1 Hacettepe Journal of Mathematics and Statistics
\ Volume 39 (1) (2010), 41-53

SUBMERSION FROM SEMI-RIEMANNIAN MANIFOLDS ONTO LIGHTLIKE MANIFOLDS

Bayram Şahin* ${ }^{* \dagger}$ and Yılmaz Gündüzalp ${ }^{\ddagger}$

Received $20: 05: 2009$: Accepted $07: 08: 2009$

Abstract

In this paper, we introduce the idea of a lightlike submersion from a semi-Riemannian manifold onto a lightlike manifold, and give some examples. Then we define O'Neill's tensors for such submersions and investigate their main properties. We show that the Schouten connection is not a metric connection in a lightlike submersion. We also investigate curvature properties of the manifolds and establish a relation between the null sectional curvatures of a semi-Riemannian manifold and a lightlike manifold.

Keywords: Lightlike Manifold, Submersion, Lightlike submersion.
2000 AMS Classification: 53 C 20, 53 C 50.

1. Introduction

Let M and B be Riemannian manifolds. A Riemannian submersion $\pi: M \rightarrow B$ is a mapping of M onto B satisfying the following axioms S. 1 and S.2:

S.1. π has maximal rank.

Hence, for each $b \in B, \pi^{-1}(b)$ is a submanifold of M of $\operatorname{dimension} \operatorname{dim} M-\operatorname{dim} B$. The submanifolds $\pi^{-1}(b)$ are called fibers, and a vector field on M is vertical if it is always tangent to the fibers, horizontal if always orthogonal to the fibers. The second axiom is given by
S.2. π_{*} preserves the lengths of horizontal vectors.

The theory of Riemannian submersion was introduced by O'Neill and Gray in [7] and [3], respectively. Since then, it has been used as an effective tool to describe the structure of a Riemannian manifold. As it is well known, when M and B are Riemannian manifolds,

[^0]then the fibers are always Riemannian manifolds. However, when the manifolds are semiRiemannian manifolds, the fibers of π may not be semi-Riemannian (hence Riemannian) manifolds. Recently, Şahin defined and studied a submersion from lightlike manifolds onto semi-Riemannian manifolds in [9].

In this paper, we consider a semi-Riemannian manifold M and a lightlike manifold N, and define a lightlike submersion from M to N. In particular, we focus on the existence of lightlike submersions and give several examples. Also we show that the concept of lightlike submersion is very different from that of Riemannian submersion and semi-Riemannian submersion (For semi-Riemannian submersions, see: [8]).

2. Lightlike manifolds

In this section we give some brief information on lightlike manifolds (For more details, see [2] and [5]). Let V be a vector space of dimension n. An inner product on V is a symmetric bilinear form g, which is called a non-degenerate inner product if $g(X, Y)=$ $0 \forall X \in V$ implies $Y=0$. Otherwise it is called degenerate (lightlike). Let V be a vector space and suppose that there exists a symmetric bilinear form g on V. Then there exists a basis $\left\{e_{i}\right\}$ on V such that

$$
\begin{aligned}
& g\left(e_{i}, e_{i}\right)=0, \text { for } 1 \leq i \leq r, \\
& g\left(e_{j}, e_{j}\right)=-1, \text { for } 1 \leq j \leq q, \\
& g\left(e_{k}, e_{k}\right)=1, \text { for } 1 \leq k \leq p, \\
& g\left(e_{I}, e_{J}\right)=0, \text { for } I \neq J .
\end{aligned}
$$

Such a basis is called orthonormal, and the triple (r, q, p) is called the type of the bilinear form $g([6, \mathrm{P} .107])$. We will denote a vector space V endowed with a bilinear form g of type (r, q, p) by $V_{r, q, p}$.

Let (M, g) be a real n-dimensional smooth manifold, where g is a symmetric tensor field of type $(0,2)$. We assume that M is paracompact. The radical or null space of $T_{x} M$ is a subspace, denoted by $\operatorname{Rad} T_{x} M$, of $T_{x} M$ defined by

$$
\begin{equation*}
\operatorname{Rad} T_{x} M=\left\{\xi \in T_{x} M: g(\xi, X)=0, X \in T_{x} M\right\} \tag{2.1}
\end{equation*}
$$

The dimension of $\operatorname{Rad} T_{x} M$ is called the nullity degree of g. Suppose the mapping $\operatorname{Rad} T M$ that assigns to each $x \in M$ the radical subspace $\operatorname{Rad} T_{x} M$ of $T_{x} M$ with respect to g_{x}, defines a smooth distribution of rank $r>0$ on M. Then $\operatorname{Rad} T M$ is called the radical distribution of M. The manifold M is called a lightlike manifold if $0<r \leq n$.
2.1. Example. We denote by $\mathbb{R}_{r, q, p}^{n}$ the space \mathbb{R}^{n} endowed with the bilinear form g defined by $g\left(e_{i}, e_{j}\right)_{r, q, p}=\left(G_{r, q, p}\right)_{i j}$, where $e_{i}, i \in\{1, \ldots, n\}$ is the standard basis of E^{n}, and $G_{r, q, p}$ is the diagonal matrix determined by g, i,e,

$$
(G)_{i j}=\operatorname{diagonal}(\underbrace{0, \ldots, 0}_{r-\text { times }}, \underbrace{-1, \ldots,-1}_{q-\text { times }}, \underbrace{1 \ldots, 1}_{p-\text { times }}) .
$$

Hence, $\mathbb{R}_{r, q, p}^{n}$ is an r-lightlike manifold.
Now, consider a complementary distribution $S(T M)$ to $\operatorname{Rad} T M$ in $T M$. From [2, Proposition 2.1], we know that $S(T M)$ is a semi-Riemannian distribution. Therefore, we have

$$
\begin{equation*}
T M=S(T M) \oplus \operatorname{Rad} T M \tag{2.2}
\end{equation*}
$$

The associated quadratic form h of g is of type $(r, q, p), p+q+r=n$, locally given by

$$
\begin{equation*}
h=-\sum_{a=1}^{q}\left(\omega^{a}\right)^{2}+\sum_{A=q+1}^{q+p}\left(\omega^{A}\right)^{2} \tag{2.3}
\end{equation*}
$$

where $\left(\omega^{1}, \ldots, \omega^{p+q}\right)$ are linearly independent local differential forms on M. Substituting in (2.3)

$$
\omega^{a}=\omega_{I}^{a} d x^{I} \omega^{A}=\omega_{I}^{A} d x^{I}, I \in\{1, \ldots, n\}
$$

we obtain

$$
\begin{equation*}
g_{I J}=-\sum_{a=1}^{q} \omega_{I}^{a} \omega_{J}^{a}+\sum_{A=q+1}^{q+p} \omega_{I}^{A} \omega_{J}^{A}, J \in\{1, \ldots, n\} \tag{2.4}
\end{equation*}
$$

where $\operatorname{rank}\left[g_{I J}\right]=p+q<n$.
Suppose $\operatorname{Rad} T M$ is an integrable distribution. Then it follows from the Frobenius theorem that the leaves of $\operatorname{Rad} T M$ determine a foliation on M of dimension r, that is, M is a disjoint union of connected subsets $\left\{L_{t}\right\}$, and each point x of M has a coordinate system $\left(U, x^{i}\right)$, where $i \in\{1, \ldots, n\}$ and $L_{t} \cap U$ is locally given by the equations $x^{a}=$ $c^{a}, a \in\{r+1, \ldots, n\}$ for real constants c^{a} and $x^{\alpha}, \alpha \in\{1, \ldots, r\}$, are local coordinates of the leaf L_{t} of $\operatorname{Rad} T M$ passing through x.

Consider another coordinate system $\left(\bar{V}, \bar{x}^{\alpha}\right)$ on M. The transformation of coordinates on M endowed with an integrable distribution has the following special form

$$
0=d \bar{x}^{a}=\frac{\partial \bar{x}^{a}}{\partial x^{b}} d x^{b}+\frac{\partial \bar{x}^{a}}{\partial x^{\alpha}} d x^{\alpha}=\frac{\partial \bar{x}^{a}}{\partial x^{\alpha}} d x^{\alpha},
$$

which implies $\frac{\partial \bar{x}^{a}}{\partial x^{\alpha}}=0, \forall a \in\{r+1, \ldots, n\}, \alpha \in\{1, \ldots, r\}$. Hence the transformation of coordinates on M is given by

$$
\begin{equation*}
\bar{x}^{\alpha}=\bar{x}^{\alpha}\left(x^{1}, \ldots, x^{n}\right), \bar{x}^{a}=\bar{x}^{a}\left(x^{r+1}, \ldots, x^{n}\right) . \tag{2.5}
\end{equation*}
$$

As g is degenerate on $T M$, by using(2.1) and (2.3) we obtain $g_{\alpha \beta}=g_{\alpha a}=0$. Thus the matrix of g with respect to the natural frames $\{\partial\}$ becomes

$$
\left[g_{i j}\right]=\left(\begin{array}{cc}
0_{r, r} & 0_{r, n-r} \\
0_{n-r, r} & g_{a b}\left(x^{1}, \ldots, x^{n}\right)
\end{array}\right) .
$$

Suppose that

$$
\begin{equation*}
\frac{\partial g_{a b}}{\partial x^{\alpha}}=0, \forall a, b \in\{r+1, \ldots, n\}, \alpha \in\{1, \ldots, r\} \tag{2.6}
\end{equation*}
$$

holds in a fixed adapted coordinate system, then by using the first group of equations in (2.5), we obtain that it holds in any other coordinate system adapted to the foliation induced by $\operatorname{Rad} T M$.
2.2. Definition. A lightlike manifold M on which $\operatorname{Rad} T M$ is integrable, and there exists a local coordinate system such that (2.6) is satisfied, is called a Reinhart lightlike manifold.

For Reinhart lightlike manifolds, we have the following theorem.
2.3. Theorem. [2]. Let (M, g) be a lightlike manifold. Then the following assertions are equivalent:
(1) (M, g) is a Reinhart lightlike manifold.
(2) $\operatorname{Rad} T M$ is a Killing distribution.
(3) There exists a torsion free linear connection ∇ on M such that g is a parallel tensor field with respect to ∇.

3. Lightlike submersions

In this section, we will introduce lightlike submersions and give several examples. It will be seen from these examples that there are many lightlike submersions. We also define O'Neill's tensors for lightlike submersions, check the usual properties and observe that a lightlike submersion does not satisfy these properties in general. Moreover we show that a Schouten connection is not a metric connection, and give the explicit expression of the derivative of the metric tensor with respect to this connection.

Let $\left(M_{1}, g_{1}\right)$ be a semi-Riemannian manifold and $\left(M_{2}, g_{2}\right)$ an r-lightlike manifold. We consider a smooth submersion $f: M_{1} \rightarrow M_{2}$, then, for $p \in M_{2}, f^{-1}(p)$ is a submanifold of dimension $\operatorname{dim} M_{1}-\operatorname{dim} M_{2}$. On the other hand, the kernel of f_{*} at the point $p,\left(f_{*}\right.$ is the derivative map), is defined by

$$
\begin{equation*}
\operatorname{Ker} f_{*}=\left\{X \in T_{p}\left(M_{1}\right): f_{*}(X)=0\right\} \tag{3.1}
\end{equation*}
$$

Now, consider $\left(\operatorname{Ker} f_{*}\right)^{\perp}$ defined as follows

$$
\begin{equation*}
\left(\operatorname{Ker} f_{*}\right)^{\perp}=\left\{Y \in T_{p}\left(M_{1}\right): g_{1}(Y, X)=0, \forall X \in \operatorname{Ker} f_{*}\right\} \tag{3.2}
\end{equation*}
$$

Since $T_{p} M_{1}$ is a semi-Riemannian vector space, $\left(\operatorname{Ker} f_{*}\right)^{\perp}$ may not be a complement to $\operatorname{Ker} f_{*}$. Suppose $\triangle=\operatorname{Ker} f_{*} \cap\left(\operatorname{Ker} f_{*}\right)^{\perp} \neq\{0\}$. Then, consider the following four cases of submersions.

Case 1. $0<\operatorname{dim} \triangle<\min \left\{\operatorname{dim}\left(\operatorname{Ker} f_{*}\right), \operatorname{dim}\left(\operatorname{Ker} f_{*}\right)^{\perp}\right\}$: Then \triangle is the radical subspace of $T_{p} M_{1}$. Thus, we can construct a quasi-orthonormal basis of M_{1} along $\operatorname{Ker} f_{*}$ as $\operatorname{in}[2]$. Since $\operatorname{Ker} f_{*}$ is a real lightlike vector space, there is a complementary non-degenerate subspace to \triangle (cf. [2, Proposition2.1]). Let $S\left(\operatorname{Ker} f_{*}\right)$ be a complementary non-degenerate subspace to \triangle in $\operatorname{Ker} f_{*}$. Then we have

$$
\begin{equation*}
\operatorname{Ker} f_{*}=\triangle \perp S\left(\operatorname{Ker} f_{*}\right) \tag{3.3}
\end{equation*}
$$

In a similar way we have

$$
\left(\operatorname{Ker} f_{*}\right)^{\perp}=\triangle \perp S\left(\operatorname{Ker} f_{*}\right)^{\perp}
$$

where $S\left(\operatorname{Ker} f_{*}\right)^{\perp}$ is a complementary subspace of $\triangle \operatorname{in}\left(\operatorname{Ker} f_{*}\right)^{\perp}$. Since $S\left(\operatorname{Ker} f_{*}\right)$ is non-degenerate in $T_{p} M_{1}$, we can consider

$$
T_{p} M_{1}=S\left(\operatorname{Ker} f_{*}\right) \perp\left(S\left(\operatorname{Ker} f_{*}\right)\right)^{\perp},
$$

where $\left(S\left(\operatorname{Ker} f_{*}\right)\right)^{\perp}$ is the complementary subspace of $S\left(\operatorname{Ker} f_{*}\right)$ in $T_{p} M_{1}$. Also since $S\left(\operatorname{Ker} f_{*}\right)$ and $\left(S\left(\operatorname{Ker} f_{*}\right)\right)^{\perp}$ are non-degenerate, we obtain

$$
\left(S\left(\operatorname{Ker} f_{*}\right)\right)^{\perp}=S\left(\operatorname{Ker} f_{*}\right)^{\perp} \perp\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)^{\perp}
$$

Then, from [2, Proposition 2.4], we know that "there exists a quasi-orthonormal basis of $T_{p} M_{1}$ along $\operatorname{Ker} f_{*}, "$ thus we have

$$
\begin{array}{rlrl}
g\left(\xi_{i}, \xi_{j}\right) & =g\left(N_{i}, N_{j}\right)=0 & g\left(\xi_{i}, N_{j}\right) & =\delta_{i j} \\
g\left(W_{\alpha}, \xi_{j}\right) & =g\left(W_{\alpha}, N_{j}\right)=0 & g\left(W_{\alpha}, W_{\alpha}\right) & =\epsilon_{\alpha} \delta_{\alpha \beta}
\end{array}
$$

for any $i, j \in\{1, \ldots, r\}$ and $\alpha, \beta \in\{1, \ldots, t\}$, where $\left\{N_{i}\right\}$ are smooth null vector fields of $\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)^{\perp},\left\{\xi_{i}\right\}$ is basis of \triangle and W_{α} is a basis of $S\left(\operatorname{Ker} f_{*}\right)^{\perp}$. We denote the set of vector fields $\left\{N_{i}\right\}$ by $\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)$, and consider the following subspace

$$
\operatorname{tr}\left(\operatorname{Ker} f_{*}\right)=\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right) \perp S\left(\operatorname{Ker} f_{*}\right)^{\perp} .
$$

We notice that $\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)$ and $\operatorname{Ker}\left(f_{*}\right)$ are not orthogonal to each other. Now, we will call $\mathcal{V}=\operatorname{Ker} f_{*}$ the vertical space of $T_{p} M_{1}$, and $\mathcal{H}=\operatorname{tr}\left(\operatorname{Ker} f_{*}\right)$ the horizontal space as is usual in the theory of Riemannian submersions. Thus we obtain

$$
T_{p} M_{1}=\mathcal{V}_{p} \oplus \mathcal{H}_{p}
$$

It is important to emphasize again that \mathcal{V} and \mathcal{H} are not orthogonal to each other.
We are now ready to give the definition of a lightlike submersion.
3.1. Definition. Let (M_{1}, g_{1}) be a semi-Riemannian manifold and (M_{2}, g_{2}) an r-lightlike manifold. Suppose that $f: M_{1} \rightarrow M_{2}$ is a submersion such that
(1) $\operatorname{dim} \triangle=\operatorname{dim}\left\{\left(\operatorname{Ker} f_{*}\right) \cap\left(\operatorname{Ker} f_{*}\right)^{\perp}\right\}=r, 0<r<\min \left\{\operatorname{dim}\left(\operatorname{Ker} f_{*}\right), \operatorname{dim}\left(\operatorname{Ker} f_{*}\right)^{\perp}\right\}$.
(2) f_{*} preserves the length of horizontal vectors, i.e., $g_{1}(X, Y)=g_{2}\left(f_{*} X, f_{*} Y\right)$ for $X, Y \in \Gamma(\mathcal{H})$.
Then, we say that f is an r-lightlike submersion.
The other cases arise as follows:
Case 2. $\operatorname{dim} \triangle=\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)<\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)^{\perp}$. Then $\mathcal{V}=\triangle$ and $\mathcal{H}=S\left(\operatorname{Ker} f_{*}\right)^{\perp} \perp$ $\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)$. We call f an isotropic submersion.
Case 3. $\operatorname{dim} \Delta=\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)^{\perp}<\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)$. Then $\mathcal{V}=S\left(\operatorname{Ker} f_{*}\right) \perp \triangle$ and $\mathcal{H}=$ $\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)$. We call f a co-isotropic submersion.
Case 4. $\operatorname{dim} \triangle=\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)^{\perp}=\operatorname{dim}\left(\operatorname{Ker} f_{*}\right)$. Then $\mathcal{V}=\triangle$ and $\mathcal{H}=\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)$. We call f a totally lightlike submersion.

We note that, from the condition of Definition 3.1.(2), it follows that the nullity degree of M_{2} and the dimension of \triangle are equal. Hence we have the following
3.2. Proposition. Let $f: M_{1} \rightarrow M_{2}$ be a lightlike submersion. Then,
(1) If f is an r-lightlike or isotropic submersion, then M_{2} is an r-lightlike manifold.
(2) If f is a co-isotropic or totally lightlike submersion, then M_{2} is a totally lightlike manifold.

A basic vector field on M_{1} is a horizontal vector field X which is f-related to a vector field \tilde{X} on M_{2}, that is, $f_{*}\left(X_{p}\right)=\tilde{X}_{f}(p)$ for all $p \in M_{1}$. Every vector field \tilde{X} on M_{2} has a unique horizontal lift X to M_{1}, and X is basic. Thus $X \longleftrightarrow \tilde{X}$ is a one to one correspondence between basic vector fields on M_{1} and arbitrary vector fields on M_{2}.

Now, we give one example for r-lightlike, isotropic, co-isotropic and totally lightlike submersions.
3.3. Example. Let $\mathbb{R}_{0,1,3}^{4}$ and $\mathbb{R}_{1,0,1}^{2}$ be \mathbb{R}^{4} and \mathbb{R}^{2} endowed with the Lorentzian metric $g_{1}=-\left(d x_{1}\right)^{2}+\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}+\left(d x_{4}\right)^{2}$, and degenerate metric $g_{2}=\left(d y_{2}\right)^{2}$, where $x_{1}, x_{2}, x_{3}, x_{4}$ and y_{1}, y_{2} are the canonical coordinates on \mathbb{R}^{4} and \mathbb{R}^{2}, respectively. We define the following map

$$
f: \mathbb{R}_{0,1,3}^{4} \rightarrow \mathbb{R}_{1,0,1}^{2}, \quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}+x_{3}, \frac{x_{2}+x_{4}}{\sqrt{2}}\right)
$$

Then, the kernel of f_{*} is

$$
\text { Ker } f_{*}=\operatorname{Span}\left\{W_{1}=-\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}, W_{2}=-\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{4}}\right\} .
$$

Thus, we obtain

$$
\left(\operatorname{Ker} f_{*}\right)^{\perp}=\operatorname{Span}\left\{T_{1}=-\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}, T_{2}=\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{4}}\right\} .
$$

Hence, we have $W_{1}=T_{1}$,

$$
\triangle=\operatorname{Ker} f_{*} \cap\left(\operatorname{Ker} f_{*}\right)^{\perp}=\operatorname{Span}\left\{W_{1}\right\} .
$$

Then, we get $\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)=\operatorname{Span}\left\{N=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}\right)\right\}$. It is easy to check that $g_{1}\left(N, W_{1}\right)=$ 1 and $g_{1}\left(N, W_{2}\right)=0$, Thus the vertical and horizontal spaces are given by

$$
\mathcal{V}=\operatorname{Span}\left\{W_{1}, W_{2}\right\}, \mathcal{H}=\operatorname{Span}\left\{T_{2}, N\right\} .
$$

Moreover, since $f_{*}\left(T_{2}\right)=\sqrt{2} \frac{\partial}{\partial y_{2}}, f_{*}(N)=\frac{\partial}{\partial y_{1}}$, we obtain that

$$
\begin{aligned}
& g_{1}(N, N)=g_{2}\left(f_{*} N, f_{*} N\right)=0 \\
& g_{1}\left(T_{2}, T_{2}\right)=g_{2}\left(f_{*} T_{2}, f_{*} T_{2}\right)=2 .
\end{aligned}
$$

Hence, f is a 1-lightlike submersion.
3.4. Example. Let $\mathbb{R}_{0,2,4}^{6}$ and $\mathbb{R}_{2,0,1}^{3}$ be \mathbb{R}^{6} and \mathbb{R}^{3} endowed with the semi-Riemannian metric $g_{1}=-\left(d x_{1}\right)^{2}-\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}+\left(d x_{4}\right)^{2}+\left(d x_{5}\right)^{2}+\left(d x_{6}\right)^{2}$ and the degenerate metric $g_{2}=\left(d y_{2}\right)^{2}$, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ are the canonical coordinates on R^{6} and y_{1}, y_{2}, y_{3} are the canonical coordinates on R^{3}, respectively. We define the following map

$$
f: \mathbb{R}_{0,2,4}^{6} \rightarrow \mathbb{R}_{2,0,1}^{3},\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \mapsto\left(x_{1} \cosh \alpha-x_{3} \sinh \alpha-x_{4}, x_{2}+x_{5}, x_{6}\right)
$$

for $\alpha \in \mathbb{R}$. Then, the kernel of f_{*} is

$$
\operatorname{Ker} f_{*}=\operatorname{Span}\left\{Z_{1}=\cosh \alpha \frac{\partial}{\partial x_{1}}+\sinh \alpha \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}, Z_{2}=-\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{5}}\right\}
$$

and

$$
\left(\operatorname{Ker} f_{*}\right)^{\perp}=\operatorname{Span}\left\{Z_{1}, Z_{2}, Z_{3}=\frac{\partial}{\partial x_{6}}\right\} .
$$

Hence, $\Delta=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}=\operatorname{Ker} f_{*} \subset\left(\operatorname{Ker} f_{*}\right)^{\perp}$. Moreover, we get

$$
\begin{aligned}
\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)=\left\{N_{1}=\frac{1}{2}\left\{-\cosh \alpha \frac{\partial}{\partial x_{1}}-\sinh \alpha \frac{\partial}{\partial x_{3}}\right.\right. & \left.+\frac{\partial}{\partial x_{4}}\right\} \\
N_{2} & \left.=\frac{1}{2}\left\{\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{5}}\right\}\right\} .
\end{aligned}
$$

Then, it is easy to see that $f_{*}\left(Z_{3}\right)=\frac{\partial}{\partial y_{3}}, f_{*}\left(N_{1}\right)=-\frac{\partial}{\partial y_{1}}, f_{*}\left(N_{2}\right)=\frac{\partial}{\partial y_{2}}$. Thus f is an isotropic submersion.
3.5. Example. Let $\mathbb{R}_{0,2,3}^{5}$ and $\mathbb{R}_{2,0,0}^{2}$ be \mathbb{R}^{5} and \mathbb{R}^{2} endowed with the semi-Riemannian metric $g_{1}=-\left(d x_{1}\right)^{2}-\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}+\left(d x_{4}\right)^{2}+\left(d x_{5}\right)^{2}$ and degenerate metric g_{2}, respectively, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are the canonical coordinates on \mathbb{R}^{5} We denote the canonical coordinates on R^{2} by y_{1}, y_{2}. We define the following map

$$
f: \mathbb{R}_{0,2,3}^{5} \rightarrow \mathbb{R}_{2,0,0}^{2},\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mapsto\left(x_{1}+\frac{x_{3}+x_{4}}{\sqrt{2}}, x_{2}+\frac{x_{3}-x_{4}}{\sqrt{2}}\right) .
$$

Then, the kernel of f_{*} is

$$
\begin{aligned}
\operatorname{Ker} f_{*}=\operatorname{Span}\left\{Z_{1}=-\sqrt{2} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}\right. & \\
& \left.Z_{2}=\sqrt{2} \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}, Z_{3}=\frac{\partial}{\partial x_{5}}\right\}
\end{aligned}
$$

and

$$
\left(\operatorname{Ker} f_{*}\right)^{\perp}=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}=\Delta \subset \operatorname{Ker} f_{*} .
$$

Hence, we get

$$
\begin{aligned}
& \operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)=\operatorname{Span}\left\{N_{1}=\frac{1}{4}\left\{\sqrt{2} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}\right\},\right. \\
&\left.N_{2}=\frac{1}{4}\left\{-\sqrt{2} \frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}\right\}\right\} .
\end{aligned}
$$

Moreover, we have $f_{*}\left(N_{1}\right)=\frac{1}{\sqrt{2}} \frac{\partial}{\partial y_{1}}$ and $f_{*}\left(N_{2}\right)=-\frac{1}{\sqrt{2}} \frac{\partial}{\partial y_{2}}$. Thus f is a co-isotropic submersion.
3.6. Example. Let $\mathbb{R}_{0,2,2}^{4}$ and $\mathbb{R}_{2,0,0}^{2}$ be \mathbb{R}^{4} and \mathbb{R}^{2} endowed with the semi-Riemannian metric $g_{1}=-\left(d x_{1}\right)^{2}-\left(d x_{2}\right)^{2}+\left(d x_{3}\right)^{2}+\left(d x_{4}\right)^{2}$ and the degenerate metric g_{2}, respectively, where $x_{1}, x_{2}, x_{3}, x_{4}$ are the canonical coordinates on R^{4}. We denote the canonical coordinates on \mathbb{R}^{2} by y_{1}, y_{2}. We define the following map

$$
f: \mathbb{R}_{0,2,2}^{4} \rightarrow \mathbb{R}_{2,0,0}^{2},\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}+x_{3}, x_{2}+x_{4}\right) .
$$

Then, we have

$$
\operatorname{Ker} f_{*}=\operatorname{Span}\left\{Z_{1}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{3}}, Z_{2}=\frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}}\right\}=\left(\operatorname{Ker} f_{*}\right)^{\perp}=\Delta .
$$

Moreover, we obtain

$$
\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)=\operatorname{Span}\left\{N_{1}=\frac{1}{2}\left\{-\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{3}}\right\}, N_{2}=\frac{1}{2}\left\{-\frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{4}}\right\}\right\}
$$

Furthermore, we derive

$$
f_{*}\left(N_{1}\right)=-\frac{\partial}{\partial y_{1}}, f_{*}\left(N_{2}\right)=-\frac{\partial}{\partial y_{2}} .
$$

Hence, f is a totally lightlike submersion.
Now, we define O'Neill's tensors for a lightlike submersion:
Let $f: M_{1} \rightarrow M_{2}$ be a lightlike submersion and X, Y arbitrary vector fields on M_{1}. Let $h: T M_{1} \rightarrow \mathcal{H}$ and $\nu: T M_{1} \rightarrow \mathcal{V}$ denote the natural projections associated with the direct sum decomposition $T M_{1}=\mathcal{H} \oplus \mathcal{V}$. Let ∇ be the Levi-Civita connection of (M_{1}, g_{1}). Then, we define a tensor field T of type $(1,2)$ by

$$
\begin{equation*}
T_{X} Y=h \nabla_{\nu X} \nu Y+\nu \nabla_{\nu X} h Y \tag{3.4}
\end{equation*}
$$

It is easy check that T has the following properties as a Riemann submersion.
(1) T reverses the horizontal and vertical subspaces.
(2) T is vertical: $T_{X}=T_{\nu X}$
(3) For vertical vector fields, T has the symmetry property $T_{X} Y=T_{Y} X$.

The other tensor is given by

$$
\begin{equation*}
A_{X} Y=\nu \nabla_{h X} h Y+h \nabla_{h X} \nu Y \tag{3.5}
\end{equation*}
$$

and it has the following properties:
(1) A reverses the horizontal and vertical subspaces.
(2) A is horizontal: $A_{X}=A_{h X}$.
3.7. Lemma. Let $f: M_{1} \rightarrow M_{2}$ be a lightlike submersion. If X and Y are basic vector fields on M_{1}, then
(a) $g_{1}(X, Y)=g_{2}(\tilde{X}, \tilde{Y}) \circ f$,
(b) $h[X, Y]$ is the basic vector field corresponding to $[\tilde{X}, \tilde{Y}]$.

Proof. Since f is a lightlike submersion, from Definition 3.1 (2) we have (a).
(b) follows from the identity $f_{*}[X, Y]=[\tilde{X}, \tilde{Y}]$.

For Riemannian submersions, it is well known that $h \nabla_{X} Y$ is the basic vector field corresponding to $\nabla_{\tilde{X}}^{M_{2}} \tilde{Y}$, where $\nabla^{M_{2}}$ is the linear connection of M_{2}. We will show that this property is here true in a particular case.
3.8. Theorem. Let M_{1} be a semi-Riemannian manifold and M_{2} a Reinhart lightlike manifold. Let also $f: M_{1} \rightarrow M_{2}$ be a lightlike submersion. Then $h \nabla_{X} Y$ is the basic vector field corresponding to $\nabla_{\tilde{X}}^{M_{2}} \tilde{Y}$, for basic vector fields X, Y.

Proof. From the Kozsul formula we have

$$
\begin{aligned}
2 g_{1}\left(\nabla_{X} Y, Z\right)=X\left(g_{1}(Y, Z)\right) & +Y(g(Z, X))-Z\left(g_{1}(X, Y)\right) \\
& -g_{1}(X,[Y, Z])+g_{1}([Z, X], Y)+g_{1}(Z,[X, Y])
\end{aligned}
$$

Since $X\left(g_{1}(Y, Z)\right)=\tilde{X} g_{2}(\tilde{Y}, \tilde{Z}) \circ f$, from Lemma 3.1 we obtain

$$
\begin{align*}
2 g_{1}\left(\nabla_{X} Y, Z\right)=\tilde{X} & g_{2}(\tilde{Y}, \tilde{Z}) \circ f+\tilde{Y} g_{2}(\tilde{Z}, \tilde{X}) \circ f-\tilde{Z} g_{2}(\tilde{Y}, \tilde{X}) \circ f \tag{3.6}\\
& -g_{2}(\tilde{X},[\tilde{Y}, \tilde{Z}]) \circ f+g_{2}(\tilde{Y},[\tilde{Z}, \tilde{X}]) \circ f+g_{2}(\tilde{Z},[\tilde{X}, \tilde{Y}]) \circ f .
\end{align*}
$$

Since M_{2} is a Reinhart lightlike manifold, then from Theorem 2.3, it has a Levi-Civita connection. Hence $\nabla^{M_{2}}$ satisfies the Kozsul identity. Thus the right side of equation (3.6) is $2 g_{2}\left(\nabla_{\tilde{X}}^{M_{2}} \tilde{Y}, \tilde{Z}\right)$, hence we have

$$
g_{1}\left(\nabla_{X} Y, Z\right)=g_{2}\left(\nabla_{\tilde{X}}^{M_{2}} \tilde{Y}, \tilde{Z}\right) \circ f
$$

Thus we obtain that $h \nabla_{X} Y$ is the basic vector field corresponding to $\nabla_{\tilde{X}}^{M_{2}} \tilde{Y}$.
From (3.1) and (3.5) we have the following.
3.9. Lemma. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an r-lightlike submersion. Then we have:
(a) $\nabla_{U} V=T_{U} V+\nu \nabla_{U} V$,
(b) $\nabla_{V} X=h \nabla_{V} X+T_{V} X$,
(c) $\nabla_{X} V=A_{X} V+\nu \nabla_{X} V$,
(d) $\nabla_{X} Y=h \nabla_{X} Y+A_{X} Y$,
for any $X, Y \in \Gamma\left(\operatorname{ltr}\left(\operatorname{ker} f_{*}\right)\right)$, $U, V \in \Gamma\left(\operatorname{Ker} f_{*}\right)$, where ∇ is the Levi-Civita connection on M_{1}.

We note that T and A are skew-symmetric in the Riemannian submersions. But these properties are not generally valid for a lightlike submersion because the horizontal and vertical subspaces are not orthogonal to each other. However, we have these properties for some particular cases.
3.10. Lemma. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an r-lightlike submersion. Then we have:
(a) $g_{1}\left(T_{V} X, Y\right)=-g_{1}\left(T_{V} Y, X\right)$,
(b) $g_{1}\left(A_{X} V, W\right)=-g_{1}\left(A_{X} W, V\right)$,
for any $X, Y \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right), V \in \Gamma\left(\operatorname{Ker} f_{*}\right)$ and $W \in \Gamma(\Delta)$.
Proof. We only prove (a), the proof of (b) being similar. Using (3.1), we obtain

$$
\begin{equation*}
T_{V} X=h \nabla_{\nu V} \nu X+\nu \nabla_{\nu V} h X=\nu \nabla_{V} X \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{V} Y=h \nabla_{\nu V} \nu Y+v \nabla_{\nu V} h Y=\nu \nabla_{V} Y \tag{3.8}
\end{equation*}
$$

On the other hand, using $\nabla g_{1}=0$ we have

$$
\begin{equation*}
V g_{1}(X, Y)=g_{1}\left(\nabla_{V} X, Y\right)+g_{1}\left(\nabla_{V} Y, X\right) \tag{3.9}
\end{equation*}
$$

Then, from (3.7), (3.8) and (3.9) we have

$$
g_{1}\left(T_{V} X, Y\right)+g_{1}\left(T_{V} Y, X\right)=0
$$

We also note that A has the alternation property $A_{X} Y=-A_{Y} X$ for a Riemannian submersion, but this is not generally the case for a lightlike submersion. However, we have a special case where the above property is satisfied for a lightlike submersion.
3.11. Lemma. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an r-lightlike submersion and ∇ the Levi-Civita connection of g_{1}. Then $A_{X} Z=-A_{Z} X$ if and only if $\nabla_{N} X$ does not belong to $\Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$, for any $X, Z \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$ and $N \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$.

Proof. We first prove that $A_{X} X=0$ for any $X \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$. We may assume that X is basic.

Since $A_{X} X \in \Gamma(\mathcal{V}), A_{X} X=0$ if and only if $g_{1}\left(A_{X} X, Y\right)=0$ and $g_{1}\left(A_{X} X, N\right)=0$ for $Y \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)\right)$ and $N \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$. For any $Y \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)\right)$ we have $g_{1}\left(A_{X} X, Y\right)=g_{1}\left(\nabla_{X} X, Y\right)$. Since $g_{1}(X, Y)=0$, we get $g_{1}\left(A_{X} X, Y\right)=-g_{1}\left(X, \nabla_{X} Y\right)$. Hence we have $g_{1}\left(A_{X} X, Y\right)=-g_{1}\left(X,[X, Y]+\nabla_{Y} X\right)$. Then $[X, Y] \in \Gamma\left(\operatorname{Ker} f_{*}\right)$ implies that

$$
g_{1}\left(A_{X} X, Y\right)=-g_{1}\left(X, \nabla_{Y} X\right)
$$

On the other hand, since X is constant along the vertical subspace, we have $Y g_{1}(X, X)=$ 0 which gives $g_{1}\left(\nabla_{Y} X, X\right)=0, Y \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)\right)$ and $X \in \Gamma\left(\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$. Putting this in the above equation we arrive at

$$
\begin{equation*}
g_{1}\left(A_{X} X, Y\right)=0 \tag{3.10}
\end{equation*}
$$

In a similar way, from (3.5) we get $g_{1}\left(A_{X} X, N\right)=g_{1}\left(\nabla_{X} X, N\right)$. Hence we obtain $g_{1}\left(A_{X} X, N\right)=-g_{1}\left(X, \nabla_{X} N\right)$. Then we derive $g_{1}\left(A_{X} X, N\right)=-g_{1}\left(X,[X, N]+\nabla_{X} N\right)$. Since $[X, N] \in \Gamma\left(\operatorname{Ker} f_{*}\right)$, we obtain $g_{1}\left(A_{X} X, N\right)=-g_{1}\left(X, \nabla_{N} X\right)$. Hence we conclude that
(3.11) $g_{1}\left(A_{X} X, N\right)=0$
if and only if $\nabla_{N} X$ does not belong to $\Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$. Then, from (3.10) and (3.11) we obtain

$$
A_{X} Z=-A_{Z} X
$$

if and only $\nabla_{N} X$ does not belong to $\Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$, which gives the statement of lemma.

Now, we denote by $\bar{\nabla}$ the Schouten connection associated with the distributions \mathcal{V} and \mathcal{H}. It is defined by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=h \nabla_{X} h Y+\nu \nabla_{X} \nu Y \tag{3.12}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)[4]$. It is easy to see that $\bar{\nabla}$ is a linear connection along a fiber with respect to the induced metric. Moreover, by direct computations, using (3.1) and (3.5), we have the following:
3.12. Proposition. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an r-lightlike submersion. Then we have

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y-T_{X} Y-A_{X} Y \tag{3.13}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(T M_{1}\right)$, where $\bar{\nabla}$ is the Schouten connection and ∇ is the Levi-civita connection on M_{1}.

It is important to mention that the Schouten connection is a metric connection in a non-degenerate submersion [4]. But this is not true for a lightlike submersion, in general. The reason is that T and A are not anti-symmetric in a lightlike submersion. More precisely, we have the following.
3.13. Proposition. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be an r-lightlike submersion. Then we have:

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g_{1}\right)(Y, Z)=g_{1}\left(T_{X} Y, Z\right)+g_{1}\left(Y, T_{X} Z\right)+g_{1}\left(A_{X} Y, Z\right)+g_{1}\left(Y, A_{X} Z\right) \tag{3.14}
\end{equation*}
$$

for $X, Y \in \Gamma\left(T M_{1}\right)$.
Proof. Since ∇ is a metric connection we have

$$
\left(\nabla_{X} g_{1}\right)(Y, Z)=X g_{1}(Y, Z)-g_{1}\left(\nabla_{X} Y, Z\right)-g_{1}\left(Y, \nabla_{X} Z\right)=0
$$

Thus, using (3.13), we have (3.14).
In the rest of this section, we give the covariant derivatives of the tensors A and T. First recall that the covariant derivative of a tensor field A of type $(1,2)$ is given by

$$
\left(\nabla_{E} A\right)_{F} G=\nabla_{E}\left(A_{F} G\right)-A_{\nabla_{E} F} G-A_{F}\left(\nabla_{E} G\right)
$$

for any three vector fields $E, F, G \in \Gamma\left(T M_{1}\right)$. Now if we choose $E=V \in \Gamma\left(\operatorname{Ker} f_{*}\right), F=$ $W \in \Gamma\left(\operatorname{Ker} f_{*}\right)$, then $A_{F}=A_{W}=0$ so the first and third terms on the right side vanish. In the middle term we have

$$
A_{\nabla_{V} W}=A_{h \nabla_{V} W}=A_{T_{V} W},
$$

so we get

$$
\left(\nabla_{V} A\right)_{W}=-A_{T_{V} W}
$$

If we take $E=X \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$ and $F=W \in \Gamma\left(\operatorname{Ker} f_{*}\right)$, then we have

$$
\left(\nabla_{X} A\right)_{W}=-A_{A_{X} W}
$$

All other terms are zero. In a similar way, we get,

$$
\left(\nabla_{X} T\right)_{Y}=-T_{A_{X} Y},\left(\nabla_{V} T\right)_{Y}=-T_{T_{V} Y}, X, Y \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right), V \in \Gamma\left(\operatorname{Ker} f_{*}\right)
$$

3.14. Lemma. Let $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ be a totally lightlike submersion. Then we have:
(a) $g_{1}\left(\left(\nabla_{U} A\right)_{X} V, Y\right)=g_{1}\left(T_{U} A_{X} V, Y\right)-g_{1}\left(A_{X} T_{U} V, Y\right)$,
(b) $g_{1}\left(\left(\nabla_{X} T\right)_{U} Y, V\right)=g_{1}\left(A_{X} T_{U} Y, V\right)-g_{1}\left(T_{A_{X} Y} U, V\right)$,
(c) $g_{1}\left(\left(\nabla_{U} T\right)_{V} X, W\right)=g_{1}\left(T_{T_{V} X} U, W\right)-g_{1}\left(T_{T_{U} X} V, W\right)$,
(d) $g_{1}\left(\left(\nabla_{X} A\right)_{Y} U, Z\right)=g_{1}\left(A_{X} A_{Y} U, Z\right)-g_{1}\left(A_{Y} A_{X} U, Z\right)$,
for any $X, Y, Z \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$, $V, U, W \in \Gamma\left(\operatorname{Ker} f_{*}\right)$, where ∇ is the Levi-Civita connection on M_{1}.

Proof. We only prove (a), the other assertions can be obtained in a similar way.
From the definition of covariant derivative of the tensor field A, we have

$$
g_{1}\left(\left(\nabla_{U} A\right)_{X} V, Y\right)=g_{1}\left(\nabla_{U}\left(A_{X} V\right), Y\right)-g_{1}\left(A_{\nabla_{U} X}(V), Y\right)-g_{1}\left(A_{X}\left(\nabla_{U} V\right), Y\right),
$$

for any $X, Y \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$, $V, U \in \Gamma\left(\operatorname{Ker} f_{*}\right)$. On the other hand, using Lemma 3.9 we obtain

$$
\begin{align*}
g_{1}\left(\nabla_{U}\left(A_{X} V\right), Y\right)= & g_{1}\left(h \nabla_{U} A_{X} V, Y\right)+g_{1}\left(T_{U} A_{X} V, Y\right) \\
& =g_{1}\left(T_{U} A_{X} V, Y\right), \tag{3.15}\\
g_{1}\left(A_{\nabla_{U} X}(V), Y\right) & =g_{1}\left(A_{h \nabla_{U} X} V, Y\right)+g_{1}\left(A_{T_{U} X} V, Y\right) \tag{3.16}\\
& =0,
\end{align*}
$$

and

$$
\begin{align*}
g_{1}\left(A_{X}\left(\nabla_{U} V\right), Y\right) & =g_{1}\left(A_{X} T_{U} V, Y\right)+g_{1}\left(A_{X} v \nabla_{U} V, Y\right) \\
& =g_{1}\left(A_{X} T_{U} V, Y\right) . \tag{3.17}
\end{align*}
$$

Then, from (3.15), (3.16) and (3.17) we have

$$
g_{1}\left(\left(\nabla_{U} A\right)_{X} V, Y\right)=g_{1}\left(T_{U} A_{X} V, Y\right)-g_{1}\left(A_{X} T_{U} V, Y\right)
$$

4. Curvature relations for lightlike submersions

For an r-lightlike submersion $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$, since the fibers are submanifolds of M_{1}, we can derive equations analogous to the Gauss and Codazzi equations of a lightlike immersion. First note that geometrical features of the fibers will be distinguished by a caret ${ }^{\wedge}$. For example, we write $\hat{\nabla}_{V} W=\nu \nabla_{V} W$ for the covariant derivative.
4.1. Theorem. Let M_{1} be a semi-Riemannian manifold and M_{2} a Reinhart lightlike manifold. Suppose that $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ is an r-lightlike submersion or an isotropic submersion. Then we have:

$$
\begin{aligned}
g_{1}(R(U, V) W, X) & =g_{1}(\hat{R}(U, V) W, X)+g_{1}\left(T_{U} T_{V} W, X\right)-g_{1}\left(T_{V} T_{U} W, X\right), \\
g_{1}(R(U, V) W, F) & =g_{1}\left(\left(\nabla_{U} T\right)_{V} W, F\right)-g_{1}\left(\left(\nabla_{V} T\right)_{U} W, F\right),
\end{aligned}
$$

for any $X \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$ and $U, V, W, F \in \Gamma(\Delta)$, where ∇, R and \hat{R} are the Levi-Civita connection on M_{1}, the Riemannian curvature tensor field of M_{1}, and the Riemannian curvature tensor field of the fibers, respectively.

Proof. From Lemma 3.9 we obtain

$$
\begin{aligned}
\nabla_{U} \nabla_{V} W & =\nabla_{U} T_{V} W+\nabla_{U} \hat{\nabla}_{V} W \\
& =h \nabla_{U} T_{V} W+T_{U} T_{V} W+\hat{\nabla}_{U} \hat{\nabla}_{V} W+T_{U} \hat{\nabla}_{V} W, \\
\nabla_{V} \nabla_{U} W & =h \nabla_{V} T_{U} W+T_{V} T_{U} W+\hat{\nabla}_{V} \hat{\nabla}_{U} W+T_{V} \hat{\nabla}_{U} W,
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{[U, V]} W & =T_{[U, V]} W+\hat{\nabla}_{[U, V]} W \\
& =h \nabla_{[U, V]} W+\hat{\nabla}_{[U, V]} W .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
R(U, V) W=\hat{R}(U, V) W & +h \nabla_{U} T_{V} W+T_{U} T_{V} W+T_{U} \hat{\nabla}_{V} W \\
& -h \nabla_{V} T_{U} W-T_{V} T_{U} W-T_{V} \hat{\nabla}_{U} W-h \nabla_{[U, V]} W .
\end{aligned}
$$

Taking the inner product of both sides of the above equation with X gives us the first equation. Taking the inner product with F, we obtain

$$
\begin{align*}
g_{1}(R(U, V) W, F)=g_{1}\left(h \nabla_{U} T_{V}\right. & W, F)+g_{1}\left(T_{U} \nu \nabla_{V} W, F\right)-g_{1}\left(\nabla_{V} T_{U} W, F\right) \\
& -g_{1}\left(T_{V} \nabla_{U} W, F\right)-g_{1}\left(h \nabla_{[U, V]} W, F\right) . \tag{4.1}
\end{align*}
$$

On the other hand, by direct computations, we have

$$
\begin{align*}
g_{1}\left(h \nabla_{[U, V]} W, F\right)= & g_{1}\left(h \nabla_{\nabla_{U} V} W, F\right)-g_{1}\left(h \nabla_{\nabla_{V} U} W, F\right) \\
& =g_{1}\left(T_{\nabla_{U} V} W, F\right)-g_{1}\left(T_{\nabla_{V} U} W, F\right) . \tag{4.2}
\end{align*}
$$

Thus, from (4.1) and (4.2) we have

$$
\begin{aligned}
g_{1}(R(U, V) W, F)=g_{1}\left(\left(\nabla_{U} T_{V} W-\right.\right. & \left.\left.T_{\nabla_{U} V} W-T_{V} \nabla_{U} W\right), F\right) \\
& -\left[g_{1}\left(\left(\nabla_{V} T_{U} W-T_{\nabla_{V} U} W-T_{U} \nabla_{V} W\right), F\right)\right] .
\end{aligned}
$$

Hence,

$$
g_{1}(R(U, V) W, F)=g_{1}\left(\left(\nabla_{U} T\right)_{V} W, F\right)-g_{1}\left(\left(\nabla_{V} T\right)_{U} W, F\right),
$$

which is the second equation.

We recall that the null sectional curvature [1] of M at $p \in M$ with respect to U_{p} is defined by

$$
\begin{equation*}
K_{M}\left(U_{p}, X_{p}\right)=\frac{g\left(R\left(X_{p}, U_{p}\right) U_{p}, X_{p}\right)}{g\left(X_{p}, X_{p}\right)} \tag{4.3}
\end{equation*}
$$

where X_{p} is a non-null vector and U_{p} is a null vector in $T_{p}(M)$.
We denote the horizontal lift of the curvature tensor $R^{M_{2}}$ of M_{2} by R^{*}, that is, if X_{1}, X_{2}, X_{3} and X_{4} are basic vector fields of M_{1}, we write

$$
g_{1}\left(R^{*}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right)=g_{2}\left(R^{M_{2}}\left(\tilde{X}_{1}, \tilde{X}_{2}\right) \tilde{X}_{3}, \tilde{X}_{4}\right)
$$

Also, if X_{i} and X_{j} are basic vector fields, we will denote the horizontal lift of $\nabla_{\tilde{X}_{i}}^{M_{2}} \tilde{X}_{j}$ by $\nabla_{X_{i}}^{*} X_{j}$.
4.2. Theorem. Let M_{1} be a semi-Riemannian manifold and M_{2} a Reinhart lightlike manifold. Suppose that $f:\left(M_{1}, g_{1}\right) \rightarrow\left(M_{2}, g_{2}\right)$ is an r-lightlike submersion or an isotropic submersion. Then we have:

$$
K_{M_{2}}(\tilde{Z}, \tilde{U})=K_{M_{1}}(Z, U)-g_{1}\left(A_{Z} A_{U} U, Z\right)+g_{1}\left(A_{U} A_{Z} U, Z\right)-g_{1}\left(U, T_{\nu[Z, U]} Z\right)
$$

where $K_{M_{2}}$ is the null sectional curvature of $M_{2}, K_{M_{1}}$ is the null sectional curvature of $M_{1}, Z \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$ and $U \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$.

Proof. For $Z \in \Gamma\left(S\left(\operatorname{Ker} f_{*}\right)^{\perp}\right)$ and $U \in \Gamma\left(\operatorname{ltr}\left(\operatorname{Ker} f_{*}\right)\right)$, from (3.5), we can write

$$
\nabla_{Z} U=h \nabla_{Z} U+\nu \nabla_{Z} U=h \nabla_{Z} U+A_{Z} U
$$

Since M_{2} is a Reinhart lightlike manifold, from Theorem 3.8 we have that $h \nabla_{Z} U$ is the basic vector field corresponding to $\nabla_{\tilde{Z}}^{M_{2}} \tilde{U}$, where $\nabla^{M_{2}}$ is the Levi-civita connection on M_{2}, Z and U are the horizontal lifts of \tilde{Z} and \tilde{U}. Then, we write the basic vector field $h \nabla_{Z} U$ as $\nabla_{Z}^{*} U$. Thus we have

$$
\nabla_{Z} U=\nabla_{Z}^{*} U+A_{Z} U .
$$

Then, by direct computations, using (3.5), we get

$$
\nabla_{Z} \nabla_{U} U=\nabla_{Z}^{*} \nabla_{U}^{*} U+A_{Z} \nabla_{U}^{*} U+A_{Z} A_{U} U+\nu \nabla_{Z} A_{U} U
$$

Since A reverses the horizontal and vertical subspaces, we obtain

$$
\begin{equation*}
g_{1}\left(\nabla_{Z} \nabla_{U} U, Z\right)=g_{1}\left(\nabla_{Z}^{*} \nabla_{U}^{*} U, Z\right)+g_{1}\left(A_{Z} A_{U} U, Z\right) . \tag{4.4}
\end{equation*}
$$

In a similar way, we get

$$
\begin{equation*}
g_{1}\left(\nabla_{U} \nabla_{Z} U, Z\right)=g_{1}\left(\nabla_{U}^{*} \nabla_{Z}^{*} U, Z\right)+g_{1}\left(A_{U} A_{Z} U, Z\right) . \tag{4.5}
\end{equation*}
$$

On the other hand, by direct computations, we have

$$
\begin{aligned}
\nabla_{[Z, U]} U & =\nabla_{h[Z, U]} U+\nabla_{\nu[Z, U]} U \\
& =h \nabla_{h[Z, U]} U+\nu \nabla_{h[Z, U]} U+h \nabla_{\nu[Z, U]} U+\nu \nabla_{\nu[Z, U]} U .
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
g_{1}\left(\nabla_{[Z, U]} U, Z\right) & =g_{1}\left(h \nabla_{h[Z, U]} U, Z\right)+g_{1}\left(h \nabla_{\nu[Z, U]} U, Z\right) \\
& =g_{1}\left(\nabla_{h[Z, U]}^{*} U, Z\right)+g_{1}\left(\nabla_{\nu[Z, U]} U, Z\right) .
\end{aligned}
$$

Then, since ∇ is a metric connection and U and Z are orthogonal, we arrive at

$$
\begin{aligned}
g_{1}\left(\nabla_{[Z, U]} U, Z\right) & =g_{1}\left(\nabla_{h[Z, U]}^{*} U, Z\right)-g_{1}\left(U, \nabla_{\nu[Z, U]} Z\right) \\
& =g_{1}\left(\nabla_{h[Z, U]}^{*} U, Z\right)-g_{1}\left(U, \nu \nabla_{\nu[Z, U]} Z\right) .
\end{aligned}
$$

Thus, using (3.1) we obtain

$$
\begin{equation*}
g_{1}\left(\nabla_{[Z, U]} U, Z\right)=g_{1}\left(\nabla_{h[Z, U]}^{*} U, Z\right)-g_{1}\left(U, T_{\nu[Z, U]} Z\right) \tag{4.6}
\end{equation*}
$$

Then, from (4.4), (4.5) and (4.6) we have

$$
\begin{aligned}
g_{1}(R(Z, U) U, Z)=g_{1}\left(R^{*}(Z, U) U, Z\right)+g_{1}\left(A_{Z} A_{U} U, Z\right)- & g_{1}\left(A_{U} A_{Z} U, Z\right) \\
& +g_{1}\left(U, T_{\nu[Z, U]} Z\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
g_{1}(R(Z, U) U, Z)=g_{2}\left(R^{M_{2}}(\tilde{Z}, \tilde{U}) \tilde{U}, \tilde{Z}\right) \circ f+g_{1}\left(A_{Z} A_{U} U, Z\right)- & g_{1}\left(A_{U} A_{Z} U, Z\right) \\
& +g_{1}\left(U, T_{\nu[Z, U]} Z\right)
\end{aligned}
$$

Thus, the proof is complete.

References

[1] Beem, J. K., Ehrlich, P. E. and Easley, K. L. Global Lorentzian geometry (Pure and Applied Mathematics 202, Marcel Dekker, Inc., New York, 1996).
[2] Duggal, K. L. and Bejancu, A. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications (Kluwer Acad. Publishers, Dordrecht, 1996).
[3] Gray, A. Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16, 715-737, 1967.
[4] Falcitelli, M., Ianus, S. and Pastore, A. M. Riemannian Submersions and Related Topics (World Scientific, 2004).
[5] Kupeli, D. N. Singular Semi-Riemannian Geometry (Kluwer Dortrecht, 1996).
[6] Nomizu, K. Fundamentals of Linear Algebra (McGraw Hill, New York, 1966).
[7] O'Neill, B. The fundamental equations of a submersion, Michigan Math. J. 13, 459û-469, 1966.
[8] O'Neill, B. Semi-Riemannian Geometry with Application to Relativity (Academic Press, New York, 1983).
[9] Şahin, B. On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds, Mediterranean J. Math. 5, 273-284, 2008.

[^0]: *Department of Mathematics, Inonu University, 44280 Malatya, Turkey.
 E-mail: bsahin@inonu.edu.tr
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Faculty of Education, Dicle University, Diyarbakır, Turkey. zygunduzalp@gmail.com

