (2.15) we have

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=X(B(Y, Z) N)-B\left(\nabla_{X} Y, Z\right) N-B\left(Y, \nabla_{X} Z\right) N=0 \tag{5.1}
\end{equation*}
$$

Thus, from (2.23), for $Y=\xi$, we obtain

$$
-B\left(\nabla_{X} \xi, Z\right) N=0
$$

By using (2.18), we have

$$
B\left(A_{\xi}^{*} X, Z\right) N=0
$$

Hence we derive $B\left(A_{\xi}^{*} X, Z\right)=0$. Considering (2.23) we can assume that $Z \in \Gamma(S(T M))$. Thus, from (2.22), we obtain $g\left(A_{\xi}^{*} X, A_{\xi}^{*} Z\right)=0$. Then, for $X=Z$ we get $g\left(A_{\xi}^{*} X, A_{\xi}^{*} X\right)=$ 0 . On the other hand, any screen distribution $S(T M)$ of a lightlike hypersurface of a Lorentzian manifold is Riemannian. Then, we have $A_{\xi}^{*} X=0$ for any $X \in \Gamma(T M)$. Thus, proof follows from this and (2.23). The converse is clear.

In [8], Deprez defined and studied semi-paralel hypersurface in Euclidean n space. In the rest of this section, we investigate semi-parallel lightlike hypersurface in semiEuclidean $(n+2)$ space.

Theorem 5.2. Let M be a semi-parallel lightlike hypersurface of semi-Euclidean ($n+2$) space. Then either M is totally geodesic or $C\left(\xi, A_{\xi}^{*} U\right)=0$ for any $U \in \Gamma(S(T M))$ and $\xi \in \Gamma\left(T M^{\perp}\right)$, where C and A_{ξ}^{*} are the second fundamental form and shape operator of the screen distribution $S(T M)$ defined in (2.19) and (2.18), respectively.

Proof. Since M is a semi-parallel lightlike hypersurface, we have

$$
h(R(X, Y) Z, W)+h(Z, R(X, Y) W)=0
$$

ŞAHİN

By using (3.1), we obtain

$$
\begin{align*}
B(X, Z) B(A Y, W) & -B(Y, Z) B(A X, W)+B(X, W) B(Z, A Y) \\
& -B(Y, W) B(A X, Z)=0 \tag{5.2}
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)$. Then, from (2.23) and (5.2), for $X=\xi$, we have

$$
B(Y, Z) B(A \xi, W)+B(Y, W) B(A \xi, Z)=0
$$

Thus, for $Z=W$, we obtain $B(Y, Z) B(A \xi, Z)=0$. Now, if $B(Y, Z)=0$, then M is totally geodesic. If $B(Y, Z) \neq 0$, then from (2.21), we have $C\left(\xi, A_{\xi}^{*} U\right)=0$ for any $U \in \Gamma(S(T M))$.

Example 3. Consider a hypersurface M in R_{2}^{4} given by

$$
x_{1}=x_{2}+\sqrt{2} \sqrt{x_{3}^{2}+x_{4}^{2}} .
$$

Then, it is easy to check that M is a lightlike hypersurface. Its radical distribution is spanned by

$$
\xi=\sqrt{x_{3}^{2}+x_{4}^{2}} \frac{\partial}{\partial x_{1}}-\sqrt{x_{3}^{2}+x_{4}^{2}} \frac{\partial}{\partial x_{2}}+\sqrt{2} x_{3} \frac{\partial}{\partial x_{3}}+\sqrt{2} x_{4} \frac{\partial}{\partial x_{4}}
$$

Then the lightlike transversal vector bundle is spanned by

$$
\begin{aligned}
\operatorname{tr}(T M) & =\operatorname{span}\left\{N=\frac{1}{4\left(x_{3}^{2}+x_{4}^{2}\right)}\left(-\sqrt{x_{3}^{2}+x_{4}^{2}} \frac{\partial}{\partial x_{1}}+\sqrt{x_{3}^{2}+x_{4}^{2}} \frac{\partial}{\partial x_{2}}\right.\right. \\
& \left.\left.+\sqrt{2} x_{3} \frac{\partial}{\partial x_{3}}+\sqrt{2} x_{4} \frac{\partial}{\partial x_{4}}\right)\right\}
\end{aligned}
$$

It follows that the corresponding screen distribution $S(T M)$ is spanned by

$$
\left\{Z_{1}=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}, Z_{2}=-x_{4} \frac{\partial}{\partial x_{3}}+x_{3} \frac{\partial}{\partial x_{4}}\right\}
$$

By direct computations, we obtain

$$
\bar{\nabla}_{X} Z_{1}=\bar{\nabla}_{Z_{1}} X=0, \bar{\nabla}_{\xi} \xi=\sqrt{2} \xi, \bar{\nabla}_{Z_{2}} \xi=\bar{\nabla}_{\xi} Z_{2}=\sqrt{2} Z_{2}
$$

and

$$
\bar{\nabla}_{Z_{2}} Z_{2}=-x_{3} \frac{\partial}{\partial x_{3}}-x_{4} \frac{\partial}{\partial x_{4}}
$$

ŞAHIN

for any $X \in \Gamma(T M)$. Then, by using Gauss formula, we obtain

$$
\nabla_{X} Z_{1}=0, \nabla_{Z_{2}} Z_{2}=-\frac{1}{2 \sqrt{2}} \xi, \nabla_{\xi} Z_{2}=\nabla_{Z_{2}} \xi=\sqrt{2} Z_{2}, \nabla_{Z_{1}} Z=0
$$

and

$$
B\left(Z_{2}, Z_{2}\right)=-\sqrt{2}\left(x_{3}^{2}+x_{4}^{2}\right), B\left(Z_{1}, Z_{2}\right)=0, B\left(Z_{1}, Z_{1}\right)=0 .
$$

On the other hand, we have

$$
\begin{aligned}
\bar{\nabla}_{\xi} N & =\frac{1}{2 \sqrt{2} \sqrt{x_{3}^{2}+x_{4}^{2}}} \frac{\partial}{\partial x_{1}}-\frac{1}{2 \sqrt{2} \sqrt{x_{3}^{2}+x_{4}^{2}}} \frac{\partial}{\partial x_{2}} \\
& -\frac{1}{2} \frac{x_{3}}{\left(x_{3}^{2}+x_{4}^{2}\right)} \frac{\partial}{\partial x_{3}}-\frac{1}{2} \frac{x_{4}}{\left(x_{3}^{2}+x_{4}^{2}\right)} \frac{\partial}{\partial x_{4}}, \\
\bar{\nabla}_{Z_{1}} N & =0, \\
\bar{\nabla}_{Z_{2}} N & =-\frac{x_{4}}{2 \sqrt{2}\left(x_{3}^{2}+x_{4}^{2}\right)} \frac{\partial}{\partial x_{3}}+\frac{x_{3}}{2 \sqrt{2}\left(x_{3}^{2}+x_{4}^{2}\right)} \frac{\partial}{\partial x_{4}} .
\end{aligned}
$$

Thus, from Weingarten formula (2.16), we have

$$
A_{N} \xi=0, A_{N} Z_{1}=0, A_{N} Z_{2}=\frac{1}{2 \sqrt{2}\left(x_{3}^{2}+x_{4}^{2}\right)} Z_{2}
$$

Then, from the above equations, one can show that the following equations are satisfied

$$
\left(R\left(Z_{1}, Z_{2}\right) h\right)\left(Z_{1}, Z_{1}\right)=0,\left(R\left(Z_{1}, Z_{2}\right) h\right)\left(Z_{1}, Z_{2}\right)=0,\left(R\left(Z_{1}, Z_{2}\right) h\right)\left(Z_{2}, Z_{2}\right)=0
$$

Finally, using (2.23) and definition of $(R(X, Y) . h)$, we have $R(X, Y) h)(U, \xi)=0$ for any $X, Y, U \in \Gamma(T M)$ and $\xi \in \Gamma\left(T M^{\perp}\right)$. Thus, M is a non-totally geodesic semi-parallel hypersurface of R_{2}^{4}.

6. Concluding Remarks

It is known that the second fundamental forms of a lightlike hypersurface M do not depend on the vector bundles $S(T M), S\left(T M^{\perp}\right)$ and $\operatorname{tr}(T M)$. Thus, the results of this paper are stable with respect to any change in the above vector bundles.

SAHİN

In [10], Duggal-Bejancu showed that the geometry of a Monge lightlike hypersurface of R_{1}^{4} essentially reduces to the geometry of a leaf of its canonical screen distribution. Thus the following question naturally arises: Are there other classes of lightlike hypersurfaces whose geometry is essentially the same as that of their chosen screen distribution?

The above problem has been studied in [3], [4], [11], [12] and [18]. On the other hand it is known that the shape operator plays a key role in studying geometry of submanifolds. In [2], Atindogbe and Duggal introduced screen conformal lightlike hypersurfaces whose shape operators are conformal to shape operators of their corresponding screen distributions. Moreover, they showed that lightlike hypersurface M of a semi-Riemannian manifold \bar{M} is totally geodesic, totally umbilical or minimal if and only if any leaf M^{\prime} of its integrable distribution is so immersed in \bar{M} as a codimension 2 non-degenerate submanifold.

In this paper, we have shown that the curvature tensor field of a screen conformal lightlike hypersurface in a semi-Euclidean space has directly related with the curvature tensor field of a leaf of its screen distribution $S(T M)$ (Theorem 3.1). Thus we have made further progress in solving above stated problem.

Finally, we note that the results of this paper are valid for a lightlike hypersurface of a flat semi-Riemannian manifold.

Acknowledgments

I would like to thank Professor K. L. Duggal for his reading the first draft version. I am also grateful to my referee for his/her helpful suggestions.

References

[1] Abdalla, B. E., Dillen, F.: A Ricci semi-symmetric hypersurface of Euclidean space which is not semi-symmetric. Proc. Amer. Math. Soc. 130, 6, 1805-1808, (2002).
[2] Atindogbe, C., Duggal, K. L.: Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11, 4, 421-442, (2004).
[3] Bejancu, A.: Null hypersurfaces of semi-Euclidean spaces, Saitama Math J. 14, 25-40, (1996).

ŞAHIN

[4] Bejancu, A., Ferrández A. and Lucas, P.: A new viewpoint on geometry of a lightlike hypersurface in a Semi-Euclidean Space, Saitama Math. J. 16, 31-38, (1998).
[5] Defever, F., Descz, R., Senturk, D. Z., Verstraelen, L., Yaprak, S.: On problem of P. J. Ryan, Kyungpook Math. J. 37, 371-376, (1997).
[6] Defever, F., Descz, R., Senturk, D. Z., Verstraelen, L. Yaprak, S.: P. J. Ryan's problem in semi-Riemannian space forms, Glasgow Math. J. 41, 271-281, (1999).
[7] Defever, F.: Ricci-semisymmetric hypersurfaces, Balkan J.of Geometry and Its Appl. 5, 1, 81-91, (2000).
[8] Deprez, J.: Semi-parallel surfaces in Euclidean space, J. of Geometry, 25, 192-200, (1985).
[9] Deprez, J.: Semi-parallel hypersurfaces, Rend. Sem. Mat. Uni. Politec. Torino, 44(2), 1986.
[10] Duggal, K. L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[11] Duggal, K. L.: Constant scalar curvature and warped product globally null manifolds, J. of Geometry and Physics, 43 (4), 327-340, (2002).
[12] Duggal, K. L.: Riemannian geometry of half lightlike submanifolds, Math. J. Toyama Univ., 25, 169-179, (2002).
[13] Ferus, D.,: Immersions with parallel second fundamental form, Math Z. 140, 87-93, (1974).
[14] Matsuyama, Y.: Complete hypersurfaces with $R . S=0$ in E^{n+1}, Proc. Amer. Math. Soc. 88, 119-123, (1983).
[15] Nomizu, K.: On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20, 46-59, (1986).
[16] Ryan, P. J.: A Class of complex hypersurfaces, Colloquium Math. 26, 175-182, (1972).
[17] Szabo, Z.,: Structure theorems on Riemannian spaces satifying $R(X, Y) . R=0$, The local version, J. Differential Geometry, 17, 531-582, (1982).
[18] Şahin, B.: Warped product lightlike submanifolds, Sarajevo J. Math. Vol: 1 (14), 1-10, (2005).
[19] Tanno, S.: Hypersurfaces satisfying a certain condition on the Ricci tensor, Tōhoku Math. J. 21, 297-303, (1969).

SAHİN

[20] Van de Woestijne, I. and Verstraelen, L.: Semi-symmetric Lorentzian hypersurfaces, Tôhoku Math. J. 39, 81-88, (1987).

Bayram ŞAHIN
Received 14.07.2005
Inönü University
Faculty of Science and Art
Department of Mathematics
44280, Malatya-TURKEY
e-mail: bsahin@inonu.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 53C15, 53C40, 53C50.

