Diagnostic utility of two-dimensional shear wave elastography to differentiate benign and malignant breast lesions

Serdar Arslan¹, Aysegul Altunkeser¹, Mehmet Sedat Durmaz¹, Mehmet Ali Eryilmaz², Fatih Oncu¹, Yaşar Unlu³

¹University of Health Sciences, Konya Education and Research Hospital, Department of Radiology, Konya, Turkey ²University of Health Sciences, Konya Education and Research Hospital, Department of General Surgery, Konya, Turkey ³University of Health Sciences, Konya Education and Research Hospital, Department of Pathology, Konya, Turkey

Copyright © 2019 by authors and Annals of Medical Research Publishing Inc.

Abstract

Aim: The aim of this study was to evaluate the diagnostic performance of two-dimensional shear wave elastography in the differentiation of malignant and benign breast lesions.

Material and Methods: A total of 83 breast lesions in 76 patients were prospectively investigated with B-mode ultrasonography and two-dimensional shear wave elastography techniques. B-mode ultrasonography findings were classified based on BI-RADS lexicon 5th edition. The mean elasticity and the standard deviation of speed mode (m/s) and elasticity mode (kPa) were calculated for all breast lesions. Diagnostic performances of each quantitative parameters were compared.

Results: Of 83 breast lesions, 45 (54.2%) were benign and 38 (45.7%) were malignant. Among the all shear wave elastography parameters, the standard deviation (E_{sD}) of the shear wave speed (m/s) had the highest AUROC (0.953) value. When a cut-off value of 0.85 m/s was used for E_{sD} of speed mode, sensitivity, specificity, accuracy, PPV, and NPV were detected as 94.7%, 88.8%, 91.5%, 87.8%, and 95.2%, respectively.

Conclusions: Two-dimensional shear wave elastography has excellent diagnostic performance in the differentiation of benign and malignant breast lesions. The standard deviation (E_{sD}) of speed modehad the best diagnostic performance when compared other quantitative parameters.

Keywords: Shear Wave Elastography; Ultrasound; Breast Lesions.

INTRODUCTION

Breast cancer is the most common cancer type among the women and the incidence is increasing in the last decades (1,2). Physical examination has an important role to detect breast lesions, however it is limited in patients with deep and small lesions (3). Mammography has been widely preferred method in breast cancer screening. Nevertheless, it has several limitations, such as radiation exposure and evaluate dense breast tissue (4). Ultrasonography (US) has become a complementary method to mammography to avoid this restriction (5).

US elastography is a method used to measure the stiffness of a tissue (6). This imaging technique can be divided into some groups according to their methods.

(7). One of them, strain elastography can evaluate the breast lesions as qualitative and semi-quantitative (8). However, this method lacks quantitative information and is highly examiner-dependent (9). Another technique is acoustic radiation force impulse (ARFI) that evaluates tissue displacement induced using acoustic impulses from the transducer and it has less operator-dependence. Nevertheless, ARFI still cannot provide the adequate quantitative data about the lesion stiffness (10).

As a result of these limitations, shear wave elastography (SWE) has gained increasing attention in recent years. Toshiba SWE (T-SWE; Canon Medical Systems,USA) has developed a new SWE technique for clinical practice which is based on two-dimensional elastography imaging. Moreover, T-SWE provides information about the tissue

Received: 20.09.2018 Accepted: 31.10.2018 Available online: 05.11.2018

Corresponding Author: Serdar Arslan, University of Health Sciences, Konya Education and Research Hospital, Department of Radiology, Konya, Turkey, **E-mail:** arslanserdar10@gmail.com

stiffness both in kilopascals (kPa) and in meters per second (m/s) (10).

The aim of this study was to determine the diagnostic performance of T-SWE in the differentiation of benign and malignant breast lesions.

MATERIAL and METHODS

Patients

This prospective study was approved by local ethic committee and informed oral and written consents were obtained from all patients. From March 2017 to July 2018, a total of 76 patients with 83 breast lesions were included the study. The inclusion criteria were the visibility of the lesion in B-mode US and no history of breast surgery, radiotherapy or chemotherapy.

B-mode US and T-SWE Imaging

All patients were examined by using a Toshiba Aplio 500 (Toshiba Aplio 500, Canon Medical Systems,USA) with a 7.2 to 14 MHz high-frequency linear-array transducer. B-mode US and T-SWE were performed by a radiologist with 8 years of experience in breast radiology and 2 years of experience in T-SWE.

All patients were evaluated in the supine position with the arms elevated. Longitudinal and transverse B-mode US images were acquired of the breast lesions. B-mode US findings were classified using American College of Radiology Breast Imaging report and Data System (BI-RADS) lexicon 5th edition. Subsequently, T-SWE were performed in order to evaluate the stiffness of the breast lesions. T-SWE images were obtained in "One Shot Scan" mode. Propagation mode, speed mode, and elasticity mode were switched respectively after image frozen.

In the propagation mode, the contour lines display the quality and reliability of the images. Homogeneous images had parallel contour lines, whereas the wider contour intervals was detected in the stiffer lesions (Figure 1).

Figure 1. 36-year-old woman with fibroadenoma. B-mode ultrasonography showing a well-circumscribed round mass. Propagation mode showing regularly parallel contour lines. Speed mode showing the E_{mean} and E_{sD} of the lesion are 2.54 m/s and 0.23 m/s, respectively. Elasticity mode showing the E_{mean} and E_{sD} of the lesion are 19.4 kPa and 3.6 kPa, respectively

Distribution of the lesion stiffness was obtained both with speed mode in m/s and with elasticity mode in kPa. Then, one region of interest (ROI) was drawn by hand and adjusted to the lesion contour to include the maximum lesion area to get the mean elasticity (E_{mean}) and the standard deviation (E_{sp}) values in kPa and m/s.

Histopathology

US-guided core needle biopsies applied all breast lesions with a 14G biopsy needle (Geotek Medical, Ankara, Turkey). BI-RADS 3 lesions underwent biopsy because of the clinician's or patient's request, or because the patients were at high risk. All pathologic diagnoses were made by a single pathologist with 14 years' experience in breast pathology. The final diagnosis was based on histopathological results.

Statistical Analysis

Statistical analyses were performed with the Statistical Package for Social Sciences 22.0 (SPSS Inc., Chicago, IL, USA). Categorical variables were presented in percentages and frequencies. The proportions were compared using Fisher exact tests. Continuous variables were compared using the independent samples t-test. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the T-SWE. Using optimal cut-off values, the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated. A p value less than 0.05 was accepted as statistically significant.

RESULTS

Total of 83 breast lesions (mean size, 19.4 mm \pm 10.6; range 6 – 50 mm) in 76 patients (mean age, 47.6 years \pm 11.9; range 18–86 years) were histopathologically diagnosed as malignant (n = 38) and benign breast lesions (n = 45). The histopathologic diagnoses are summarized in Table 1.

Table 1. Histopathologic types of the breast lesions					
	Number of lesions	%			
Malignant Lesions					
Invasive ductal carcinoma	33	39.7			
Invasive lobular carcinoma	3	3.6			
Medullary carcinoma	1	1.2			
Ductal carcinoma in situ	1	1.2			
Benign lesions					
Fibroadenoma	17	20.4			
Fibrocystic changes	10	12			
Sclerosing adenosis	7	8.4			
Ductal hyperplasia	4	4.8			
Intraductal papilloma	2	2.4			
Fibrosis	3	3.6			
Granulomatous mastitis	1	1.2			
Hamartoma	1	1.2			

Seventy women had a single breast mass, whereas six women had dsouble breast masses. The most frequent clinical finding was a palpable breast mass (48.1%).

Of all breast lesions, an oval shape and circumscribed

Ann Med Res 2019;26(2):156-60

margin were the most common B- mode US findings in benign lesions, whereas irregular shape and not circumscribed margin were the most frequent B-mode US findings in malignant lesions. Hypoechogenicity was the most common echo pattern in all breast lesions. There were statistically differences between malignant and benign breast lesions in the shape, margin and posterior features. The main features of the patients and the breast lesions are presented in Table 2.

Table 2. Features of the patients and breast lesions						
	Benign (45)	Malignant (38)	р			
Patients						
Mean age, y (range)	44.6 ± 9.9 (18 - 63)	51.7 ± 12.8 (30 – 86)	0.12			
Symptoms			0.01			
Palpable mass, n (%)	17 (20.4%)	23 (27.7%)				
Breast pain, n (%)	19 (22.8%)	13 (15.6%)				
Nipple change, n (%)	0 (0%)	6 (7.2%)				
Erythema, n (%)	1 (1.2%)	3 (3.6%)				
Screening/ symptomatic, n (%)	20 (24%)	10 (12%)				
Right n (%)	22 (27 7%)	22 (26 5%)	0.65			
loft n (%)	23 (21.1%)	16 (10 2%)	0.00			
Len, n (%)	22 (20.5%)	10 (19.2%)				
Mean size, mm (range) Shape	17.1 ± 10.6 (6 – 44)	22.2 ± 10 (6 - 50)	0.93			
Oval/round, n (%)	41 (49.3%)	8 (9.6%)	<.0001			
Irregular, n (%)	4 (4.8%)	30 (36.1%)				
Margin						
Circumscribed, n (%)	41 (49.3%)	3 (3.6%)	<.0001			
Not circumscribed, n (%)	4 (4.8%)	35 (42.1%)				
Echo pattern		0 (0 40)				
Hyperechoic, n (%)	5 (0%)	Z (Z.4%)	0.50			
Hypoechoic, n (%)	38 (45.7%)	35 (42.1%)	0.58			
Mixed echoic, n (%)	2 (2.4%)	1 (1.2%)				
Posterior features		()				
Shadowing, n (%)	4 (4.8%)	25 (30.1%)				
Enhancement, n (%)	5 (6%)	1 (1.2%)	<.0001			
n (%)	36 (43.3%)	12 (14.4%)				
		7 (0 40)	0.17			
Present, n (%)	3 (3.6%)	((8.4%)	0.17			
Absent, n (%)	42 (50.6%)	31 (37.3%)				

Most of the benign breast lesions were classifed as BI-RADS category 4a (33 of 45). Seven and five benign breast lesions were classifed as BI-RADS category 3 and 4b, respectively. None of benign lesions were classifed as BI-RADS category 4c or 5. Twenty one malignant breast lesions were classifed as BI-RADS category 5. Nine, five and three malignant breast lesions were classifed as BI-RADS category 4c, 4b and 4a, respectively.

All T-SWE quantitative results were higher in malignant lesions than benign ones in both speed and elasticity mode (Figure 2). T-SWE quantitaive results of malignant and benign breast lesions are summarized in Table 3.

Figure 2. 54-year-old woman with invasive ductal carcinoma. B-mode ultrasonography showing a hypoechoic mass with irregular margin. Propagation mode showing irregularly distorted contour lines. Speed mode showing the E_{mean} and E_{SD} of the lesion are 4.85 m/s and 1.17 m/s, respectively. Elasticity mode showing the E_{mean} and E_{SD} of the lesion are 73.4 kPa and 29.9 kPa, respectively

Table 3. malignant	Comparison of T-SWE qu and benign breast lesions	uantitative parameters b	etween		
	Benign (45)	Malignant (38)	р		
E _{mean} kPa	19 ± 7.8 (10.4 – 46.8)	50.1 ± 16.3 (13.6 - 80.3)	0.000		
E _{mean} m/s	2.3 ± 0.5 (1.2 - 3.8)	3.7 ± 0.7 (1.9 – 4.9)	0.030		
E _{sp} kPa	8.5 ± 7.8 (2.1 – 47)	32.6 ± 11.6 (4.9 - 52.8)	0.000		
E _{sp} m/s	0.5 ± 0.3 (0.4 – 2.2)	1.5 ± 0.5 (0.5 – 2.4)	0.001		
$E_{_{mean}}$: the mean elasticity, $E_{_{SD}}$: standard deviation of the elasticity					

 $\rm E_{SD}$ showed the best diagnostic performance in speed mode to differentiate of breast lesions. When a cut-off value of 0.85 m/s was used for $\rm E_{SD}$ of speed mode, the sensitivity and specificity detected as 94.7% and 88.8%, respectively.Sensitivity, specificity, accuracy, PPV and NPV values of all quantitative parameters are summarized in Table 4.

Table 4. Comparison of diagnostic performances among groups with different quantitative parameters							
	Cut-off value	SEN (%)	SPE (%)	ACC (%)	PPV (%)	NPV (%)	AUROC
E _{mean} kPa	29.5	86.8	93.3	90.3	91.6	89.3	0.952
E _{mean} m/s	2.92	86.8	93.3	90.3	91.6	89.3	0.924
E _{sd} kPa	16.5	92.1	91.1	91.5	89.7	93.1	0.947
E _{sp} m/s	0.85	94.7	88.8	91.5	87.8	95.2	0.953

 E_{mean} : the mean elasticity, E_{sD} : standard deviation of the elasticity, SEN: Sensitivity, SPE: Specificity, ACC: Accuracy, PPV: positive predictive value, NPV: negative predictive value, AUROC: area under the receiver operating characteristic curve

DISCUSSION

US is the first step imaging method which is noninvasive and useful technique todistinguish breast lesions. Highfrequency probes are the most frequently preferred device in the assessment of breast lesions. Thanks to highfrequency probes, the target lesion features such as echo pattern, shape, margin and calcifications can be evaluated more easily (11). However, breast lesions can be appeared many different form and they can mimic both benign and malignant breast lesions. Therefore, B-mode US cannot always provide adequate diagnostic performance in differentiating benign breast lesions from malignant (12).

US elastography is an imaging method that can detect tissue stiffness, which has developed in recent years (13). T-SWE provides quantitative data of the target tissue, including the mean elasticity and the standard deviation of elastic values in kPa and m/s. In this study, we performed T-SWE technique to obtain the highest sensitivity, specificity, and accuracy values todistinguish malignant and benign breast lesions. All breast lesions stiffness were evaluated via two-dimensional shear wave elastography. Thus, optimal elastography values were achieved in all breast lesions.

T-SWE provides objective tissue stiffness data using E_{mean} and E_{SD} . E_{mean} shows the general stiffness of the lesions and E_{SD} measures the internal heterogeneity of the target tissue. Hence, higher E_{mean} and E_{SD} values are related to a higher risk of malignancy. In this study, E_{mean} and E_{SD} values of malignant breast lesions were higher than benign breast lesions statistically which was compatible with previous reports (12,13).

Among the all elasticity parameters of T-SWE, highest AUROC value detected in E_{sD} with corresponding cutoff value of 0.85 m/s. Different reports had concordant optimal cut-off values using ESD(10,14). Yang et al. detected optimal cut-off values for E_{sD} as 0.91 m/s and for E_{mean} as 3.30 m/s. In the study, they reached 93.6% sensitivity and 95.5% specificity using E_{sD} and 85.1% sensitivity and 95.5% specificity using E_{mean} (14). In our study, we achieved 94.7% sensitivity and 93.3% specificity rates using E_{sD} and 86.8% sensitivity and 93.3% specificity rates using E_{mean}

Tissue stiffness can also be calculated in elasticity mode as kPa by a physical quantity called Young's modulus. Ren et al. reported the optimal cut-off value of E_{mean} was 25.2 kPa and E_{sp} was 18.5 kPa in T-SWE (10). In their study, the sensitivity, specificity, and AUROC of E_{mean} was 92.7%, 81.3%, and 0.892, respectively. Additionally, all quantitative parameters show different diagnostic performance in various machines, it is challenging for clinicians to choose an appropriate parameter among them. Lee et al.recommended to use optimal cut-off value of E_{mean} as 68.40 kPa. In another study was conducted with Evans et al. recommended to use E_{mean} cut-off value as 50 kPa and Chang et al.recommended to use E_{mean} and E_{sp} showed excellent diagnostic performance to exhibit the tissue stiffness of the breast lesions. The Sensitivity, specificity, and AUROC of E_{mean} was 86.8%, 93.3%, and 0.952 and E_{SD} was 97.4%, 88.8%, and 0.947, respectively.

There were some false positive and negative results in our study. False positive results were detected in only fibroadenomas, while false negative results were detected in invasive ductal carcinoma, medullar carcinoma and ductal carcinoma in situ (DCIS). Some benign breast masses such as fibroadenoma and sclerosing adenosis might be seen stiffer in elastography images due to calcification or dense fibroblastic proliferations. Other side, malignant lesions such as DCIS and mucinous carcinoma might be detect softer in elastography images due to hemorrhage, necrosis or the soft nature of tumors. Several studies have shown similar false positive and negative results in the literature(6,14,18).

This study had some limitations. The sample size was relatively small. The lack of intraobserver or interobserver variability was another limitation. Last, the variation of histopathologic types was limited. Additional prospective studies with largerparticipants are needed.

CONCLUSION

T-SWE is a helpful, easy to use and noninvasive diagnostic imaging method to distinguish malignant and benign breast lesions. Speed mode and elasticity mode have excellent diagnostic performance with high sensitivity and specificity values.

Competing interests: The authors declare that they have no competing interest.

Financial Disclosure: There are no financial supports Ethical approval: This study, was approved by the local research ethics committee of Selcuk University, Turkey (No: 44/2017).

Serdar Arslan ORCID: 0000-0001-7984-4326 Aysegul Altunkeser ORCID: 0000-0001-7412-6835 Mehmet Sedat Durmaz ORCID: 0000-0002-1340-2477 Mehmet Ali Eryilmaz ORCID: 0000-0002-5280-3943 Fatih Oncu ORCID: 0000-0003-1673-7253 Yasar Unlu ORCID: 0000-0002-9890-984X

REFERENCES

- 1. Huang Z, Wen W, Zheng Y, et al. Breast cancer incidence and mortality: trends over 40 years among women in shanghai, China. Ann Oncol 2016;27:1129-34.
- 2. Khalis M, El Rhazi K, Charaka H, et al. Female breast cancer incidence and mortality in morocco: comparison with other countries. Asian Pac J Cancer Prev 2016;17:5211-6.
- 3. Hall TJ. AAPM/RSNA physics tutorial for residents: topics in US: beyond the basics: elasticity imaging with US. Radiographics 2003;23:1657-71.
- 4. Joe BN, Sickles EA. The evolution of breast imaging: past to present. Radiology 2014;273:S23-44.
- Li DD, Xu HX, Guo LH, et al. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance. Eur Radiol 2016;26:3290-300.
- 6. Arslan S, Uslu N, Ozturk FU, et al. Can strain elastography combined with ultrasound breast imaging reporting and data system be a more effective method in the differentiation

of benign and malignant breast lesions? J Med Ultrason (2001) 2017;44:289-96.

- Au FW, Ghai S, Moshonov H, et al. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter. AJR Am J Roentgenol 2014;203:W328-36.
- Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006;239:341-50.
- Yoon JH, Kim MH, Kim EK, et al. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol 2011;196:730-6.
- Ren WW, Li XL, He YP, et al. Two-dimensional shear wave elastography of breast lesions: Comparison of two different systems. Clin Hemorheol Microcirc 2017;66:37-46.
- 11. Bakdik S, Arslan S, Oncu F, et al. Effectiveness of Superb Microvascular Imaging for the differentiation of intraductal breast lesions. Med Ultrason 2018;20:306-12.
- 12. Evans A, Whelehan P, Thomson K, et al. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 2010;12:R104.
- 13. Liu B, Zheng Y, Huang G, et al. Breast lesions: quantitative

diagnosis using ultrasound shear wave elastography-a systematic review and meta-analysis. Ultrasound Med Biol 2016;42:835-47.

- 14. Yang YP, Xu XH, Guo LH, et al. Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions. Sci Rep 2017;7:40964.
- Chang JM, Moon WK, Cho N, et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 2011;129:89-97.
- Evans A, Whelehan P, Thomson K, et al. Invasive breast cancer: relationship between shear-wave elastographic findings and histologic prognostic factors. Radiology 2012;263:673-7.
- Lee EJ, Jung HK, Ko KH, et al. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses? Eur Radiol 2013;23:1803-11.
- Lee SH, Chang JM, Kim WH, et al. Differentiation of benign from malignant solid breast masses: comparison of two-dimensional and three-dimensional shear-wave elastography Eur Radiol 2013;23:1015-26.