σ-REGULAR MATRICES AND A σ-CORE THEOREM FOR DOUBLE SEQUENCES

Celal Çakan*, Bilal Altay* and Hüsamettin Coşkun*

Received $31: 10: 2008$: Accepted 19:01:2009

Abstract

The famous Knopp Core of a single sequence was extended to the P core of a double sequence by R.F. Patterson. Recently, the $M R$-core and σ-core of real bounded double sequences have been introduced and some inequalities analogues to those for Knoop's Core Theorem have been studied. The aim of this paper is to characterize a class of four-dimensional matrices, and so to obtain necessary and sufficient conditions for a new inequality related to the P - and σ-cores.

Keywords: Double sequences, Invariant means, Core theorems and matrix transformations.

2000 AMS Classification: 40 C 05, 40 J 05, 46 A 45.

1. Introduction

A double sequence $x=\left[x_{j k}\right]_{j, k=0}^{\infty}$ is said to be convergent to a number l in the sense of Pringsheim, or to be P-convergent, if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$, the set of natural numbers, such that $\left|x_{j k}-l\right|<\varepsilon$ whenever $j, k>N$, [11]. In this case, we write $P-\lim x=l$. In what follows, we will write $\left[x_{j k}\right]$ in place of $\left[x_{j k}\right]_{j, k=0}^{\infty}$.

A double sequence x is said to be bounded if there exists a positive number M such that $\left|x_{j k}\right|<M$ for all j, k, i.e.,

$$
\|x\|=\sup _{j, k}\left|x_{j k}\right|<\infty .
$$

We note that in contrast to the case for single sequences, a convergent double sequence need not be bounded. By c_{2}^{∞}, we mean the space of all P-convergent and bounded double sequences.

[^0]Let $A=\left[a_{j k}^{m n}\right]_{j, k=0}^{\infty}$ be a four dimensional infinite matrix of real numbers for all $m, n=0,1, \ldots$. The sums

$$
y_{m n}=\sum_{j}^{\infty} \sum_{k=0}^{\infty} a_{j k}^{m n} x_{j k}
$$

are called the A-transforms of the double sequence x. We say that a sequence x is A summable to the limit l if the A-transform of x exists for all $m, n=0,1, \ldots$ and are convergent in the sense of Pringsheim, i.e.,

$$
\lim _{p, q \rightarrow \infty} \sum_{j=0}^{p} \sum_{k=0}^{q} a_{j k}^{m n} x_{j k}=y_{m n}
$$

and

$$
\lim _{m, n \rightarrow \infty} y_{m n}=l .
$$

Moricz and Rhoades [6] have defined the almost convergence of a double sequence as follows:

A double sequence $x=\left[x_{j k}\right]$ of real numbers is said to be almost convergent to a limit l if

$$
\lim _{p, q \rightarrow \infty} \sup _{s, t \geq 0}\left|\frac{1}{p q} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{j+s, k+t}-l\right|=0 .
$$

Note that a convergent single sequence is also almost convergent but for a double sequence this is not the case. That is, a convergent double sequence need not be almost convergent. However, every bounded convergent double sequence is almost convergent. We denote by f_{2} the set of all almost convergent and bounded double sequences.

Let σ be a one-to-one mapping from \mathbb{N} into itself. The almost convergence of double sequences has been generalized to the σ-convergence in [2] as follows:

A bounded double sequence $x=\left[x_{j k}\right]$ of real numbers is said to be σ-convergent to a limit l if

$$
\lim _{p, q \rightarrow \infty} \sup _{s, t \geq 0} \frac{1}{p q} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}=l .
$$

In this case we write $\sigma-\lim x=l$. We denote by V_{σ}^{2} the set of all σ-convergent and bounded double sequences.

One can see that in contrast to the case for single sequences, a convergent double sequence need not be σ-convergent. But every bounded convergent double sequence is σ-convergent. So, $c_{2}^{\infty} \subset V_{\sigma}^{2}$. In the case where $\sigma(i)=i+1$, the σ-convergence of a double sequence reduces to its almost convergence.

Let $B=\left(b_{n k}\right)(n, k=1,2, \ldots)$ be an infinite matrix of real numbers and $x=\left(x_{k}\right)$ a sequence of real numbers. We write $B x=\left((B x)_{n}\right)$ if $B_{n}(x)=\sum_{k} b_{n k} x_{k}$ converges for each n. Let E and F be any two sequence spaces. If $x \in E$ implies that $B x \in Y$, then we say that the matrix B maps E into F. We denote by (E, F) the class of matrices B which map E into F. If E and F are equipped with the limits $E-\lim$ and $F-\lim$, respectively, $B \in(E, F)$ and $F-\lim B x=E-\lim x$ for all $x \in E$, then we write $B \in(E, F)_{\mathrm{reg}}$. The matrix B is then said to be regular if $B \in(c, c)_{\text {reg }}$. The conditions for regularity are well-known, [3, p.4].

The concept of regularity has been defined for four-dimensional matrices in the same way, (see [4] and [12]). Moricz and Rhoades [6] have determined necessary and sufficient conditions for a four-dimensional matrix A to be strongly regular. In [9], necessary and
sufficient conditions have been given for a four dimensional matrix A to belong to the class $\left(c_{2}^{\infty}, f_{2}\right)_{\text {reg }}$.

Recall that Knopp's Core of a bounded sequence x is the closed interval $[\lim \inf x, \lim \sup x]$, [3, p. 138]. Recently, on analogy with Knopp's Core, the P-core of a double sequence was introduced by Patterson as the closed interval $[-L(-x), L(x)]$, where $-L(-x)=$ $P-\lim \inf x$ and $L(x)=P-\lim \sup x,[10]$. Some inequalities related to the these concepts have been studied in [10] and [1].

Let us write

$$
L^{\star}(x)=\limsup _{p, q \rightarrow \infty} \sup _{s, t} \frac{1}{p q} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{j+s, k+t}
$$

and

$$
C_{\sigma}(x)=\limsup _{p, q \rightarrow \infty} \sup _{s, t} \frac{1}{p q} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)} .
$$

Then the $M R$ - and σ-core of a double sequence have been introduced as the closed intervals $\left[-L^{*}(-x), L^{*}(x)\right]$ and $\left[-C_{\sigma}(-x), C_{\sigma}(x)\right]$, and the inequalities

$$
L(A x) \leq L^{*}(x), L^{*}(A x) \leq L(x), L^{*}(A x) \leq L^{*}(x), L(A x) \leq C_{\sigma}(x)
$$

have also been studied for all $x \in \ell_{\infty}^{2}$ in [8], [9], [7] and [2], respectively; where ℓ_{∞}^{2} is the space of all bounded double sequences.

In this paper, we investigate necessary and sufficient conditions for the inequality
(1.1) $\quad C_{\sigma}(A x) \leq L(x)$
for all $x \in \ell_{\infty}^{2}$. We should note that in the case $\sigma(i)=i+1$, the inequality in (1.1) reduces to $L^{*}(A x) \leq L(x)$.

2. The Main Results

One can expect that in order for (1.1) to be satisfied, first of all $A=\left[a_{j k}^{m n}\right]$ must be in the class $\left(c_{2}^{\infty}, V_{\sigma}^{2}\right)_{\text {reg. }}$. So, we need to characterize this class of four dimensional matrices. For convenience, a matrix $A \in\left(c_{2}^{\infty}, V_{\sigma}^{2}\right)_{\text {reg }}$ will be called a σ-regular matrix in what follows.
2.1. Theorem. A matrix $A=\left[a_{j k}^{m n}\right]$ is σ-regular if and only if

$$
\begin{align*}
& \|A\|=\sup _{m, n} \sum_{j} \sum_{k}\left|a_{j k}^{m n}\right|<\infty \tag{2.1}\\
& \lim _{p, q \rightarrow \infty} \alpha(p, q, j, k, s, t)=0 \tag{2.2}\\
& \lim _{p, q \rightarrow \infty} \sum_{j} \sum_{k} \alpha(p, q, j, k, s, t)=1, \tag{2.3}\\
& \lim _{p, q \rightarrow \infty} \sum_{j}|\alpha(p, q, j, k, s, t)|=0,(k \in \mathbb{N}), \tag{2.4}\\
& \lim _{p, q \rightarrow \infty} \sum_{k}|\alpha(p, q, j, k, s, t)|=0,(j \in \mathbb{N}), \tag{2.5}\\
& \lim _{p, q \rightarrow \infty} \sum_{j} \sum_{k}|\alpha(p, q, j, k, s, t)| \text { exists } \tag{2.6}
\end{align*}
$$

where the limits are uniform in s, t and

$$
\alpha(p, q, j, k, s, t)=\frac{1}{p q} \sum_{m=0}^{p} \sum_{n=0}^{q} a_{j k}^{\sigma^{m}(s), \sigma^{n}(t)} .
$$

Proof. Firstly, suppose that the conditions (2.1)-(2.6) hold. Take a sequence $x \in c_{2}^{\infty}$ with $P-\lim _{j, k} x_{j k}=L$, say. Then, by the definition of P-limit, for any given $\varepsilon>0$, there exists a $N>0$ such that $\left|x_{j k}\right|<|L|+\varepsilon$ whenever $j, k>N$.

Now, we can write

$$
\begin{aligned}
\sum_{j} \sum_{k} \alpha(p, q, j, k, s, t) x_{j k}=\sum_{j=0}^{N} & \sum_{k=0}^{N} \alpha(p, q, j, k, s, t) x_{j k} \\
& +\sum_{j=N}^{\infty} \sum_{k=0}^{N-1} \alpha(p, q, j, k, s, t) x_{j k} \\
& +\sum_{j=0}^{N-1} \sum_{k=N}^{\infty} \alpha(p, q, j, k, s, t) x_{j k} \\
& +\sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \alpha(p, q, j, k, s, t) x_{j k}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\sum_{j} \sum_{k} \alpha(p, q, j, k, s, t) x_{j k}\right| \leq\|x\| & \sum_{j=0}^{N} \\
\sum_{k=0}^{N} & |\alpha(p, q, j, k, s, t)| \\
+\|x\| & \sum_{j=N}^{\infty} \sum_{k=0}^{N-1}|\alpha(p, q, j, k, s, t)| \\
& +\|x\| \sum_{j=0}^{N-1} \sum_{k=N}^{\infty}|\alpha(p, q, j, k, s, t)| \\
& \quad+(|L|+\varepsilon)\left|\sum_{j} \sum_{k} \alpha(p, q, j, k, s, t)\right| .
\end{aligned}
$$

Therefore, by letting $p, q \rightarrow \infty$ and considering the conditions (2.1)-(2.6), we have

$$
\left|\lim _{p, q \rightarrow \infty} \sum_{j} \sum_{k} \alpha(p, q, j, k, s, t) x_{j k}\right| \leq|L|+\varepsilon,
$$

i.e., $|\sigma-\lim A x| \leq|L|+\varepsilon$. Since ε is arbitrary, this implies the σ-regularity of $A=\left[a_{j k}^{m n}\right]$.

For the converse, suppose that A is σ-regular. Then, by the definition, the A-transform of x exists and $A x \in V_{\sigma}^{2}$ for each $x \in c_{2}^{\infty}$. Therefore, $A x$ is also bounded. So, there exists a positive number M such that

$$
\begin{equation*}
\sup _{m, n} \sum_{j} \sum_{k}\left|a_{j k}^{m n} x_{j k}\right|<M<\infty \tag{2.7}
\end{equation*}
$$

for each $x \in c_{2}^{\infty}$. Now, let us choose a sequence $y=\left[y_{j k}\right]$ with

$$
y_{j k}=\left\{\begin{array}{ll}
\operatorname{sgn} a_{j k}^{m n}, & 0 \leq j \leq r, 0 \leq k \leq r, \quad(m, n=1,2, \ldots) . \\
0, & \text { otherwise } .
\end{array} \quad .\right.
$$

Then, the necessity of the condition (2.1) follows by considering the sequence y in (2.7).
For the necessity of (2.6), define a sequence $v=\left[v_{j k}\right]$ by $y=\left[y_{j k}\right]$, with $\alpha(p, q, j, k, s, t)$ in place of $a_{j k}^{m n}$. Then, $P-\lim A v$ implies (2.6).

Let us define the sequence $e^{i l}$ as follows:

$$
e_{j k}^{i l}= \begin{cases}1, & \text { if }(j, k)=(i, l) \tag{2.8}\\ 0, & \text { otherwise }\end{cases}
$$

and denote the pointwise sums by $s^{l}=\sum_{i} e^{i l}(l \in \mathbb{N})$ and $r^{i}=\sum_{l} e^{i l}(i \in \mathbb{N})$. Then, the necessity of the condition (2.2) follows from $\sigma-\lim A e^{i l}$. Also,

$$
\sigma-\lim A r^{j}=\lim _{p, q \rightarrow \infty} \sum_{j}|\alpha(p, q, j, k, s, t)|=0,(k \in \mathbb{N})
$$

and

$$
\sigma-\lim A s^{k}=\lim _{p, q \rightarrow \infty} \sum_{k}|\alpha(p, q, j, k, s, t)|=0,(j \in \mathbb{N}) .
$$

To verify the conditions (2.4) and (2.5), we need to prove that these limits are uniform in s, t. So, let us suppose that (2.5) does not hold, i.e., for any $j_{o} \in \mathbb{N}$,

$$
\lim _{p, q} \sup _{s, t} \sum_{k}\left|\alpha\left(p, q, j_{0}, k, s, t\right)\right| \neq 0 .
$$

Then, there exists an $\varepsilon>0$ and index sequences $\left(p_{i}\right),\left(q_{i}\right)$ such that

$$
\sup _{s, t} \sum_{k}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s, t\right)\right| \geq \varepsilon \quad(i \in \mathbb{N}) .
$$

Therefore, for every $i \in \mathbb{N}$, we can choose $s_{i}, t_{i} \in \mathbb{N}$ such that

$$
\sum_{k}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \geq \varepsilon
$$

Since

$$
\sum_{k}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \leq \sup _{m, n} \sum_{j, k}\left|a_{j k}^{m n}\right|<\infty
$$

and (2.2) holds, we may find an index sequence $\left(k_{i}\right)$ such that

$$
\sum_{k=1}^{k_{i}}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \leq \frac{\varepsilon}{8}
$$

and

$$
\sum_{k=k_{i+1}+1}^{\infty}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \leq \frac{\varepsilon}{8}, \quad(i \in \mathbb{N})
$$

So,

$$
\sum_{k=k_{i}+1}^{k_{i+1}}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \geq \frac{3 \varepsilon}{4}, \quad(i \in \mathbb{N})
$$

Now, define a sequence $x=\left[x_{j k}\right]$ by

$$
x_{j k}= \begin{cases}(-1)^{i} \alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right), & \text { if } k_{i}+1 \leq k \leq k_{i+1}(i \in \mathbb{N}) ; j=j_{0}, \\ 0, & \text { if } j \neq j_{0}\end{cases}
$$

Then, clearly $x \in c_{2}^{\infty}$ with $\|x\|_{\infty} \leq 1$. But, for even i, we have

$$
\begin{aligned}
\frac{1}{p_{i} q_{i}} \sum_{m=s_{i}}^{s_{i}+p_{i}-1} \sum_{n=t_{i}}^{t_{i}+q_{i}-1}(A x)_{m n}= & \sum_{k} \alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right) x_{j_{0} k} \\
\geq & \sum_{k=k_{i}+1}^{k_{i+1}} \alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right) x_{j_{0} k} \\
& -\sum_{k=1}^{k_{i}}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \\
& \quad-\sum_{k=k_{i+1}+1}^{\infty}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right| \\
\geq & \sum_{k=k_{i}+1}^{k_{i+1}}\left|\alpha\left(p_{i}, q_{i}, j_{0}, k, s_{i}, t_{i}\right)\right|-\frac{\varepsilon}{8}-\frac{\varepsilon}{8} \\
\geq & \frac{3 \varepsilon}{4}-\frac{\varepsilon}{4}=\frac{\varepsilon}{2} .
\end{aligned}
$$

Analogously, for odd i, one can show that

$$
\frac{1}{p_{i} q_{i}} \sum_{m=s_{i}}^{s_{i}+p_{i}-1} \sum_{n=t_{i}}^{t_{i}+q_{i}-1}(A x)_{m n} \leq-\frac{\varepsilon}{2} .
$$

Hence, the sequence

$$
\left(\frac{1}{p q} \sum_{m=s}^{s+p-1} \sum_{n=t}^{t+q-1}(A x)_{m n}\right)
$$

does not converge uniformly in $s, t \in \mathbb{N}$ as $p, q \rightarrow \infty$. This means that $A x \notin V_{\sigma}^{2}$, which is a contradiction. So, (2.5) holds. In the same way, we get the necessity of (2.4).

On the other hand, for the necessity of the condition (2.3) it is enough to take the sequence $e_{j k}=1$ for each j, k.

This completes the proof of the theorem.
We should mention that in the case $\sigma(i)=i+1$, Theorem 2.1 gives a characterization of the class $\left(c_{2}^{\infty}, f_{2}\right)_{\text {reg }}$.

Now, we are ready to formulate our main theorem.
2.2. Theorem. The inequality in (1.1) holds for all $x \in \ell_{\infty}^{2}$ if and only if the matrix $A=\left[a_{j k}^{m n}\right]$ is σ-regular and

$$
\begin{equation*}
\limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j} \sum_{k}|\alpha(p, q, j, k, s, t)| \leq 1 . \tag{2.9}
\end{equation*}
$$

Proof. Firstly, let (1.1) hold for all $x \in \ell_{\infty}^{2}$. Then, since $c_{2}^{\infty} \subset \ell_{\infty}^{2}$, (1.1) also holds for any convergent sequence $x=\left[x_{j k}\right]$ with $\lim _{j, k} x_{j k}=L$, say. In this case, since $-L(-x)=L(x)=\lim _{j, k} x_{j k}=L$, by (1.1) one has that

$$
\begin{equation*}
L=-L(-x) \leq-C_{\sigma}(-A x) \leq C_{\sigma}(A x) \leq L(x)=L, \tag{2.10}
\end{equation*}
$$ where

$$
-C_{\sigma}(-A x)=\liminf _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j} \sum_{k} \alpha(p, q, j, k, s, t) x_{j k}
$$

Therefore, it follows from (2.10) that $-C_{\sigma}(-A x)=C_{\sigma}(A x)=\sigma-\lim A x=L$, which gives the σ-regularity of A.

To show the necessity of (2.9) we note first that, by Patterson [10, Lemma 3.1], there exists a $y \in \ell_{\infty}^{2}$ with $\|y\| \leq 1$ such that

$$
C_{\sigma}(A y)=\limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j} \sum_{k}|\alpha(p, q, j, k, s, t)|
$$

Now, let us consider the sequence $e^{i l}$ defined by (2.8). Then, since $\left\|e^{i l}\right\| \leq 1$, we have from (1.1) that

$$
C_{\sigma}\left(A e^{i l}\right)=\limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j} \sum_{k}|\alpha(p, q, j, k, s, t)| \leq L\left(e^{i l}\right) \leq\left\|e^{i l}\right\| \leq 1,
$$

which is the condition (2.9).
Conversely, suppose that A is σ-regular and (2.9) holds. Let $x=\left[x_{j k}\right]$ be an arbitrary bounded sequence. Then, for any $\varepsilon>0$, there exists $M, N>0$ such that $x_{j k} \leq L(x)+\varepsilon$ whenever $j, k \geq M, N$.

Now, we can write

$$
\begin{aligned}
\sum_{j} \sum_{k} \alpha(p, q, j, k, s, t) x_{j k} \leq & \left\lvert\, \sum_{j} \sum_{k}\left(\frac{|\alpha(p, q, j, k, s, t)|+\alpha(p, q, j, k, s, t)}{2}\right.\right. \\
& \left.+\frac{|\alpha(p, q, j, k, s, t)|-\alpha(p, q, j, k, s, t)}{2}\right) x_{j k} \mid \\
\leq & \|x\| \sum_{j=0}^{M} \sum_{k=0}^{N}|\alpha(p, q, j, k, s, t)| \\
& +\left|\sum_{j=M+1}^{\infty} \sum_{k=N+1}^{\infty} \alpha(p, q, j, k, s, t) x_{j k}\right| \\
& +\|x\| \sum_{j} \sum_{k}(|\alpha(p, q, j, k, s, t)|-\alpha(p, q, j, k, s, t)) \\
\leq & \|x\| \sum_{j=0}^{M} \sum_{k=0}^{N}|\alpha(p, q, j, k, s, t)| \\
& +(L(x)+\varepsilon) \sum_{j} \sum_{k}|\alpha(p, q, j, k, s, t)| \\
& +\|x\| \sum_{j} \sum_{k}(|\alpha(p, q, j, k, s, t)|-\alpha(p, q, j, k, s, t)) .
\end{aligned}
$$

Applying the operator $\lim \sup _{p, q \rightarrow \infty} \sup _{s, t}$ and taking the conditions into consideration, we get that $C_{\sigma}(A x) \leq L(x)+\varepsilon$, which is the inequality in (1.1) since ε is arbitrary.

Here, we should note that our Theorem 2.2 is an extension of [5, Theorem 2] to the double sequences.

Acknowledgement We wish to express our sincere thanks to the referee for him/her valuable suggestions that have lead to a considerable improvement in the paper, especially regarding the proof of Theorem 2.1.

References

[1] Çakan, C. and Altay, B. A class of conservative four dimensional matrices J. Ineq. Appl. Article ID 14721, 8 pages, 2006.
[2] Çakan, C., Altay, B. and Mursaleen, The σ-convergence and σ-core of double sequences, Appl. Math. Lett. 19 (10), 1122-1128, 2006.
[3] Cooke, R. G. Infinite Matrices and Sequence Spaces (Mcmillan, New York, 1950).
[4] Hamilton, H. J. Transformations of multiple sequences, Duke Math. J. 2, 29-60, 1936.
[5] Mishra, S. L., Satapathy, B. and Rath, N. Invariant means and σ-core, J. Indian Math. Soc. 60, 151-158, 1984.
[6] Moricz, F. and Rhoades, B. E. Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283-294, 1988.
[7] Mursaleen Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl. 293, 523-531, 2004.
[8] Mursaleen and Edely, O. H. H. Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl. 293, 532-540, 2004.
[9] Mursaleen and Savaş, E. Almost regular matrices for double sequences, Studia Sci. Math. Hung. 40, 205-212, 2003.
[10] Patterson, R. F. Double sequence core theorems, Internat. J. Math.\& Math. Sci. 22, 785-793, 1999.
[11] Pringsheim, A. Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53, 289-321, 1900.
[12] Robinson, G. M. Divergent double sequences and series, Trans. Amer. Math. Soc. 28, 50-73, 1926.

[^0]: *İnönü University, Faculty of Education, Malatya-44280, Turkey.
 E-mail: (C. Çakan) ccakan@inonu.edu.tr (B. Altay) baltay@inonu.edu.tr (H. Coşkun)
 hcoskun@inonu.edu.tr

