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Abstract
The nonlinear Burgers equation, which has a convection term, a viscosity term and a time dependent
term in its structure, has been split according to the time term and then has been solved by finite element
collocation method using cubic B-spline bases. By splitting the equation Ut + UUx = vUxx into two
simpler sub problems Ut + UUx = 0 and Ut − vUxx = 0 have been obtained. A discretization process
has been performed for each of these sub-problems and the stability analyzes have been carried out by
Fourier (von Neumann) series method. Then, both sub-problems have been solved using the Strang
splitting technique to obtain numerical results. To see the effectiveness of the present method, which is a
combination of finite element method and Strang splitting technique, we have calculated the frequently
used error norms ‖e‖1 , L2 and L∞ in the literature and have made a comparison between exact and a
numerical solution.
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1. Introduction
Nonlinear Burgers equation is in the form of

Ut + UUx = vUxx, a < x < b, t ≥ t0, (1.1)

where U = U(x, t) is a differentiable smooth function of space variable x and time variable t and v > 0 kinematics
viscosity coefficient. The Burgers equation,which derives two basic steady solutions, was first introduced by
Bateman [1] while studying fluid mechanics. This equation is known as the simplest mathematical model expressing
the balance between convection and diffusion.Then, the equation (1.1) has been studied by Burgers [10, 11] and
is referred to as Burgers equation after this study.This equation is an equation involving both nonlinearity and
dissipation in the simplest possible way and can be thought of as a nonlinear type of heat equation [9]. If v = 0
is taken in Equation (1.1), the inviscid Burgers equation expressing the shock waves and having many important
applications in physics is obtained [16]. The reasons for the Burgers equation to attract the attention of many
researchers are that it includes the nonlinear advection term UUx in the simplest form, the dissipation term vUxx
that models the physical wave phenomena, the shock wave property for the small values of the kinematic viscosity
coefficient v, the comparison with the exact solution [12] obtained by [9]. The Burgers equation is an important
partial derivative differential equation with a widespread usage in mathematical physics. The increase in interest
in nonlinear science makes this equation an observation of scientists because it describes very well a lot of gas
dynamics, heat conduction, traffic flow and shock waves models [34].Numerous mathematical techniques and
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methods have been developed in recent years to obtain numerical solutions of Burgers equation and to make
comparisons with both analytical and numerical solutions.

Among others, Jawad at al.[2] have dedicated one section of their study on the perturbed Burgers equation.
Nerameh and Eslami [3] have obtained some new analytical solutions, such as trigonometric function, rational
function, and hyperbolic function solutions by using new extension of the (G

′
/G)-expansion method to the coupled

(2+1)-dimensional Painleve integrable Burgers equation with the aid of the computer software Maple. Haq at
al.[4] have used a meshless method of lines (MMOL) by some radial basis functions (RBFs), Dağ at al.[13] have
applied cubic B-splines bases using a linearization technique and collocation finite element method, AHA Ali at
al. [5] again have used finite element cubic collocation method, Kutluay at al. [23] have utilized the least-squares
quadratic B-spline finite element method with three test problems, R.C. Mittal and R.K. Jain [35] have used a
method based on collocation-modified cubic B-splines using SSP-RK43 or SSP-RK54 scheme techniques. G. Arora
and B.K. Singh [6] have utilized modified cubic-B-spline differential quadrature method (MCB-DQM). C.G. Zhu
and R.H. Wang [20] solved the problem using cubic B-spline quasi-interpolation method.Dağ at al. [14] have used
both time- and space-split Burgers’ equations with quadratic B-spline collocation method. İ Dag and A. Korkmaz
[15] have utilized cubic B-spline differential quadrature methods with Runge-Kutta method of order four in time,
M.A. Ramadan at. [37] have obtained the numerical solutions of the nonlinear Burgers equation by a method
based on collocation of septic B-splines over finite elements. R. Jiwari [21] has used uniform Haar wavelets and the
quasilinearization process. I.A. Ganaie and V.K. Kukreja [17] solved the non-linear Burgers equation by numerically
using cubic Hermite collocation method (CHCM),.S. Kutluay and A. Esen [24] have solved the problem using
a lumped Galerkin method with quadratic B-spline finite elements. Moreover, one can find various studies on
numerical solutions of the Burgers’ equation in Refs ([25]-[32]).

In this study, we are going obtain the numerical solution of the Burgers equation by combining the splitting
techniques, which are easy and effective to apply, with the finite element collocation method. For this, we will split
the equation (1.1) by time and convert into two subproblems with a simpler structure, one containing the convection
term and the other the diffusion term. Next, approximations to each of the sub-problem are obtained by cubic
B-spline bases and ordinary differential equation systems are obtained and solved by finite element collocation
method.

2. Splitting Techniques

Many physical phenomena in the natural world can be expressed by means of differential equations. In recent
years, with the development of computers, almost every physical and engineering problem can be expressed with
differantial equations. In many cases the equation that models the physical phenomenon is complex and it is
difficult to find an effective method to solve this equation. Operator splitting techniques, which have recently been
used to overcome such complex problems, have been a very successful approach. The basic idea of this approach is
to formally write all the evolution operators in the mathematical model as the sum of several evolution operators.
We will concentrate on the situation of two linear operators. Now, let us consider the following Cauchy problem

du(t)

dt
= Cu(t), t ∈ [0, T ] , u(0) = u0 (2.1)

and assume that it is split as C = A + B. Eq. (2.1) can be seen as a semi-discretization of a linear PDE with a
homogeneous periodic boundary condition. Here, an initial function u0 ∈ X is assumed to be a finite linear operator
in the Banach space X , with C = A + B, A,B : X → X . We also have a norm associated with the X-space,
and if it is a matrix, then Euclid norm [18]. u(tn+1) = etCu(tn) is the formal solution of the equation (2.1). Then,
∆t = tn+1 − tn is being the most basic type splitting technique, we obtain

u(tn+1) ' e∆tBe∆tAu(tn) (2.2)

Here ifA andB are commutative operators, then the method gives the exact solution. (2.2) is the most basic splitting
technique and presents the solutions of the following two sub-problems

du(t)

dt
= Au∗(t), u∗(0) = u0 on [0,∆t] ,

du(t)

dt
= Bu∗∗(t), u∗∗(0) = u∗(∆t) on [0,∆t]
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Thus, the solutions at the desired time step are calculated by u∗∗(∆t). This technique is called (A−B) splitting
scheme. It can easily be obtained the splitting scheme (B −A) by exchancing the locations of the operators A and B
in the splitting scheme (A−B) [39].

2.1 Second order symmetric Strang splitting
In order to obtain a better accuracy, first of all Strang[40] scheme

u(∆t) =
1

2
[uAB(∆t) + uBA(∆t)] (2.3)

is considered. Here uAB and uBA are the solutions obtained using (A−B) and (B−A) splitting schemes, respectively.
Since each operator needs to be calculated twice in this scheme, the calculation cost is high. In place of (2.3), a more
cost-effective symmetric scheme is preferred u(tn+1) '

(
e

∆t
2 Ae

∆t
2 B
)(

e
∆t
2 Be

∆t
2 A
)
u(tn) = e

∆t
2 Ae∆tBe

∆t
2 Au(tn).

This scheme is described explicitly as follows

du∗(t)

dt
= Au∗(t), u∗(0) = u0 on [0,∆t/2] , (2.4)

du∗∗(t)

dt
= Bu∗∗(t), u∗∗(0) = u∗(∆t/2) on [0,∆t] ,

du∗∗∗(t)

dt
= Au∗∗∗(t), u∗∗∗(0) = u∗∗(∆t) on [0,∆t/2] .

Finally, the desired numerical solutions are calculated by u∗∗∗(∆t/2). As it is seen from the condition (2.4), while
the term u∗(0) is calculated from the original initial condition of the problem, the other two initial conditions use
the previously calculated solutions as initial conditions. If (2.4) is called as the scheme (A−B−A), then in a similar
way, the scheme (B −A−B) can also be constructed.

3. Cubic B-spline collocation method

Let us assume that the space solution domain is [a, b] and a uniform discretization of this domain by the nodal
points xm, m = 0, 1, ..., N, is given by a = x0 < x1 < ... < xN = b . If we define the distance between two succesive
points by h = xm+1 − xm, and Φm(x), m = −1(1)N + 1, then cubic B-spline functions on the domain [a, b] can be
presented as follows in terms of nodal points xm

Φm(x) =
1

h3


(x− xm−2)3, x ∈ [xm−2, xm−1]

h3 + 3h2(x− xm−1) + 3h(x− xm−1)2 − 3(x− xm−1)3, x ∈ [xm−1, xm]
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1]

(xm+2 − x)3, x ∈ [xm+1, xm+2]
0, othwerwise

(3.1)

as stated by Prenter [36]. It is obvious that the set {Φ−1(x),Φ0(x), ...,ΦN+1(x)} constitutes a base on the domain [a, b].
If we assume that the function u(x, t) is defined on the domain [a, b], then the function u(x, t) can be approximated
as follows in terms of cubic B-spline functions and time dependent parameters δm(t) as follows

U(x, t) ∼=
N+1∑
m=−1

δm(t)Φm(x). (3.2)

Here time-dependent parameters δm(t) are going to be determined using the Eq. (1.1) and its auxiliary conditions.
Since the Eq.(1.1) contains the terms u, the first and second derivatives of u, we need the values of u, its first and
second order derivatives in terms of cubic B-spline functions using the approximations (3.1) and (3.2) using the
time-dependent parameters δm(t) Thus the nodal values are obtained as follows

Um = U(xm) = δm−1 + 4δm + δm+1 (3.3)

U
′

m = U ′(xm) =
3

h
(δm+1 − δm−1)

U ′′m = U ′′(xm) =
6

h2
(δm−1 − 2δm + δm+1)

Here ′ and ′′ describe the first and second order derivatives with respect to space variable x.
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4. Application of the method

The time split form of the Burgers (1.1) equation is as follows

ut − vuxx = 0, (4.1)

ut + uux = 0. (4.2)

If we use the values of U,U
′

and U
′′

given by (3.3) in equations given by (4.1) and (4.2), we obtain the following
first order system of ordinary differential equations

◦
δm−1 + 4

◦
δm +

◦
δm+1 −

6v

h2
(δm−1 − 2δm + δm+1) = 0 (4.3)

◦
δm−1 + 4

◦
δm +

◦
δm+1 +

3zm
h

(δm+1 − δm−1) = 0. (4.4)

Here the symbol ◦ denotes the first order derivative with respect to time variable t and linearized as follows

zm = δm−1 + 4δm + δm+1.

If we write Crank-Nicolson approximation δn+1
m +δnm

2 in place of the parameters δm in Eqs. (4.3) and (4.4), forward

difference equations δn+1
m −δnm

∆t in place of the parameters
◦
δm,we obtain the following equations, respectively

k1δ
n+1
m−1 + k2δ

n+1
m + k1δ

n+1
m+1 = k3δ

n
m−1 + k4δ

n
m + k3δ

n
m+1 (4.5)

k5δ
n+1
m−1 + k6δ

n+1
m + k7δ

n+1
m+1 = k7δ

n
m−1 + k6δ

n
m + k5δ

n
m+1 (4.6)

k1 = 1− 3v∆t

h2
, k2 = 4 +

6v∆t

h2
, k3 = 1 +

3v∆t

h2
, k4 = 4− 6v∆t

h2
,

k5 = 1− 3zm∆t

2h
, k6 = 4, k7 = 1 +

3zm∆t

2h
.

The Eqs. (4.5) and (4.6) consist of (N + 1) equations and (N + 3) unknown time dependent parameters δm,m =
0, 1, ..., N + 1. In order to obtain a solvable system, we need to eliminate the time dependent parameters δ−1 and
δN+1. For this purpose, we are going to use the boundary conditions u(a, t) = u(b, t) = 0 for the system (4.5), and
the boundary conditions uxx(a, t) = uxx(b, t) = 0 for the system (4.6) and obtain the following equations

δ−1 = −4δ0 − δ1, δN+1 = −4δN − δN−1 (4.7)

δ−1 = 2δ0 − δ1, δN+1 = 2δN − δN−1. (4.8)

If we use the equations (4.7) and (4.8) in the system of equations given by (4.5) and (4.6), respectively; we obtain
a three diagonal (N + 1)× (N + 1) band matrix. Thus a unique solution of these systems is easly obtained using
Thomas algoritm. To be able to solve this (N + 1) × (N + 1) system, we need the initial vector δ0

m to start the
iterative process. This initial vectoris constructed as follows using the initial condition u(x, 0) = f(x) and the
approximation given in (3.2) as follows

u(xm, 0) = f(xm) = U(xm, 0), m = 0(1)N

um = δ0
m−1 + 4δ0

m + δ0
m+1

u0 = δ0
−1 + 4δ0

0 + δ0
1

u1 = δ0
0 + 4δ0

1 + δ0
2

...

uN = δ0
N−1 + 4δ0

N + δ0
N+1.
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For this system to be solvable, the parameters δ−1 and δN+1 are eliminated using the boundary conditionsU
′′
(a, 0) =

U
′′
(b, 0) = 0. Thus a three dimensional (N + 1)×(N + 1) band matrix which can be solved using Thomas algoritms

is obtained as follows. 
6 0 0
1 4 1

. . .
1 4 1
0 0 6




δ0
0

δ0
1
...

δ0
N−1

δ0
N

 =


u0

u1

...
uN−1

uN


4.1 The stability analysis

Firstly to investigate the stability of the scheme given in Eq. (4.5) via von Neumann method [43] the expression
δnm = eiβmhξn is written in Eq. (4.5) for halved time step. If the necessary operations are taken, one get, ρA and ρB
are being the notations for the stability condition of Eqs. (4.5) and (4.6), respectively ,(

k1e
−iβh + k2 + k1e

iβh
)
ξn+1/2 = ξn

(
k3e
−iβh + k4 + k3e

iβh
)

ρA

(
ξn+1/2

ξn

)
=

2k3 cosβh+ k4

2k1 cosβh+ k2

k1 = 1− 3ν∆t

h2
, k2 = 4 +

6ν∆t

h2
, k3 = 1 +

3ν∆t

h2
, k4 = 4− 6ν∆t

h2
.

If the avlues of k1, k2, k3 and k4 are written in their places, the following equations are obtained

ρA

(
ξn+1/2

ξn

)
=
P −Q
P +Q

P = 2 cosβh+ 4, Q =
6ν∆t

h2
(1− cosβh) .

Here, for the condition
∣∣∣ρA ( ξn+1/2

ξn

)∣∣∣ ≤ 1 to be satisfied, the denominator should be greater than the nominator ,
that is

P +Q ≥ P −Q⇒ Q ≥ 0

is required. Since Q = 6ν∆t
h2 (1− cosβh) ≥ 0 is always true, the condition

∣∣∣ρA ( ξn+1/2

ξn

)∣∣∣ ≤ 1 is naturally satisfied.
Secondly, for the stability of the scheme (4.6), once the U in the term UUx has been linearized, zm will then behave
as a local constant and the von Neumann method will become feasible to investigate the stability of the difference
scheme given in Eq.(4.6). If the expression δnm = eiβmhξn is written in Eq.(4.6) and the necessary operations are
performed, the following equation

ρB

(
ξn+1

ξn

)
=
k7e
−iβh + k6 + k5e

iβh

k5e−iβh + k6 + k7eiβh

k5 = 1− 3zm∆t

2h
, k6 = 4, k7 = 1 +

3zm∆t

2h

is obtained. After some arrangements, the following equalities

ρB

(
ξn+1

ξn

)
=
X − iY
X + iY

X = k6 + (k5 + k7) cosβh, Y = (k7 − k5) sinβh

are obtained.Thus, the following equalities follow∣∣∣∣ρB (ξn+1

ξn

)∣∣∣∣ =

√
X2 + Y 2

X2 + Y 2
≤ 1.
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Therefore, since the scheme obtained by Strang splitting method is as follows

ρ (ξ) = ρ
n+1/2
A ρn+1

B ρ
n+1/2
A

|ρ (ξ)| ≤
∣∣∣∣ρA(ξn+1/2

ξn

)∣∣∣∣ ∣∣∣∣ρB (ξn+1

ξn

)∣∣∣∣ ∣∣∣∣ρA(ξn+1/2

ξn

)∣∣∣∣ ≤ 1

the scheme is unconditionally stable.

5. Numerical results and examples

The numerical solutions of the Burgers equation are going to be sought for three standard test problems
frequently found in the literature. The efficiency of the numerical method has been tested using the following error
methods between ecaxt and approximate solutions for all test problems. All computations have been carried out
using the splitting scheme (A−B −A) on a pentium 4 pc usinf the programming language Fortran with double
arithmetic precision

L2 =

√√√√h

N∑
j=0

∣∣∣(uj − Uj)2
∣∣∣, L∞ = max

j
|uj − Uj |

‖e‖1 =
1

N

N−1∑
j=1

|uj − Uj |
|uj |

.

Problem 1: As a first test problem, Burgers equation is going to be considered together with the following initial

u(x, 0) = sinπx, 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0.

The exact solution of this problem has been obtained as a summation of an infinite seriesby D. Cole [12] as follows

u(x, t) = 2πv

∑∞
j jaj sin(jπx) exp(−j2π2vt)

a0 +
∑∞
j aj cos(jπx) exp(−j2π2vt)

. (5.1)

Here a0 and aj are Fourier coefficients given as follows

a0 =

∫ 1

0

e−(2πv)−1(1−cos(πx))dx,

an = 2

∫ 1

0

e−(2πv)−1(1−cos(πx)) cos(nπx)dx, n = 1, 2, ....
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Table 1. A comparison of the results of Problem 1 for ∆t = 0.001, v = 1 and different mesh sizes at time t = 0.1.
x h = 0.1 h = 0.05 h = 0.025 h = 0.0125 h = 0.00625 Exact
0.1 0.10889 0.10938 0.10950 0.10953 0.10954 0.10954
0.2 0.20849 0.20947 0.20971 0.20977 0.20979 0.20979
0.3 0.28995 0.29141 0.29178 0.29187 0.29189 0.29190
0.4 0.34540 0.34729 0.34777 0.34788 0.34791 0.34792
0.5 0.36862 0.37084 0.37139 0.37153 0.37157 0.37158
0.6 0.35593 0.35826 0.35885 0.35900 0.35903 0.35905
0.7 0.30699 0.30917 0.30972 0.30986 0.30989 0.30991
0.8 0.22554 0.22724 0.22767 0.22778 0.22781 0.22782
0.9 0.11943 0.12037 0.12061 0.12067 0.12068 0.12069
L2 × 103 2.134684 0.537097 0.134897 0.034241 0.009076
L∞ × 103 3.120196 0.782520 0.196568 0.049987 0.013366
|e|1(present) ∆t = 0.001 0.007253 0.001920 0.000495 0.000127 0.000034

∆t = 0.00001
‖e‖1([13]cub-col.) 0.00734 0.00095 0.00014 0.00003 0.00001
‖e‖1([20]-BSQI) 0.01025 0.00383 0.00082 0.00027 −
‖e‖1([23]-FEM) 0.012165 0.006941 0.003651 0.001858 0.000928
‖e‖1([33]-exp.) 0.007571 0.002025 0.000555 0.000177 −
‖e‖1([33]exact-exp.) 0.007278 0.001885 0.000448 0.000077 −

Table 2. A comparison of the results of Problem 1 for ∆t = 0.001, v = 1, 0.1 and 0.01 at various values of time t.
x t v = 1 v = 1 v = 0.1 v = 0.1 v = 0.01 v = 0.01

Numerical Exact Numerical Exact Numerical Exact
0.25 0.4 0.01357 0.01357 0.30890 0.30889 0.34192 0.34191

0.6 0.00189 0.00189 0.24075 0.24074 0.26896 0.26896
0.8 0.00026 0.00026 0.19569 0.19568 0.22148 0.22148
1.0 0.00004 0.00004 0.16258 0.16256 0.18819 0.18819
3.0 0.00000 0.00000 0.02720 0.02720 0.07511 0.07511

0.5 0.4 0.01923 0.01924 0.56965 0.56963 0.66071 0.66071
0.6 0.00267 0.00267 0.44723 0.44721 0.52942 0.52942
0.8 0.00037 0.00037 0.35925 0.35924 0.43914 0.43914
1.0 0.00005 0.00005 0.29192 0.29192 0.37442 0.37442
3.0 0.00000 0.00000 0.04019 0.04020 0.15018 0.15018

0.75 0.4 0.01362 0.01363 0.62538 0.62544 0.91027 0.91026
0.6 0.00189 0.00189 0.48715 0.48721 0.76725 0.76724
0.8 0.00026 0.00026 0.37385 0.37392 0.64740 0.64740
1.0 0.00004 0.00004 0.28741 0.28747 0.55605 0.55605
3.0 0.00000 0.00000 0.02976 0.02977 0.22483 0.22481

Table 3. A comparison of numerical solutions of Problem 1 for h = 0.0125, v = 1 and t = 0.1 with various studies.
x Exact Present Ref. [13] Ref. [23] Ref. [20] Ref. [6] Ref. [7]

∆t = 10−3 ∆t = 10−5 ∆t = 10−5 ∆t = 10−5 ∆t = 10−5 ∆t = 10−4

Cub. col. Least S. Cub. QI. Cub.DQ. Automatic D.
0.1 0.10954 0.10953 0.10952 0.10978 0.10951 0.109526 0.10955
0.2 0.20979 0.20977 0.20975 0.21019 0.20974 0.209766 0.20981
0.3 0.29190 0.29187 0.29184 0.29238 0.29182 0.291855 0.29193
0.4 0.34792 0.34788 0.34785 0.34845 0.34783 0.347869 0.34796
0.5 0.37158 0.37153 0.37149 0.37212 0.37147 0.371512 0.37163
0.6 0.35905 0.35900 0.35896 0.35960 0.35894 0.358975 0.35910
0.7 0.30991 0.30986 0.30983 0.31044 0.30981 0.309839 0.30995
0.8 0.22782 0.22778 0.22776 0.22827 0.22775 0.227766 0.22786
0.9 0.12069 0.12067 0.12065 0.12097 0.12065 0.120659 0.12071
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Table 4. A comparison of the results for values of v = 1,∆t = 0.001, h = 0.0125.
x t Exact Present Ref. [19] Ref. [41]-DE Ref. [41]-HC Ref. [41]-RHC

∆t = 10−3 ∆t = 10−5 ∆t = 10−5 ∆t = 10−5 ∆t = 10−5

0.25 0.1 0.25364 0.25361 0.252875 0.263624 0.252942 0.264126
0.15 0.15660 0.15657 0.155447 0.161000 0.156059 0.165683
0.20 0.09644 0.09642 0.094289 0.098311 0.095889 0.101617
0.25 0.05922 0.05920 0.055674 0.060052 0.056174 0.059113

0.5 0.1 0.37158 0.37158 0.373085 0.372799 0.376474 0.393354
0.15 0.22682 0.22678 0.228940 0.227657 0.235875 0.251788
0.20 0.13847 0.13844 0.142127 0.138972 0.153645 0.163931
0.25 0.08454 0.08451 0.091944 0.084942 0.112810 0.120967

0.75 0.1 0.27258 0.27258 0.272368 0.263624 0.271517 0.285579
0.15 0.16437 0.16433 0.163628 0.160973 0.162739 0.176957
0.20 0.09944 0.09941 0.098656 0.098305 0.098431 0.111020
0.25 0.06035 0.06033 0.059343 0.060051 0.057394 0.068569

(a) (b)
Figure 1. The behaviour of numerical solutions of Problem 1 at various times a) h = 0.025, ∆t = 0.01, v = 1. b)
h = 0.025, ∆t = 0.01, v = 0.1.

(a) (b)
Figure 2. The behaviour of numerical solutions of Problem 1 at various times a) h = 0.025, ∆t = 0.01 for v = 0.01.
b) h = 0.005, ∆t = 0.01 v = 0.005.
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Figure 3. The physical behaviour of numerical solutions of Problem 1 for h = 0.025,
∆t = 0.01, v = 0.01, a = −1, b = 1 at times t ≤ 2.

In Table 1, a comparison of exact and approximate solutions of Problem 1 for t = 0.001, v = 1 at various mesh
sizes and time t = 0.1 has been presented. In addition to this, the rror norms L2 and L∞ have been computed and
the error norm ‖e‖1 has been compared with some of the studies. As it can be seen from Table 1, as the value of h
decreases, the numerical solutions approach to exact solutions. Additionally, when we look at the error norm ‖e‖1 ,
although the results in Ref. [13, 20, 23, 33] are computed for ∆t = 10−5 our results computed using ∆t = 10−3

are in good agreement with their results. In Table 2, the values ∆t = 0.001, h = 0.0125, v = 1, 0.1, 0.01 have been
used and a comparison of numerical and analytical results has been presented at x = 0.25, 0.5, 0.75.As it can be
seen from this table, our numerical results are very approximate to the exact ones. In Tables 3 and 4, for values of
v = 1, h = 0.0125 a comparison of numerical and analytical results has been given with those in Ref. [6, 7, 13, 20, 23]
and Ref. [19, 41], respectively.As it can be seen from those tables, although we have used larger time step values
∆t,our results are very satisfactory. Since the Fourier series solution of Problem 1 converges very slowly for small
values of v , a comparison of exact and approximate solutions has not been calculated. But in Figures 1 and 2,
the graphics of numerical solutions corresponding to the values of v = 1, 0.1, 0.01 and 0.005 have been presented
and it is seen from these graphics that as the value of v decreases, the numerical solution goes to the right in a
sharpening manner. Moreover, the numerical solutions of Problem 1 for values of v = 0.01, h = 0.025, a = −1 and
b = 1 are computed. It is seen from Figure 3 that the numerical solutions of Problem one exhibit the right physical
behaviours fır different values of time variable t.

Problem 2: As a second test problem, the Burgers equation with the following initial and boundary conditions
as given in Refs. [7, 24, 35] is taken into consideration

u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, t ≥ 0.

The exact solution for this problem is obtained by taking the coefficients in (5.1) as follows

a0 =

∫ 1

0

e−x
2(3v)−1(3−2x)dx,

an = 2

∫ 1

0

e−x
2(3v)−1(3−2x) cos(nπx)dx, n = 1, 2, ....
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Table 5. A comparison of the soluions of Problem 2 for ∆t = 0.001, h = 0.0125, v = 1, 0.1 and 0.01 at various values
of time t.

x t v = 1 v = 1 v = 0.1 v = 0.1 v = 0.01 v = 0.01
Numerical Exact Numerical Exact Numerical Exact

0.25 0.4 0.01400 0.01400 0.31752 0.31752 0.36226 0.36226
0.6 0.00195 0.00195 0.24615 0.24614 0.28203 0.28204
0.8 0.00027 0.00027 0.19957 0.19956 0.23045 0.23045
1.0 0.00004 0.00004 0.16561 0.16560 0.19469 0.19469
3.0 0.00000 0.00000 0.02775 0.02776 0.07613 0.07613

0.5 0.4 0.01984 0.01985 0.58455 0.58454 0.68368 0.68368
0.6 0.00276 0.00276 0.45800 0.45798 0.54832 0.54832
0.8 0.00038 0.00038 0.36742 0.36740 0.45371 0.45371
1.0 0.00005 0.00005 0.29835 0.29834 0.38567 0.38568
3.0 0.00000 0.00000 0.04105 0.04106 0.15218 0.15218

0.75 0.4 0.01406 0.01407 0.64556 0.64562 0.92051 0.92050
0.6 0.00195 0.00195 0.50261 0.50268 0.78300 0.78299
0.8 0.00027 0.00027 0.38527 0.38534 0.66272 0.66272
1.0 0.00004 0.00004 0.29580 0.29586 0.56932 0.56932
3.0 0.00000 0.00000 0.03043 0.03044 0.22776 0.22774

Table 6. A comparison of numerical solutions of Problem 2 for v = 0.01 at various time levels.
x t Xu at al. [42] Mittal & Jain [35] Kutluay & Esen [24] Present Exact

∆t = 0.0001 ∆t = 0.001 ∆t = 0.0001 ∆t = 0.01 -
h = 0.0125 h = 0.025 h = 0.0125 h = 0.0125 -

0.25 0.4 0.3622 0.36225 0.36218 0.36225 0.36226
0.6 0.2820 0.28202 0.28197 0.28202 0.28204
0.8 0.2304 0.23044 0.23040 0.23044 0.23045
1.0 0.1947 0.19468 0.19465 0.19468 0.19469
3.0 0.0761 0.07613 0.07613 0.07613 0.07613

0.5 0.4 0.6836 0.68368 0.68364 0.68370 0.68368
0.6 0.5483 0.54832 0.54829 0.54832 0.54832
0.8 0.4537 0.45371 0.45368 0.45371 0.45371
1.0 0.3856 0.38567 0.38564 0.38567 0.38568
3.0 0.1522 0.15218 0.15217 0.15218 0.15218

0.75 0.4 0.9205 0.92052 0.92047 0.92059 0.92050
0.6 0.7830 0.78300 0.78297 0.78304 0.78299
0.8 0.6627 0.66272 0.66270 0.66274 0.66272
1.0 0.5693 0.56932 0.56930 0.56932 0.56932
3.0 0.2277 0.22782 0.22773 0.22776 0.22774

(a) (b)
Figure 4. The behaviour of numerical soluions of Problem 2 at various times a) h = 0.025, ∆t = 0.01, v = 1. b)
h = 0.025, ∆t = 0.01 v = 0.1.



Numerical Solution of Burger’s Type Equation... 39

(a) (b)
Figure 5. The behaviour of numerical soluions of Problem 2 at various times a) h = 0.025, ∆t = 0.001, v = 0.01. b)
h = 0.005, ∆t = 0.01, v = 0.005.

In Table 5, a comparison of numerical and exact solutionsof Problem 2 for ∆t = 0.001, h = 0.0125, v = 1, 0.1, 0.01
at various time and space sizes has been presented. As it is seen from this table, the newly obtained numerical
results are in good agreement with exact ones. In Table 6, the results in Ref. [24, 35, 42] are compared with ours for
Problem 2 for v = 0.01. Our results are better than those found in Ref. [24, 42], although their time step value ∆t is
smaller than ours. Mittal and Jain [35] have calculated their reults for smaller values of ∆t but bigger values of h.
From Table 6, it is seen that our results are in good agreement with theirs. The pyhsical behaviors of the numerical
solutions are illustrated in Figures 4 and 5.

Problem 3: As a final problem, the Burgers equationis taken with the following initial condition given at time
t = 1 as given in Ref. [24, 35]

u(x, t) =
x

1 + exp
[

1
4v (x2 − 1

4 )
] ,

and the boundary conditions u(a, t) = u(b, t) = 0. The exact solution of this problem is

u(x, t) =
x/t

1 +
√
t/t0 exp

[
1
4v (x2 − 1

4 )
] , t ≥ 1

where t0 = exp( 1
8v ).

Table 7. A comparison of numerical results and error norms of Problem 3 for values of ∆t = 0.01, h = 0.005
v = 0.005, a = 0, b = 1

x Present Exact Present Exact Present Exact
t = 1.7 t = 1.7 t = 2.5 t = 2.5 t = 3.25 t = 3.25

0.1 0.05882 0.05882 0.04000 0.04000 0.03077 0.03077
0.2 0.11764 0.11765 0.08000 0.08000 0.06154 0.06154
0.3 0.17646 0.17646 0.12000 0.12000 0.09230 0.09231
0.4 0.23517 0.23517 0.15998 0.15998 0.12307 0.12307
0.5 0.29193 0.29190 0.19983 0.19983 0.15380 0.15380
0.6 0.29585 0.29591 0.23814 0.23812 0.18430 0.18430
0.7 0.04197 0.04193 0.25312 0.25310 0.21271 0.21270
0.8 0.00064 0.00065 0.10212 0.10210 0.21844 0.21844
0.9 0.00000 0.00000 0.00553 0.00554 0.10093 0.10126

t = 1.7 t = 2.4 t = 2.5 t = 3.1 t = 3.25
L2 × 103 (Present) 0.03565 0.02167 0.02436 0.55501 1.10263
L∞ × 103 (Present) 0.16110 0.08346 0.11560 4.10425 7.99529
L2 × 103 Ref. [14](QBCM) 0.07215 − 0.05103 − 1.24901
L∞ × 103 Ref. [14](QBCM) 0.31153 − 0.18902 − 8.98390
L2 × 103 Ref. [5] 0.857 0.423 − 0.235 −
L∞ × 103 Ref. [5] 2.576 1.242 − 0.688 −
L2 × 103 Ref. [38] 0.02681 0.03135 1.11149
L∞ × 103 Ref. [38] 0.09174 0.11515 8.00069
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Table 8. A comparison of numerical results and error norms of Problem 3 for values of ∆t = 0.01, h = 0.005
v = 0.005, a = 0, b = 1.2.

x t Shu et al. [38] Shu et al. [38] Mittal & Jain [35] Present Exact
h = 10−4, β = 1 h = 10−4, β = 0.5 h = 0.005 h = 0.005
∆t = 0.01 ∆t = 0.01 ∆t = 0.001 ∆t = 0.001

0.2 1.7 0.1176565 0.1174841 0.1176452 0.1176452 0.1176452
2.5 0.0800527 0.0798389 0.0799990 0.0799990 0.0799989
3.0 0.0667147 0.0665176 0.0666658 0.0666658 0.0666658
3.5 0.0571820 0.0570060 0.0571422 0.0571422 0.0571422

0.4 1.7 0.2332111 0.2348504 0.2351690 0.2351690 0.2351677
2.5 0.1591735 0.1596608 0.1599771 0.1599771 0.1599769
3.0 0.1328314 0.1330273 0.1333211 0.1333211 0.1333209
3.5 0.1139606 0.1140077 0.1142780 0.1142780 0.1142779

0.6 1.7 0.2940048 0.2961269 0.2958570 0.2958570 0.2959097
2.5 0.2347876 0.2376699 0.2381299 0.2381300 0.2381207
3.0 0.1973222 0.1990478 0.1994839 0.1994839 0.1994805
3.5 0.1697753 0.1708231 0.1712257 0.1712257 0.1712242

0.8 1.7 0.0008917 0.0006640 0.0006381 0.0006381 0.0006465
2.5 0.1103866 0.1036067 0.1021325 0.1021324 0.1020957
3.0 0.2088346 0.2093735 0.2088032 0.2088032 0.2088359
3.5 0.2119293 0.2143409 0.2145938 0.2145939 0.2145869

Table 9. A comparison of error norms of Problem 3 for values of v = 0.005, a = 0, b = 1.2.
t [38] (β = 1) [38] (β = 0.5) [35] Present Present

h = 10−4 h = 10−4 h = 0.005 h = 0.005 h = 0.005
∆t = 0.01 ∆t = 0.01 ∆t = 0.001 ∆t = 0.01 ∆t = 0.001

t = 1.7
L2 × 103 3.08966 0.384209 0.0252 0.03565 0.02531
L∞ × 103 10.40404 1.347279 0.0994 0.16110 0.10003

t = 2.5
L2 × 103 2.72048 0.491345 0.0151 0.01927 0.01508
L∞ × 103 8.29747 1.554700 0.0549 0.07719 0.05517

t = 3.0
L2 × 103 2.39922 0.515077 0.0118 0.01451 0.01185
L∞ × 103 6.98801 1.552891 0.0414 0.05464 0.04150

t = 3.5
L2 × 103 2.12110 0.525855 0.0117 0.01328 0.01175
L∞ × 103 5.94321 1.521961 0.0486 0.04858 0.04858

Table 10. A comparison of error norms of Problem 3 for values of v = 0.0015, a = 0, b = 1 with those in Ref. [37].
Septic B-spline[37] Present

h = 0.005,∆t = 0.01 h = 0.005,∆t = 0.01
t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.2 0.3853879498 3.2368476652 0.3718509991 3.1646275222
1.4 0.4644348073 3.3488926879 0.2863329944 2.4415417573
1.6 0.4964749406 3.1923238319 0.2288596826 1.8783862136
1.8 0.5092790346 2.9867895721 0.1887021734 1.4497813951
2.0 0.5125147492 2.7831501328 0.1593751139 1.1782635194
2.2 0.5105961277 2.5951212085 0.1371827934 1.0357077227
2.4 0.5058011505 2.4255446546 0.1199015172 0.8279599830
2.8 0.4921096936 2.1380460738 0.0949225040 0.6403753054
3.0 0.4843911639 2.0164737965 0.0856621454 0.5858051083
3.4 0.4687308313 1.8086943377 0.0717301538 0.4764481427
3.7 0.6446318395 4.7081914051 0.2791695008 3.0371207632
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Table 11. A comparison of error norms of Problem 3 for values of v = 0.005, a = 0, b = 1 with those in Ref. [37].
Septic B-spline[37] Present
h = 0.02,∆t = 0.01 h = 0.02,∆t = 0.01

t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.2 0.5814317166 3.1354062730 0.5537663018 2.1699139717
1.4 0.6467617678 2.9313488434 0.4921119039 1.8710420482
1.6 0.6760951564 2.6922645525 0.4184750799 1.6238728732
1.8 0.6876183734 2.4718915438 0.3592643498 1.4099229281
2.0 0.6895350821 2.3766574001 0.3129510874 1.1485717697
2.2 0.6860166616 2.2731921896 0.2762460981 1.0081759068
2.4 0.6794328066 2.1678477506 0.2467279685 0.8919346792
2.8 0.6830706255 1.9689522786 0.2228476846 0.6805470080
3.0 0.8295132819 2.9572472407 0.3106757860 1.5961621658
3.2 1.4855981917 7.4914648713 0.6551177234 4.0139480396

(a) (b)
Figure 6. The physical behaviour of numerical solution of Problem 3 a) h = 0.005, ∆t = 0.01, v = 0.005. b) and the
error for the same values at time t = 4.

(a) (b)
Figure 7. The physical behaviour of numerical solution of Problem 3 a) h = 0.005, ∆t = 0.01, v = 0.005, a = 0,
b = 1.2. b) and the error for the same values at time t = 4.
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(a) (b)
Figure 8. The physical behaviour of numerical solution of Problem 3 a) h = 0.005, ∆t = 0.01, v = 0.0005. b) and the
error for the same values at time t = 4.

(a) (b)
Figure 9. The physical behaviour of numerical solution of Problem 3 a) h = 0.005, ∆t = 0.01, v = 0.00036. b) and
the error for the same values at time t = 4.

The solution of Problem 3 corresponds to propagation of the shocks, which becomes smoother as time progresses.
In Table 7, the pointwise values of the problem for values of ∆t = 0.01, h = 0.005, v = 0.005, a = 0, b = 1 at various
times have been given and a comparison of the error norms L2 and L∞ with those in Ref. [5, 14, 38] has been
presented. As it is seen from this table, the numerical solutions obtained using the present method are in good
agrement with exact ones.Moreover the error norms L2 and L∞ in our study are better than those in Ref. [5, 14] and
in googd agreement with those in Ref. [38]. In Table 8, for values of ∆t = 0.01, h = 0.005, v = 0.005, a = 0, b = 1.2
the results are compared with those of Shu et al. [38] and Mittal & Jain [35] for various space and time values. As it
is seen from the table, our results are much better than those of Ref. [38] and are in good agreement with those in
Ref. [35] . In Table 9, a comparison of the error norms L2 and L∞ with those given in Ref. [38] and Ref. [35] has
been presented.As it is seen from the table, even for bigger values of ∆t our error norms are much better than those
given in Ref. [38] and are nearly the same those given in. In Tables 10 and 11, a comparison of the error norms L2

and L∞ with those given in Ref. [37] for various values of time t. As it is seen from these two tables, our error
norms are very low when comapred with those found in Ref. [37]. Moreover, the three figures plotted in Figures
6-9 shows the behaviour of the propagation of the shocks very well. As it is seen from these graphics, as the value
of viscosity v decreases, the solution curves become steeper and steeper.

6. Conclusions
In this work, numerical solutions of nonlinear Burgers equation given by Dirichlet boundary conditions and

cubic B-spline basis functions are calculated by collocation method. The main problem is transformed into two
sub-problems according to time, and each sub-problem is discretized by position with the help of cubic B-spline
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bases and two ordinary differential equation systems are obtained. The stability analyzes of these two systems were
examined by the Von-Neumann method and found to be unconditionally stable. These two systems were then
solved using the Strang time splitting technique. This method has been applied to three test problems, and the
results obtained are compared to those in the literature. As a result, we can see that the method we use is an easy
and effective way to apply nonlinear equations.
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