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Stokastik süreç içeren optimizasyon algoritmalarının performansının iyileştirilebilmesi için  

farklı dağılım fonksiyonlarının rassal süreçlerde kullanılması yaklaşımı optimizasyon 

algoritmalarının performansını artırabilir. Çünkü literatür ve uygulama açısından, yeni stokastik  

yöntemlerin önerilmesinin yanı sıra mevcut yöntemlerin farklı dağılım fonksiyonları gibi 

analitik  katkılarla geliştirilmesi ve gerçek zamanlı mühendislik problemlerinde kullanılması 

önem kazanmıştır. Bundan dolayı bu tez çalışmasında öncelikle mevcut nümerik optimizasyon 

algoritmalarının analitik katkılarla nasıl geliştirilebileceği ile ilgili metotların önerilmesi 

amaçlanmıştır.  

Bilindiği gibi nümerik optimizasyon algoritmalarındaki en kritik yapılardan biri stokastik 

arayışın yönünü belirleyen adım belirleme safhasıdır.  Genellikle bu yöntemlerde uniform 

dağılıma göre türetilen rassal  değişkenler kullanılmaktadır. Fakat her durumda sabit olarak 

uniform dağılıma göre türetilen rassal değişkenlerin kullanılması mevcut algoritmanın 

dinamiğine uygun olmayabilir. Hatta tez süresince yapılan çalışmalarda algoritmanın her 

hareket durumunda uniform dağılımın kullanılmasının algoritmaların  performansını etkilediği 

tespit edilmiştir. Bundan dolayı rassal adımların belirlenmesinde uniform dağılım yerine farklı 

dağılım fonksiyonlarının kullanılmasının algoritmanın performansına olumlu bir etki 

yaratacağı gözlemlenmiştir.  

Bundan dolayı bu tezde, istatistiğin temel konularından olan dağılım fonksiyonları ve 

istatistiksel momentler detaylı olarak analiz  edilmiştir. Elde edilen çıktılar optimizasyon 



ix 

 

algoritmalarının dinamiğine uyarlanarak mühendislik problemlerinde uygulanmıştır. Bu tez 

çalışmasında öncelikle dağılım fonksiyonlarının etkisinin ortaya çıkarılması için rassal 

parametre vektör optimizasyon yöntemi (SMDO) farklı dağılım fonksiyonları ile modifiye 

edilmiştir. Elde edilen dağılım fonksiyonu tabanlı rassal parametre vektör optimizasyonu 

yöntemi benchmark fonksiyonları üzerinden literatürdeki sonuçlar ile karşılaştırmalı olarak 

sunulmuştur. Ve elde edilen sonuçlara göre farklı dağılım fonksiyonlarının kullanılması, ilgili 

metodun performansını artırmıştır.  Bunların yanı sıra bu yapı için kullanıcı dostu bir araç 

kutusu tasarımı da yapılmıştır.  

Daha sonra literatürde yeni önerilmiş bir algoritma olan monarchy butterfly optimizasyon 

algoritması farklı dağılım fonksiyonları ile güncellenerek modifiye edilmiş monarch butterfly 

optimizasyon algoritması (M2BO) önerilmiştir. M2BO optimizasyon algoritması öncelikle 

benchmark fonksiyonları üstünden test edilmiş ve literatürdeki sonuçlarla karşılaştırmalı olarak 

sunulmuştur. Hatta dağılım fonksiyonlarının performansına etki eden parametrelerde her 

benchmark fonksiyonu için ayrı ayrı ayarlanmıştır. Daha sonra önerilen farklı dağılım 

fonksiyonu yaklaşımının mühendislik problemlerindeki performansını göstermek için 3 DOF 

Hover 4 motorlu helikopter prototipi üzerinde test edilmiştir. Sistemin kontrolünü sağlayan 

kazanç matrisinin parametreleri M2BO algoritmasıyla tasarlanmış ve sonuçlar simülasyon ve 

gerçek zamanlı sistem modeli üzerinden test edilmiştir.  

Böylece farklı dağılım fonksiyonlarının optimizasyon algoritmalarındaki stokastik süreçlerde 

uniform dağılım yerine kullanılması yaklaşımının algoritmaların performansını artırabileceği 

gerçek zamanlı sistem ve benchmark fonksiyonları üzerinde gösterilmiştir. 
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In order to improve the performance of optimization algorithms containing stochastic 

processes, using different distribution functions in random processes can increase the 

performance of optimization algorithms. Because, in terms of literature and practice, it has 

become important to develop existing methods with analytical contributions such as different 

distribution functions and to use them in real-time engineering problems , besides suggesting 

new stochastic methods. Therefore, in this thesis, it is primarily aimed to suggest methods for 

how existing numerical optimization algorithms can be developed with analytical contributions. 

As it is known, one of the most critical structures in numerical optimization algorithms is the 

step determination phase that determines the direction of the stochastic search. Generally, 

random variables derived from uniform distribution are used in these methods. However, in all 

cases, the use of random variables derived from a uniform distribution may not be suitable for 

the dynamics of the current algorithm. In fact, in the studies carried out during the thesis, it has 

been determined that the use of uniform distribution in every motion of the algorithm affects 

the performance of the algorithms. Therefore, it has been observed that using different 

distribution functions instead of uniform distribution in determining random steps will have a 

positive effect on the performance of the algorithm. 

Therefore, in this thesis, distribution functions and statistical moments, which are among the 

fundamental topics of statistics, have been analyzed in detail. The obtained outputs have been 

applied in engineering problems by adapting them to the dynamics of optimization algorithms. 

In this thesis, first of all, the random parameter vector optimization method (SMDO) has been 
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modified with different distribution functions to reveal the effect of distribution functions. The 

obtained distribution function based random parameter vector optimization method is presented 

in comparison with the results in the literature over the benchmark functions. And using 

different distribution functions according to the results obtained increased the performance of 

the related method. In addition to these, a user-friendly toolbox has been designed for this 

structure. 

Later, the monarchy butterfly optimization algorithm, which is a newly proposed algorithm in 

the literature, was updated with different distribution functions and the modified monarch 

butterfly optimization algorithm (M2BO) was proposed. M2BO optimization algorithm is first 

tested on benchmark functions and presented in comparison with the results in the literature. In 

fact, the parameters that affect the performance of distribution functions are adjusted separately 

for each benchmark function. Then, it was tested on 3 DOF Hover 4 engine helicopter prototype 

to show the performance of the proposed different distribution function approach in engineering 

problems. The parameters of the gain matrix, which provides the control of the system, were 

designed with the M2BO algorithm and the results were tested through simulation and real-time 

system model. 

Thus, it has been shown on real-time system and benchmark functions that using different 

distribution functions in optimization algorithms instead of uniform distribution in stochastic 

processes can increase the performance of algorithms. 

 

Keywords: Optimization, distribution functions, statistical moment, stochastic methods 
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 INTRODUCTION 

1.1.The Aim of the Thesis 

Optimization algorithms are widely used today to solve many problems. These methods, 

which we can define as optimization, are algorithmic structures that allow a problem to be 

solved in the most efficient and accurate way in a specific solution space under certain 

constraints. 

Engineering disciplines, in the process of solving a problem, generally use analytical 

methods that aim to reach a holistic solution from the solution of the parts by breaking down 

the problems on a mathematical basis. However, in the real world engineering problems, 

these solutions, which have been designed perfectly in theory, may be insufficient. Because 

of many disruptive factors in real world conditions, the applicability of analytical methods 

may be insufficient due to the dynamics of the problems. At this point, when the system and 

its constraints cannot be fully modeled analytically then numerical methods should be used. 

The best solution is tried to be reached by inspiring from the real laws of physics in the 

solution space of the problems with the numerical methods. These methods are developed 

to meet the needs of different living things and similar approaches. These methods are the 

process of finding or discovering the best solution within the relevant optimization process 

in the solution space. However, there are different uncertainties in this solution seeking 

process. One of them is to determine the starting point where the search for solutions will 

begin. The other is to determine whether this search will proceed in a deterministic or 

stochastic way. Deterministic steps often do not find the best solution in the search process. 

Besides, a deterministic process management is closer to the analytical solution 

understanding inherent in engineering. When the studies in the literature are examined, 

methods involving a stochastic process get more successful results in reaching the best 

solution. However, since these processes also involve a random progression, which arises 

from their nature, they move away from the analytics manner required by the engineering 

discipline and time problems may occur in reaching a solution. 

In this thesis, it is aimed to increase the performance of optimization problems in engineering 

problems by using different distribution functions. As a result, it is aimed to make an 

effective contribution to the optimization problems progressing in a stochastic manner and 

it is aimed to increase the efficiency and effect of these optimization methods to be used in 

solving real engineering problems. 
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1.2.Subject, Scope and Summary of Literature 

In this thesis, it is aimed to improve the performance of optimization problems in real 

engineering problems by using statistical distribution functions. From this point of view, 

stochastic progression processes of optimization algorithms are discussed. Analyzing these 

processes and improving this processes constitute the main subject of the thesis. This thesis 

covers optimization algorithms including stochastic processes. Further development of 

stochastic algorithms is mainly aimed for the above-mentioned purposes. In this thesis, as 

optimization algorithms that we plan to increase their effectiveness; current methods such as 

stochastic multi parameter divergence method (Alagoz et al., 2013)(Yeroǧlu & Ateş, 2014), 

discrete stochastic search (Q. Wang, 2013), modified Tabu (Abdullah Ateş & Yeroglu, 

2016), modified artificial physics optimization algorithm (Abdullah Ateş & Yeroğlu, 2018), 

cuckoo search algorithm (Rajabioun, 2011) and similar algorithms are considered. It is 

planned to use some distribution functions in order to increase the performance of these 

algorithms (Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability. 

Journal of Applied Mechanics, 18, 293-297. - References - Scientific Research Publishing, 

2021). For example; by analyzing the dynamics of the progress of the specified algorithms 

in the solution space of functions such as gauss (Chhikara & Folks, 1974), binomial 

(Bahadur, 1960), geometric (Two Characterizations of the Geometric Distribution by 

Record Values on JSTOR, 2021), Poisson (On a Characterization of the Poisson Distribution 

on JSTOR, 2021), uniform (Glass & Tobler, 1971), normal (“Normal” Distribution 

Functions on Spheres and the Modified Bessel Functions on JSTOR, 2021), gamma (Stacy, 

1962), exponential (Marshall & Olkin, 1967) distributions. Detailed analyzes will be made 

to find the most suitable matches. 

In the literature, it has been determined that statistical distribution functions and statistical 

moments are used in various fields. First of all, in the field of pharmacokinetics, the use of 

statistical moments in the analysis of the process of the presence of drugs in the human body 

has been examined (Yamaoka et al., 1978). Here, the analyzes made by associating the 

statistical distribution with the process of entry, distribution and excretion of drugs, which 

is a very dynamic process, are extremely interesting. Later, the use of statistical moments 

together with distribution functions in bearing defect detection was investigated (Martin & 

Honarvar, 1995). In this study, it is seen that statistical distribution functions can contribute 

to the solving process of a real engineering problem under the guidance of statistical 
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moments. In (ATEŞ & ALAGÖZ, 2019), which we examined in the literature review, the 

effects of different probability distribution functions on stochastic based optimization 

algorithms were examined through controller design. In this study, analysis of the effect of 

distribution functions is presented without specifying analytical justifications. 

In this thesis, it is aimed to develop the methodology of determining the appropriate 

distribution functions analytically in a certain discipline for the reasons of using the 

distribution functions used. In (A. Ates et al., 2019), the random parameter vector 

optimization method was modified with different distribution functions and a fractional 

order controller was designed for a fractional order system. In this study, clear effects of 

different distribution functions on the operation of different algorithms in random number 

generation were observed, and it is thought that a detailed study in this area will have positive 

effects on increasing the performance of optimization algorithms. In addition, the study in 

which statistical moments are used in character recognition is presented in (Chim et al., 

1999). Analyzes on statistical results of stochastic optimization problems in (Shapiro, 2000) 

show the relationship between stochastic optimization algorithms and statistics. The study 

in which the constrained optimization problem, which is an analytical optimization problem, 

is solved with the particle swarm optimization algorithm using the Gaussian distribution 

function is presented in (Krohling & Dos Santos Coelho, 2006). It is shown in the study 

(Yang et al., 2014) that different probability distribution functions are used in the chaos 

optimization algorithm. In (Lee & Yao, 2004), the use of the levy distribution function in 

evolutionary calculation processes is presented. As can be understood from these studies, 

the distribution functions used are only used instead of the relevant stochastic search. No 

analytical reason for use is given. Therefore, in this thesis, it is aimed to find these 

relationships analytically and to use them in engineering problems. 
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 THE CHARACTERISTICS OF DISTRIBUTION FUNCTIONS AND 

STATISTICAL MOMENTS 

2.1. Probability Distribution 

A probability distribution; defines the values and probabilities for a random event to occur. 

These values should include all possible outcomes for the event, and the sum of the 

probabilities must be exactly one or 100 percent. For example, let's take a single random 

event that a coin is thrown into the air and fell to the ground; values are 'tails' or 'heads', or 

0 (tails) or 1 (heads) if they are expressed in a nominal variable scale; probabilities will be 

for both values. Thus, two values and two associated probabilities for a single throw event 

of a coin becomes the probability distribution of this random event (Olasılık Dağılımı, 2020) 

The probability distribution and the random variables it defines are important sub-sections 

of the branches of mathematics science, probability theory and statistics. Probability 

distributions are models used for probability analysis and defining the probability of events. 

According to the probability theory, a function is connected to each random variable in the 

state space, which is defined as a probability distribution. This probability function has 

determined a probability for every subset (every measurable subset) in each state space, in 

accordance with the probability axioms (Olasılık Dağılımı, 2020) 

2.1.1. Distribution of discrete random variables 

2.1.1.1.Distribution of discrete random variables 

Let X be a discrete random variable that can take the finite number x1, x2, x3,…., xN with the 

probabilities f(xi) = P (X = xi), i = 1,2,…, N. In this case, the function f(x) satisfying the 

following conditions is called the probability function of X (Akdeniz, 2018) 

a) f(x) >= 0, for all x 

b) ∑ 𝑓(𝑥𝑖)𝑁
𝑖=1  = 1 

 

X=x   x1            x2             x3    ……………     xN   

f(x) = P(X=x) f(x1)    f(x2)     f(x3) …………...   f(xN) 

Table 2.1 Probability Distribution 
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2.1.1.2.Distribution function 

The distribution function of a random variable X is denoted by F (x) and it is the probability 

that X is equal to or less than x (Akdeniz, 2018). 

 In that case; 

F(x) = P(X<=x) = ∑ 𝒇(𝒙𝒊)
𝑵
𝒙𝒊≤𝒙  

 

Figure 2.1 Distribution Function of Discrete Random Variable (Yalçın, 2020) 

 

2.1.2. Distribution of a continuous random variable 

2.1.2.1. Probability density function 

Let X be a continuous random variable defined in the interval (-∞, + ∞). The function f (x) 

satisfying the following conditions is called the probability density function of the X random 

variable (Akdeniz, 2018). 

a) f(x) >= 0, -∞ < x < +∞ 

b) ∫ 𝑓(𝑥)𝑑𝑥 = 1
+∞

−∞
, f(x)  The area under the curve and bounded by the   

 x-axis is equal to 1. 

2.1.2.2. Distribution function 

Let X be a continuous random variable with a probability density function f (x). Distribution 

function of x is defined as (Akdeniz, 2018). 

F(x) = P(X<=x) = ∫ 𝑓(𝑠)𝑑𝑠
x

−∞
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Figure 2.2 Distribution Function of Continuous Variable (Lentini,2020) 

2.2.Statistical Moments 

The concept of moment in mathematics has been developed from the concept of moment 

introduced for physics (Moment, 2020). In mathematics, the numerical measure that 

describes what a set of points looks like is called a moment. Moment is the arithmetic mean 

of the forces of the difference of the observation values in a series from zero or the arithmetic 

mean. These measurements are used to determine the shape of the frequency distribution of 

the series. Hence, a probability distribution can be summed up by a set of moments belonging 

to that distribution (Yalta, 2020). 

For probability theory and statistics, the functions that moments are related to the probability 

density function for a random variable. It is the mathematical expectation of the nth moment 

XN of a probability density function around zero. Moments around mean μ are called central 

moments; they describe the form of a function (Moment, 2020). The nth moment around the 

c value of f (x), the real-valued function of a real variable, is expressed as follows. 

  dxxfcx
n

n )('





  

Moment relative to zero is the average difference of observation values in a series from zero 

to various degrees. The first moment around zero, if significant, is the mathematical 
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expectation of X, that is the mean of the probability distribution of X written as μ. For higher 

orders, central moments are more interesting than moments around zero (Moment, 2020). 

As mentioned earlier, a moment in mathematics is a specific quantitative measure of the 

shape of a function. If the function is a probability distribution; then 

a) The zeroth moment is the total probability (i.e. equals one), 

b) First moment: The expected value, 

c) Second central moment: Variance, 

d) Third moment: Skewness, 

e) Fourth moment: It is kurtosis. 

2.2.1. Expected value 

The X random variable is called the mean or population mean. Let X be a discrete random 

variable with the probability function in Table 2.1. The expected value of X, represented by 

E(X), is defined as follows. 

E(X) = x1.f(x1) + x2.f(x2) +  … + xN.f(xN) = ∑ 𝑥𝑖𝑓(𝑥𝑖)
𝑁
𝑖=1  

Let X be a continuous one-dimensional random variable. Where f (x) is the probability 

density function of X, the expected value of X, E(X) is defined as follows: 

E(X)=∫ 𝑥. 𝑓(𝑥)𝑑𝑥
+∞

−∞
   -∞ < x < +∞ 

The value or mean of a random variable gives us information about the center of the 

probability function. However, the mean value does not give information about the 

distribution, change or spread of the values of the random variable from one experiment to 

another (Akdeniz, 2018). 

2.2.2. Variance 

Let the probability function X be a discrete random variable given as in Table 2.1. If the 

mean of X is E(X) = μ, the variance of X, Var (X) or 𝜎𝑥
2 is defined as follows. 

𝜎𝑥
2 = Var(X) = E [(X- μ)2] 
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a) If X is a discrete random variable; 

𝜎𝑥
2 = Var(X) = ∑ (𝑥𝑖 −  μ)2𝑓(𝑥𝑖)

𝑁

𝑖=1
 

b) If X is a continuous random variable; 

𝜎𝑥
2 = Var(X) = ∫ (x −  μ)2. 𝑓(𝑥). 𝑑𝑥

+∞

−∞
  

 

Standard deviation; Let X be a discrete or continuous random variable with μ mean. The 

standard deviation of x, σx, is the square root of the variance (Akdeniz, 2018). 

Variance measures how far a set of (random) numbers is spread from their mean value. 

2.2.3. Skewness 

The third moment with respect to the mean, μ3 is called the measure of non-symmetry. That 

is, skewness is the degree of departure from symmetry in a distribution. If the frequency 

curve of the distribution has a longer extension to the right of the central maximum, the 

distribution is called right skewed. If there is a reverse situation, it is said to be skewed to 

the left (Akdeniz, 2018). 

 

Figure 2.3 Skewness (Skewness, 2020) 

However, the third moment does not always give clues about the shape of the distribution. 

2.2.4. Kurtosis 

It is used as the fourth moment in relation to the mean. It is the degree of flatness near the 

center of the graph of the density function. μ4/σ4- 3 is called the kurtosis coefficient. For 

K<0, the curve near the center is too flat compared to the normal distribution curve. For      

K> 0, the curve near the center is narrower and higher than the normal distribution curve.   

K = 0 for normal distribution (Akdeniz, 2018). The fourth central moment is a measure of 

whether the distribution is thin and pointed or thick and flat, and a comparison is made with 

a normal distribution showing the same variance to distinguish this property. 

Since the fourth central moment is the mathematical expectation of a quadruple exponential, 

it always takes a positive value (Moment, 2020) if it can be defined (excluding only the 
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degenerate point distribution). "Flatness" (kurtosis) is used to examine flatness. To 

understand whether a random variable fits the normal distribution, one can look at the 

skewness and kurtosis values. 

 

Figure 2.4 Kurtosis (Coefficient of Kurtosis, 2020) 

2.3. Probability Distribution Functions 

In this section, the properties of some distribution functions will be analyzed. These 

functions are: Normal Distribution, Geometric Distribution, Binomial Distribution, Beta 

Distribution, Weibull Distribution, Poisson Distribution, Gama Distribution, Uniform 

Distribution, Exponential Distribution, Rayleigh Distribution, Lognormal Distribution, 

Logistics Distribution, Chi-Square Distribution, Loglogistics Distribution, Student’s T 

Distribution. 

2.3.1. Normal distribution  

The normal distribution, called the Gaussian distribution, is a family of two-parameter 

curves. The rationale for using the normal distribution for modeling is the Central Limit 

Theorem, which states that the finite mean and variance and the sum of samples independent 

of any distribution approach the normal distribution as the sample size goes to infinity 

(Probability Density Function, 2020). Normal distribution uses the following parameters: 

Parametre        Definition             Explanation 

         mu (μ)                      Mean −∞<μ<∞ 

       sigma (σ)             Standart Deviation      σ≥0 

Table 2.2 Normal Distribution Function 
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Properties of Normal Distribution: 

a) Normal Distribution is symmetrical with respect to the x = μ line, that is, 

the graph of the normal distribution is the same on the left and right of the 

line x = μ. 

b) Mean (μ) is in the middle and divides the area into two equal parts. 

c) The area under the F(x) curve and above the x-axis is equal to 1. 

 

Figure 2.5 Normal Distribution 

 

2.3.2. Geometric distribution  

The geometric distribution is a single parameter curve family that models the number of 

failures before a success in a series of independent trials where each trial results in success 

or failure, and the probability of success in any individual trial is constant (Probability 

Density Function, 2020). The geometric distribution uses the following parameters: 

Parameter Definition             Explanation 

         p            Success Probability 0 ≤ p ≤ 1 

Table 2.3 Geometric Distribution Parameters 

 

Probability density function of the geometric distribution (pdf): 

y = f(x p ) = p(1-p)x ;  x = 0,1,2,…, 

Cumulative distribution function of geometric distribution (cdf): 

y = F(x p ) = 1 - p(1-p)x+1 ;  x = 0,1,2,…, 

Mean of the geometric distribution: mean = (1-p)/p 

Variance of the geometric distribution: var = (1-p)/p2 
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Figure 2.6 Geometric Distribution Probability Mass Function 

 

Figure 2.7 Geometric Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 

2.3.3. Binomial distribution  

The binomial distribution is a family of curves with two parameters. The binomial 

distribution is used to model the total number of successes in a fixed number of independent 

trials with the same probability of success (Probability Density Function, 2020). The 

binomial distribution uses the following parameters: 

Parameter Definition             Explanation 

         N                 Trial Number          Positive Integer 

         p Probability of success in a single trial 0 ≤ p ≤ 1 

Table 2.4 Binomial Distribution Parameters 
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Probability density function of the binomial distribution (pdf): 

f(x pN, ) = ,,....,2,1,0;)1( Nxpp
x

N
xNx 







 
 

Cumulative distribution function (cdf) of the binomial distribution: 

F(x pN, ) = ,,....,2,1,0;)1(
0

Nxpp
i

N
iNi

x

i








 



  

Mean of binomial distribution: Np 

Variance of the Binomial distribution: Np(1 – p) 

 

Figure 2.8 Binomial Distribution Probability Mass Function 

 

 

Figure 2.9 Binomial Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 



13 

2.3.4. Beta distribution  

The beta distribution defines a curve family that is unique only in the zero range (0 1) 

because they are not zero. A more general version of the function assigns parameters to the 

endpoints of the range (Probability Density Function, 2020). The beta distribution uses the 

following parameters: 

Parameter Definition             Explanation 

         a              First shape parameter                  a>0 

         b              Second shape parameter      b>0 

Table 2.5 Beta Distribution Parameters 

Probability density function of the beta distribution (pdf): 

y = f(x ba, ) =   )()1(
),(

1
1,0

11 xxx
baB

ba  
 

 

Figure 2.10 Beta Distribution Probability Mass Function 

      

 

Figure 2.11 Beta Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 
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2.3.5. Weibull distribution  

The Weibull distribution is a two-parameter curve family. This distribution is named for 

Waloddi Weibull, who presented it as a suitable analytical tool for modeling the breaking 

strength of materials. It includes current use, reliability and lifetime modeling (Probability 

Density Function, 2020). The Weibull distribution uses the following parameters: 

Parameter Definition             Explanation 

a Scale                    a>0 

b Shape        b>0 

Table 2.6 Weibull Distribution Parameters 

Probability density function of the Weibull distribution (pdf): 

f(x ba, ) = 
bax

b

e
a

x

a

b )/(

1













 

 Cumulative distribution function (cdf) of the Weibull distribution: 

p = F(x ba, ) = dtetba

b

a

t

b
x

b













1

0
= 1- 

b

a

x

e










 

 

 

Figure 2.12 Weibull Distribution Probability Mass Function 
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Figure 2.13 Weibull Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 

 

2.3.6. Poisson distribution  

The Poisson distribution is a single parameter curve family that models the number of times 

a random event occurs. This distribution is based on a specific time, distance, area, etc. It is 

suitable for applications involving counting the number of occurrences of a random event in 

quantities (Probability Density Function, 2020). The Poisson distribution uses the following 

parameters: 

Parameter Definition Explanation 

lambda (λ) Mean λ ≥ 0 

Table 2.7 Poisson Distribution Parameters 

 

 

Probability density function of the Poisson distribution (pdf): 

 

f = (x  ) =  ,...,2,1,0;
!

xe
x

x


 

 

 

Cumulative distribution function of Poisson distribution (cdf): 

 

F(x| ) = 



)(

0 !

xfloor

i

i

i
e


 



16 

 

Figure 2.14 Poisson Distribution Probability Mass Function 

 

Figure 2.15 Poisson Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 

2.3.7. Gamma distribution  

The gamma distribution is a two-parameter curve family. Gamma distribution models 

compose the sum of exponentially distributed random variables and generalize both chi-

square and exponential distributions (Probability Density Function, 2020). The gamma 

distribution uses the following parameters: 

Parametre Definition             Explanation 

a Shape                    a>0 

b Scale        b>0 

Table 2.8 Gama Distribution Parameters 
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Probability density function of the gamma distribution (pdf): 

y = f(x ba, ) = b

x

a

a
ex

ab







1

)(

1
 

Cumulative distribution function (cdf) of the gamma distribution: 

p = F(x ba, ) = dtet
ab

b

tx

a

a






0

1

)(

1
 

Mean of the gamma distribution: μ = ab 

Variance of the Gamma distribution: σ = ab2 

 

 

Figure 2.16 Gamma Distribution Probability Mass Function 

  

 

Figure 2.17 Gamma Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 
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2.3.8. Uniform distribution  

Uniform distribution; each element of the probability can be found in the same size range 

for which the probability is supported, a family of probability distributions that show the 

same constant probability for each continuous value (Probability Density Function, 2020). 

Uniform distribution uses the following parameters. 

Parameter Definition Açıklama 

a Lower endpoint -∞ < a < b 

b Upper endpoint a < b < ∞ 

Table 2.9 Uniform Definition Parameters 

 

Probability density function of uniform distribution (pdf): 

f(x ba, ) = 




























otherwise ;        0     

  ;   
1

bxa
ab  

Cumulative distribution function (cdf) of uniform distribution: 

F(x ba, ) = 































b    x;        1

bxa    ;  
a-b

a-x

a     x;        0

 

Mean of uniform distribution: μ=1/2(a+b) 

Variance of uniform distribution: σ2 = 1/12(b-a)2 

 

 

Figure 2.1 Uniform Distribution Probability Mass Function 
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Figure 2.18 Uniform Distribution Cumulative Distribution Function (Olasılık Dağılımı, 2020) 

2.3.9. Exponential distribution  

The exponential distribution is a single parameter curve family. Exponential distribution 

models expect times when waiting for an additional amount of time is independent of how 

long you have waited (Probability Density Function, 2020). The exponential distribution 

uses the following parameters: 

Parameter Definition Explanation 

mu (μ) Mean μ > 0 

Table 2.10 Exponential Distribution Parameters 

 

Probability density function of the exponential distribution (pdf): 

y = f(x  ) = 



x

e


1

 

Cumulative distribution function (cdf) of the exponential distribution: 

p = F(x  ) = 



xtx

edte



 1 
1

0

 

 

Figure 2.19 Exponential Distribution Probability Mass Function 
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Figure 2.20 Exponential Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

2.3.10. Rayleigh distribution  

The Rayleigh distribution is a special example of the Weibull distribution. If ‘a’ and ‘b’ are 

the parameters of the Weibull distribution, these parameters are equivalent when a = √2 and 

b = 2 are given. In communication theory, Nakagami distributions, Rician distributions and 

Rayleigh distributions are used to model diffuse signals reaching a receiver in multiple ways 

(Probability Density Function, 2020).  Rayleigh distribution uses the following parameters; 

Parameter Definition Explanation 

b Scale Positive Integer 

Table 2.11 Rayleigh Distribution Parameters 

 

 

Figure 2.21 Rayleigh Distribution Probability Mass Function 
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Figure 2.22 Rayleigh Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

2.3.11. Lognormal distribution  

The lognormal distribution, sometimes called the Galton distribution, is a probability 

distribution whose logarithm is normally distributed. The lognormal distribution is valid 

when the amount of interest must be positive, since log (x) exists only when x is positive 

(Probability Density Function, 2020). The lognormal distribution uses the following 

parameters: 

 

Parameter Definition Explanation 

mu (μ) Average of logarithmic values −∞<μ<∞ 

sigma (σ) Standard deviation of logarithmic values σ≥0 

Table 2.12 Lognormal Distribution Parameters 

 

 

Probability density function of the lognormal distribution (pdf): 

 

y = f(x , ) = 0for x   ,
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Cumulative distribution function (cdf) of the lognormal distribution: 
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Figure 2.23 Lognormal Distribution Probability Mass Function 

 

Figure 2.24 Lognormal Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

2.3.12. Logistics distribution  

It is used for logistic distribution growth models and logistic regression. It has longer tails 

and higher flatness than normal distribution (Probability Density Function, 2020). Logistics 

distribution uses the following parameters: 

 

Parameter Definition Explanation 

mu (μ) Mean −∞<μ<∞ 

sigma (σ) Scale Parameter σ≥0 

Table 2.13 Logistics Distribution Parameters 

 

 

Probability density function of logistics distribution (pdf): 

 

y = f(x , ) = 
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Figure 2.25 Logistics Distribution Probability Mass Function 

 

Figure 2.26 Logistics Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

2.3.13. Chi-Square distribution  

The Chi-Square distribution is a single parameter curve family. The Chi-Square distribution 

is widely used in hypothesis testing, especially in the chi-square test for good fit (Probability 

Density Function, 2020). The Chi-Square distribution uses the following parameters: 

Parameter Definition Explanation 

nu (ν) Degree of Freedom ν = 1, 2, 3,... 

Table 2.14 Chi-Square Distribution Parameters 

 

Probability density function of the chi-square distribution (pdf): 

 

y = f(x  ) = 

)2/(2 2

2/2/)2(








 xex
 

 

Cumulative distribution function (cdf) of the chi-square distribution: 

 

p = F(x ) = dt
etx
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Mean of the chi-square distribution: ν  

Variance of the Chi-square distribution: 2ν 

 

Figure 2.27 Chi-square Distribution Probability Mass Function 

 

Figure 2.28 Chi-square Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

2.3.14. Loglogistic distribution  

Loglogistic distribution is a probability distribution whose logarithm is the logistic 

distribution. This distribution is often used in survival analysis to model events that 

experienced an initial rate increase and then a rate decrease. It is also known as Fisk 

distribution in economics applications (Probability Density Function, 2020). The loglogistic 

distribution uses the following parameters:  

Parameter Definition Explanation 

mu (μ) Average of logarithmic values μ>0 

sigma (σ) Scale parameter of logarithmic values σ>0 

Table 2.15 Chi-Square Distribution Parameters 
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Probability density function of logistics distribution (pdf): 

f(x , ) = 0,      x;   
)1(

11
2


 z

z

e

e

x
 

where z = 


)log( x
 

 

Figure 2.29 Loglogistic Distribution Probability Mass Function 

 

Figure 2.30 Loglogistic Distribution Cumulative Distribution Function(Olasılık Dağılımı, 2020) 

 

2.3.15. Student’s T distribution  

The T distribution is a single parameter curve family. This distribution is typically used to 

test a hypothesis about the population mean when the population standard deviation is 

unknown (Probability Density Function, 2020). The T distribution uses the following 

parameters: 

Parameter Definition Explanation 

nu (ν) Degree of Freedom ν = 1, 2, 3,... 

Table 2.16 Student’s T Distribution Parameters 
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Probability density function of the T distribution (pdf): 

y = f(x  ) = 
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Cumulative distribution function of T distribution (cdf): 
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 THE USAGE OF DISTRIBUTION FUNCTIONS IN ACQUISITION OF 

RANDOM NUMBERS  

Random numbers are used in many fields. This topic is one of the most practical field of 

mathematics. Randomized processes take place in both theoretical and real world problems and 

these processes direct the flow of the problem. So at this point, random number generation 

becomes a very important issue because according to selection of the random number, the flow 

of the problem may go to wrong direction or right direction. Therefore, acquisition of random 

numbers is a subject which is worthy to be examined. At this point, distribution functions come 

into play. These functions show the probability distribution. Probability distribution as 

mentioned in section 2.1 defines the values and probabilities for a random event to occur. These 

values should include all possible outcomes for the event, and the sum of the probabilities must 

be exactly one or 100 percent. So the distribution functions specify the boundaries and the ruleset 

of the acquisition of the random numbers that will be used. Therefore, it can be said that the 

production of random numbers is not a totally random process. Because, probability distribution 

function selected for the random number generation specifies the characteristics of this process. 

So when the distribution function changes, the randomization also changes. In general, the 

uniform distribution function is used in random number generation. This approach reflects also 

into the programming languages either. So when it is wanted to get a random number, it generally 

means that this random number will be produced according to the specifications of the uniform 

distribution. Besides this, generating random number in programming languages also depends 

another factor called random seed. This seed is set as system clock on default. But this can be 

changed by the programmer on demand. So the programming language uses a seed as the basis 

of the random number generation and this generated number is not a real random but it is a 

pseudo-random number. Therefore, it can be said that random number generation is in real a 

deterministic process in programming languages. Because of this, always same number can be 

generated according to selected random seed. So changing seeds must be used in random number 

generation to not get same numbers. But as it is mentioned above the most important factor in 

random number generation is distribution function used, not the seed. Firstly, the distribution 

function specifies the interval where the random number will be selected. Secondly, the 

probability and cumulative distribution functions also specify the area where the random number 

is in according to specified parameters. So using only uniform distribution is not reasonable to 

use for all problems which need random numbers. There is a plenty of distribution functions 

which can be used. So using the suitable distribution function for a problem in randomness is a 

valuable issue to examine.  
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 THE RANDOMNESS CHARACTERISTICS OF STOCHASTIC 

OPTIMIZATION METHODS 

It is known that the numerical optimization methods can be deterministic or stochastics. The 

stochastics optimization methods are in our focus in this thesis. The stochastics optimization 

methods can be inspired from different fields but the main philosophy of these methods is 

based on random search mechanisms. These methods search the optimal solution according 

to the way specified by the algorithm. This searching moves ahead in a stochastics manner 

and this is specified by the randomization process used. This random behavior is a very 

powerful mechanism for stochastics methods. Because the search space is very wide and 

finding the optimal solution can be a very hard issue when it is used deterministic methods. 

But the random behavior in these problems directs the search process into areas where the 

optimal solution can be found more easily. So minimizing the search fields in each iteration 

narrows the search space. As it is mentioned above being a powerful mechanism, the 

randomness is also an uncontrolled notion. It is not based on an analytical background. 

Although it is known that the engineering wants to control all the aspects of a problem, the 

randomness is a blurred field and makes the problem solution hard. At this point it can be 

inferred that the making the randomization process with more analytical methods makes this 

issue more certain. Our thesis claims that specifying a more suitable distribution function for 

an algorithm makes randomization in an analytical way and the results become better. So a 

good mechanism should be made to try different distribution functions in a stochastics 

method while generating random numbers. This mechanism should also contain trying 

different parameters for the distribution function. Because the parameters of a distribution 

function specify the characteristics of this function. So a good combination of parameters 

with a suitable distribution function regulates the randomization process in an effective way 

and it is expected to make the optimization algorithm yield more effective results. If this 

hypothesis is proved with real world problem, its affect can be seen concretely. This 

hypothesis is put forwarded also for especially for real world problems. Because trying 

stochastic methods on real world problems in a search space step by step is not suitable for 

all real world problems. For example, this unsuitability can be sourced by hardware 

limitations. So there can be a limited set and try move right to reach solution. At this point a 

more rationalized randomization makes the usage of limited sources; i.e. time, hardware 

durability; more effective. So this method will diminish the ineffective ways of the 

stochastics mechanism which stems from the random steps. As a result, the powerful effect 
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of the randomization with a controlled manner will resulted in better results which will not 

enforce the real world system. 
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 USAGE EFFECT OF THE DISTRIBUTION FUNCTIONS IN 

STOCHASTICS MULTI-PARAMETERS DIVERGENCE OPTIMIZATION 

In this section, the usage effect of the distribution functions in stochastics optimization 

methods is presented. SMDO method is an optimization method of set and trial mechanism. 

This algorithm is a metaheuristics algorithm which is identified as stochastics because this 

algorithm arranges its steps through the solution space by a randomized attitude. So the 

algorithm needs random numbers towards this optimal solution search phase. So it is 

valuable to examine the reaction of the algorithm against the change in random number 

acquisition mechanism for the random steps. So the results will give us evidence to infer 

strong conclusions. In this section firstly the SMDO method will be explained briefly, then 

the usage of distribution functions in SMDO method will be explained. At this point a 

practical application “SMDO Benchmark with Distribution Test Program” will be presented. 

By the help of this application the effectiveness of the different distribution functions in 

SMDO will be clearly examined by using mostly used benchmark functions. Then the results 

will be shown in tabular forms and the results will be analyzed. 

5.1. The SMDO Method 

SMDO is a stochastics method which is a very practical optimization algorithm especially 

used in real engineering problems. In this algorithm, the solution space is searched by set 

and trial logic around the last reached point. When the algorithm arrives a point, it specifies 

the points which can be selected. Then all the specified points are tried and the most suitable 

one is selected as the next point. At this point the most important factor is making the 

decision of where to go near around the present location. In the algorithm, this is specified 

by the randomization. The generated numbers are used for the possible forward or backward 

steps. This randomization could be done by deterministic steps in this algorithm but the 

random step method is preferred to not to fall into local optimal point. As it is known falling 

into local optimal point problem is a general problem for optimization algorithms. This 

problem prevents the algorithms to make closer to the solution. But this generally stems from 

the deterministic steps in the algorithms. SMDO uses stochastic method so that in all step 

decisions the step intervals become different and specified according to present situation. 

This provides a very flexible movement attitude so that risk of falling into local trap problem 

diminishes. This randomization is made with random numbers generated by the help of 

uniform distribution. So the general characteristics of the randomization is specified by this 

probability distribution. This yields very good results in benchmark functions and especially 
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in real engineering problems. SMDO algorithm is essentially a very analytical algorithm 

except the randomization process. Because SMDO does all the process very cautiously with 

forward and backward trials. But in the randomization process all the work is transferred to 

uniform distribution which is an uncontrolled zone. The flow diagram of the SMDO 

algorithm is given in the Figure 5.1 below. As it is seen; firstly, the parameter initialization 

is done; then the error is calculated for the current location. If the error value calculated is 

below the minimum error specified before, the state is called as tuned state; otherwise the 

searching procedure goes forward. An assessment around the current location is done 

according to random step calculated in forward and backward direction and an error 

comparison is again done this time according to previous location’s error value. The value 

below the error value of previous location specifies the direction of search; being as forward 

or backward. So as it can be seen from the algorithmic structure the random number used in 

calculating the step interval plays a crucial role in general flow. If this flow goes to wrong 

directions the time and accuracy of the algorithm can be effected. 
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Figure 5.1 Flow Diagram of the SMDO Algorithm (Akpamukçu & Ateş, 2020) 
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5.2.The Usage of Distribution Functions in SMDO Method 

In section 5.1 the importance of the random numbers in SMDO method has been 

emphasized. As it is mentioned, this randomization is done by the help of uniform 

distribution function. All engineering activities are based upon the ground of effectiveness. 

So inspiring from this general engineering discipline, it is claimed in this thesis that the 

randomization processes can be changed in a manner that the performance of the stochastic 

optimization algorithms can be enhanced. In this thesis, it is claimed that this aim can be 

realized by selecting the more appropriate distribution function in the randomization phase 

of the focused algorithm. This can be done by try and see method. For this aim, the procedure 

of the SMDO algorithm is slightly changed to try distribution functions in random steps. So 

measurable results can be taken and this will lead us to decide whether this claim is true. In 

the Figure 5.2 below the pseudocode of the modified SMDO algorithm is given. The basic 

change in this algorithm is giving the chance of selecting distribution function that will be 

used in the algorithm for random number generation. This is a small but a radical change. 

Because the characteristics of the randomization process is being changed. This selection 

opportunity is given at the beginning phase and it is used in the step size creation parts. So 

it is an absolute controlled experiment which holds all the other factors except distribution 

function used. After getting the results, they will be compared and the effect will be seen. 

And the reason of the change will be only the distribution function used. 
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Figure 5.2 Pseudocode of the Modified SMDO Algorithm (Akpamukçu & Ateş, 2020) 
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5.3. Benchmark Test Functions 

In this study; while changing the distribution function for the performance evaluation, mostly 

used benchmark functions are used. These benchmark functions are firstly tried with the 

original SMDO algorithm and then with the modified versions of SMDO which only differs 

from the others from the used distribution function. At this point the benchmark functions 

play the role of objective function which is the one of the backbone notions of optimization 

algorithms. In this study, mostly used benchmark functions in optimization algorithms field 

are selected to get reliable results. These functions give opportunity to algorithm producers 

and evaluators to meet on a common base. The benchmark functions that is used in this study 

are; Ackley, Beale, Bohachevsky, Booth, Branin, DixonPrice, Easom, GoldsteinPrice, 

Griewank, Hump, Levy, Matyas, Perm, Powell, Rastrigin, Rosenbrock, Schwefel, Shubert, 

Sphere and Zakharov. These benchmark functions are commonly used in academic studies. 

So that it gives an opportunity to compare the changing results of an optimization algorithm 

with its modified version as in our case. These functions also give opportunity for us to 

compare with other algorithms. If we analyze these functions; they are comprised from 

mathematical formulas. But these formulas are special formulas which creates a curve on 

the space which takes different values increasing and decreasing. These ups and downs are 

several in the space in a manner that there are lots of local minimums and maximums. 

However, among these minimums and maximums, there is one global minima and one global 

maxima. The aim for an optimization algorithm is to find global minima and the global 

maxima among these local minimums and maximums. At this point there is a problem. The 

optimization algorithms generally fall into trap of assuming that an ordinary local minima 

or local maxima as the global one. This constitutes of a very big problem. So the optimization 

algorithms should be designed in a way so that they would not fall into these traps. At this 

point the benchmark functions help the algorithm producers to try their algorithms by 

providing a difficult medium. They play their role as being the objective function of 

optimization algorithms. The benchmark functions are comprised of formulas as it is stated 

above. But they are also defined with the component of dimension range and the optimal 

value. Dimension specifies the number of variables that a benchmark function uses. Range 

specifies the values that a benchmark function can take. The optimal value is the optimum 

value that benchmark function yields when it is in its global maxima or minima. The Table 

5.1 below shows the benchmark functions used in this study.
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Benchmark 

Function 

Formula Dim Range Optimal Value 

Ackley 
f(x) = -a* exp( 

d

ix
d 1

21
) - exp( 

d

icx
d 1

)cos(
1

))+ a + 

exp(1) 

d [-32.768, 

32.768] 

0 

Beale f(x) =  (1.5 - x 1  + x 1 x 2 )
2

+ (2.25 - x 1  + x 1 x
2

2 )
2

+ (2.625 - x 1  + x 1 x
3

2 )
2

 
2 [-4.5, 4.5] 0 

Bohachecsky f 1 (x) = x
2

1 + 2x
2

2 - 0.3cos(3π x 1 ) – 0.4cos(4π x 2 ) + 0.7 

f 2 (x) = x
2

1 + 2x
2

2 - 0.3cos(3π x 1 ) cos(4π x 2 ) + 0.3 

f 3 (x) = x
2

1 + 2x
2

2 - 0.3cos(3π x 1 + 4π x 2 ) + 0.3 

2 [-100, 100] 0 

Booth f(x) =  (x 1  + 2x 2  - 7)
2

+ (2x 1  + x 2  - 5)
2

 
2 [-10, 10] 0 

Branin f(x) =  a(x 2  - bx
2

1  + cx 1  - r)
2

+ s(1 - t)cos(x 1 ) + s  
2 [-5, 10] 0,3978 

Dixon Price 
f(x) = (x 1  -1)

2
+ 

2

2

1

2 )2(



d

i

ii xxi  

d [-10, 10] 0 

Easom f(x) = -cos(x 1 )cos(x 2 )exp(-(x 1 - π)
2

- (x 2 - π)
2

) 
2 [-100, 100] -1 

Goldstein 

Price 
f(x) = [1 + (x 1  + x 2 + 1)

2
(19 - 14 x 1 + 3x

2

1 -  14 x 2 + 6x 1 x
2

+ 3x
2

2
)]  

x [30 + (2x
1

- 3 x
2

)
2

(18 - 32 x
1

+ 12x
2

1
+ 48 x

2
- 36x

1
x

2
+  27x

2

2
)] 

2 [-2, 2] 3 

Griewank 
f(x) = 



d

i

ix

1

2

4000
- 



d

i

i

i

x

1

)cos( + 1 

d  [-600, 600] 0 

Hump 
f(x) = 2x

2

1
- 1.05x

4

1
+ 

6

6

1x
+ x

1
x 2 + x

2

2  

2 [-5, 5] 0 

Levy 
f(x) = sin

2
( πw 1 ) + 





1

1

d

i

(w i -1)2[1 +10sin2(π w i + 1)] + (w d -1)2[1 + sin2(2 π w d )], 

where 

                                   w i = 1 + 

4

1ix
, for all i = 1, … , d 

d [-10, 10] 0 

Matyas f(x) = 0.26(x
2

1  + x
2

2 ) – 0.48 x 1 x 2  
2 [-10, 10] 0 
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Perm 
f(x) = 



d

i 1

(


d

j 1

(j
i

+ β)((

j

x j
)

i
 - 1))2 

d [-d, d] 0 

Powell 
f(x) = 



4/

1

d

i

[(x 34 i +10 x 24 i )2 + 5(x 14 i  +  x i4 )2 + (x 24 i + 2x 14 i )4 + 10(x 34 i  +  x

i4 )4 ] 

d [-4, 5] 0 

Rastrigin 
f(x) = 10d + 



d

i 1

[ x
2

i - 10cos(2 π x i )] 

d [-5.12, 5.12] 0 

Rosenbrock 
f(x) = 





1

1

d

i

[ 100(x 1i - x
2

i )2 + (x i -1)2] 

  d [-5, 10] 0 

Schwefel 
f(x) = 418.9829d - 



d

i 1

 x i sin(
ix ) 

d [-500, 500] 0 

Shubert 
f(x) = (



5

1i

icos((i+1) x 1 + i))( 


5

1i

icos((i+1) x 2 + i)) 

2 [-5.12, 5.12] -186,73 

Sphere 
f(x) = 



d

i 1

x
2

i  

d [-5.12, 5.12] 0 

Zakharov 
f(x) = 



d

i 1

x
2

i + (


d

i 1

0.5ix i )2 + (


d

i 1

0.5ix i )4 

d [-5, 10] 0 

Table 5.1 Properties of Benchmark Functions  Used in This Study (Akpamukçu & Ateş, 2020)
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5.4. SMDO Benchmark with Distribution Test Program 

In order to test SMDO algorithm with distribution functions, a MATLAB toolbox called 

“SMDO Benchmark with Distribution Test Program” is developed and used. In this program 

parameter count of benchmark function, iteration number of the SMDO algorithm that will 

be run, error limit, divergence vector, initialization values, benchmark type and distribution 

type values are should be given as input. Parameter count is the number of parameters of a 

benchmark function that will be used. This is specified as the dimension of the benchmark 

function. Iteration number is the count of run that the SMDO algorithm will be run in an 

iterated way so as to get mean value of result. This iteration method will decrease the effect 

of extreme values that has been get. This method is used because of the stochastics 

characteristics of the SMDO method. Since the stochastic methods do not yield the same 

values for their each run and the results can fluctuate because of the random numbers 

generated. Taking the mean value of the results from specified iterated runs will give a fair 

assessment for an optimization algorithm. The error limit is the threshold value that is used 

in comparison with each error value calculation for each location reached in the solution 

space. So this value is used to halt the process. Taking this a value so small will result in a 

count of running of algorithm so less. Taking this value so big will result in count of running 

of algorithm so few. So this error limit value should be specified meticulously to reach the 

optimal value. The divergence vector values are the values used with random numbers to 

specify step length. So the divergence values for each parameter also play crucial role in 

stochastic steps. As it is known the random numbers can throw the steps in an unbalanced 

way. Here the divergence value for each parameter minimizes this effect and makes the 

solution search in a stable way. Finally, benchmark type information is the benchmark 

function that will be used and distribution type is the distribution function that will be used. 

Taking these inputs, the program outputs the mean error values by calculating by the help of 

SMDO algorithm. This program is a very effective tool to try the benchmark functions as 

objective functions of the SMDO algorithm with different iterations, different error limits, 

different initialization values for parameters and from the point view of this study with 

different distribution functions. So by the help of this tool, analytical and reliable results can 
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be inferred about the usage effect of different distribution functions usages in stochastic 

optimization algorithms. 

 

Figure 5.3 GUI of SMDO Toolbox (Akpamukçu & Ateş, 2020) 

 

5.5. The Results of Usage of Distribution Functions in SMDO Method  

Since there are a lot of distribution functions, it is adequate to select and see the results of a 

sample of them. This sampling method is used usually in statistics. In this study, the selected 

distribution functions are used instead of uniform distribution functions. Using these 

distribution functions the modified algorithm has been run with the count of iteration number 

specified. In each iteration a best value has been calculated. Finally using these best values, 

1st statistical moment value (mean), 2nd statistical moment value (standard deviation), 3rd 

statistical moment (skewness) and 4th statistical moment (kurtosis) values are acquired. 

Besides getting the mean value form these best values; second, third and fourth moment 

values are calculated to make a deep statistical analysis about the behavior of the algorithm 

during these searching phase. 

The aim of these study is to analyze the usage effect of different distribution functions 

instead of uniform distribution in SMDO. So the main aim is not measure the efficiency of 

SMDO. This study resembles a controlled experiment with changing only one component 

of the system in our case; distribution function used in random number generation. Although 

it is known that trying to specify some parameters in optimal values in the algorithm to make 
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the results well, an extra effort has not been wasted for this. The main focus is directed to 

the randomization phase to see the effect of intended issue. 

Firstly, the normal distribution function is used in acquiring random numbers parts in the 

SMDO. This modified version has been run 20 times with an iterated way on 20 different 

benchmark functions. Before this, the original SMDO algorithm has been run with these 20 

benchmark functions and shown in the column of “Classical SMDO with Uniform (Mean)” 

in Table 5.2. Then the modified SMDO with normal distribution has been run and the results 

are shown in Table 5.2 in rows for each benchmark function. In the column of “Mean (First 

Moment)” the mean of the best values is shown. Then in the “Variance (Second Moment)” 

column the variance calculated from the best values, in the “Skewness (Third Moment)” 

column the skewness value and in the “Kurtosis (Fourth Moment)” column the kurtosis value 

calculated from the best values and shown in Table 5.2. As a result, in the benchmark 

functions; Beale, Booth, Branin, DixonPrice, Easom, GoldsteinPrice, Hump, Levy, Matyas, 

Perm, Rosenbrock, Schwefel, Shubert; the mean values calculated from the modified SMDO 

using the normal distribution function are better than the original SMDO using the uniform 

distribution. So 13 of 20 result shows a good change effect in the optimization algorithm. In 

7 of 20 benchmark function which are; Ackley, Bohachecsky, Griewank, Powell, Rastrigin, 

Sphere, Zakharov; the mean values are worse or near the values of original SMDO. So it can 

be inferred from these values that there is an effect of using different distributions in 

randomization phase of an optimization algorithm and this effect is in the positive way. 

These validations can be also seen in the variance column too. These values are smaller than 

the first state. This values gives us a good evidence of using different distribution functions.  

Secondly the beta distribution function is used in acquiring random numbers parts in the 

SMDO. This modified version again has been run 20 times with an iterated way on 20 

different benchmark functions. Before this, the original SMDO algorithm has been run with 

these 20 benchmark functions and shown in the column of “Classical SMDO with Uniform 

(Mean)” in Table 5.3. Then the modified SMDO with beta distribution has been run and the 

results are shown in Table 5.3 in rows for each benchmark function. In the column of “Mean 

(First Moment)” the mean of the best values is shown. Then in the “Variance (Second 

Moment)” column the variance calculated from the best values, in the “Skewness (Third 

Moment)” column the skewness value and in the “Kurtosis (Fourth Moment)” column the 

kurtosis value calculated from the best values and shown in Table 5.3. As a result, in the 
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benchmark functions; Ackley, Beale, Booth, Branin, DixonPrice, Easom, GoldsteinPrice, 

Hump, Levy, Perm, Powell, Rastrigin, Rosenbrock, Schwefel, Zakharov; the mean values 

calculated from the modified SMDO using the beta distribution function are better than the 

original SMDO using the uniform distribution. So 15 of 20 result shows a good change effect 

in the optimization algorithm. In 5 of 20 benchmark function which are; Bohachecsky, 

Griewank, Matyas, Shubert, Sphere; the mean values are worse or near the values of original 

SMDO. So it can be inferred from these values that there is an effect of using different 

distributions in randomization phase of an optimization algorithm and this effect is in the 

positive way. These validations can be also seen in the variance column too. These values 

are smaller than the first state. This values also gives us a good evidence of using different 

distribution functions. 

Thirdly the binomial distribution function is used in acquiring random numbers parts in the 

SMDO. This modified version again has been run 20 times with an iterated way on 20 

different benchmark functions. Before this, the original SMDO algorithm has been run with 

these 20 benchmark functions and shown in the column of “Classical SMDO with Uniform 

(Mean)” in Table 5.4. Then the modified SMDO with beta distribution has been run and the 

results are shown in Table 5.4 in rows for each benchmark function. In the column of “Mean 

(First Moment)” the mean of the best values is shown. Then in the “Variance (Second 

Moment)” column the variance calculated from the best values, in the “Skewness (Third 

Moment)” column the skewness value and in the “Kurtosis (Fourth Moment)” column the 

kurtosis value calculated from the best values and shown in Table 5.4. As a result, in the 

benchmark functions; Easom, Matyas, Rastrigin, Rosenbrock, Shubert; the mean values 

calculated from the modified SMDO using the binomial distribution function are better than 

the original SMDO using the uniform distribution. So 5 of 20 result shows a good change 

effect in the optimization algorithm. In 15 of 20 benchmark function which are; Ackley, 

Beale, Bohachecsky, Booth, Branin, DixonPrice, GoldsteinPrice, Griewank, Hump, Levy, 

Perm, Powell, Schwefel, Sphere, Zakharov; the mean values are worse or near the values of 

original SMDO. In this distribution function there is not satisfying results but it can be 

inferred from 5 of 20 benchmark function there is an effect in the positive way. These 

validations can be also seen in the variance column too. These values are smaller than the 
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first state. So it can be inferred that usage of suitable distribution function is also important. 

So getting the most suitable distribution function will help us in the improvement of results. 

Fourthly the extreme value distribution function is used in acquiring random numbers parts 

in the SMDO. This modified version again has been run 20 times with an iterated way on 20 

different benchmark functions. Before this, the original SMDO algorithm has been run with 

these 20 benchmark functions and shown in the column of “Classical SMDO with Uniform 

(Mean)” in Table 5.5. Then the modified SMDO with beta distribution has been run and the 

results are shown in Table 5.5 in rows for each benchmark function. In the column of “Mean 

(First Moment)” the mean of the best values is shown. Then in the “Variance (Second 

Moment)” column the variance calculated from the best values, in the “Skewness (Third 

Moment)” column the skewness value and in the “Kurtosis (Fourth Moment)” column the 

kurtosis value calculated from the best values and shown in Table 5.5. As a result, in the 

benchmark functions; Booth, Branin, DixonPrice, Easom, GoldsteinPrice, Hump, Levy, 

Perm, Powell, Rosenbrock, Schwefel, Shubert; the mean values calculated from the modified 

SMDO using the extreme value distribution function are better than the original SMDO 

using the uniform distribution. So 12 of 20 result shows a good change effect in the 

optimization algorithm. In 8 of 20 benchmark function which are; Ackley, Beale, 

Bohachecsky, Griewank, Matyas, Rastrigin, Sphere, Zakharov; the mean values are worse 

or near the values of original SMDO. So it can be inferred from these values that there is an 

effect of using different distributions in randomization phase of an optimization algorithm 

and this effect is in the positive way. These validations can be also seen in the variance 

column too. These values are smaller than the first state. This values also gives us a good 

evidence of using different distribution functions. 

As we analyze the variance of the values, it can be seen that the uniform distribution does 

not show a stable performance in this issue. So by having lower variances, the selected 

distribution functions have stable performance in this subject. This is important for real life 

where the stable performance is important. So the second moment is a remarkable indicator 
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in real engineering problems. The third and fourth moments can be also important is some 

aspects in real life but we cannot observe their effect in the benchmark functions. 
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SMDO with Normal 

Distribution 

Global Min Value 

Mean(First 

Moment) 

 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with Ackley 0 0.0112 0.0079 0.01241 2.3824 10.2447 

SMDO with Beale 0 0.0045 0.0065 0.0107 7.4792 74.6493 

SMDO with Bohachecsky 0 0.0020 0.0018 0.0036 2.8920 13.0674 

SMDO with Booth 0 0.0003 0.0010 0.0006 4.4293 29.6066 

SMDO with Branin 0,3978 0.3910 0.4092 0.0554 -6.9216 48.9486 

SMDO with DixonPrice 0 0.0039 0.0351 0.0053 3.3031 18.5576 

SMDO with Easom -1 -8.3330e-08 -2.9777e-08 1.16062e-07 -1.8169 5.3094 

SMDO with GoldsteinPrice 3 3.2406 4.0397 0.6616 -0.9759 15.8988 

SMDO with Griewank 0 3.1166e-05 2.8866e-05 2.8292e-05 0.6642 2.1408 

SMDO with Hump 0 0.00253 0.0220 0.0027 2.3122 10.0579 

SMDO with Levy 0 0.0002 0.0038 0.0004 5.1653 36.7470 

SMDO with Matyas 0 3.24984e-05 3.3132e-05 3.0056e-05 0.6723 2.1384 

SMDO with Perm 0 0.00756 0.0279 0.0093 2.8875 14.8627 

SMDO with Powell 0 0.0005 0.0003 0.0013 4.7732 27.9739 

SMDO with Rastrigin 0 0.0141 0.0067 0.02999 4.5009 30.5890 

SMDO with Rosenbrock 0 0.1392 0.3961 0.1265 1.6300 7.3854 

SMDO with Schwefel 0 813.7992 813.7996 115.3717 -6.9296 49.0199 

SMDO with Shubert -186,73 -22.31463 -18.3900 18.4898 -1.1027 2.8943 

SMDO with Sphere 0 3.8099e-05 3.6085e-05 3.8897e-05 2.8275 20.0084 

SMDO with Zakharov  0 4.5726e-05 4.0279e-05 6.4747e-05 4.3740 31.2018 

Table 5.2 Results of SMDO Algorithm with Different Benchmark Functions Using Normal Distribution Function (Akpamukçu & Ateş, 2020) 

 

 

 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
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SMDO with Beta 

Distribution 

Global Min. Val. 
Mean(First 

Moment) 

SMDO With 

Uniform 

(Mean) 

Variance(Secon

d Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with Ackley 0 0.0048 0.0079 0.00479 1.5709 5.3299 

SMDO with Beale 0 0.0011 0.0065 0.003025 10.2732 128.1170 

SMDO with Bohachecsky 0 0.0018 0.0018 0.002896 3.06244 14.8792 

SMDO with Booth 0 9.4914e-05 0.0010 0.00013 3.8692 22.8552 

SMDO with Branin 0,3978 0.3908 0.4092 0.05541 -6.9237 48.9667 

SMDO with DixonPrice 0 0.00099 0.0351 0.001649 3.5398 17.58250 

SMDO with Easom -1 -1.4773e-08 -2.9777e-08 1.0938e-08 -0.8225 2.6445191 

SMDO with GoldsteinPrice 3 3.0417 4.0397 0.4760 -4.7354 34.1134 

SMDO with Griewank 0 3.3553e-05 2.8866e-05 3.1356e-05 0.5283 1.8592 

SMDO with Hump 0 0.00186 0.0220 0.0032 3.1804 13.8229 

SMDO with Levy 0 0.0001 0.0038 0.0002 4.35260 24.2882 

SMDO with Matyas 0 3.555e-05 3.3132e-05 3.0747e-05 0.5315 1.9206 

SMDO with Perm 0 0.00311 0.0279 0.0070 8.2227 86.2100 

SMDO with Powell 0 0.0002 0.0003 0.0011 12.2108 163.6566 

SMDO with Rastrigin 0 0.00128 0.0067 0.00345 6.15650 46.1952 

SMDO with Rosenbrock 0 0.3233 0.3961 0.1038 -0.6704 4.05219 

SMDO with Schwefel 0 813.7992 813.7996 115.3717 -6.9296 49.0199 

SMDO with Shubert -186,73 -11.54244 -18.3900 5.0931 0.6507 2.21161 

SMDO with Sphere 0 3.3593 3.6085e-05 3.2951e-05 1.3627 7.1360 

SMDO with Zakharov  0 2.7623e-05 4.0279e-05 2.9612e-05 2.2103 13.0656 

Table 5.3 Results of SMDO Algorithm with Different Benchmark Functions Using Beta Distribution Function (Akpamukçu & Ateş, 2020) 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
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SMDO with Binomial Distribution Global Min. Val. 
Mean(First 

Moment) 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with Ackley 0 0.1056 0.0079 0.5248 4.7737 23.8915 

SMDO with Beale 0 5.942 0.0065 7.0001 0.3370 1.11486 

SMDO with Bohachecsky 0 0.02941 0.0018 0.1538 6.7805 58.9932 

SMDO with Booth 0 0.1053 0.0010 0.3637 3.9940 19.5653 

SMDO with Branin 0,3978 1.1269 0.4092 1.8028 4.5147 26.0063 

SMDO with DixonPrice 0 0.4803 0.0351 0.2918 0.8972 4.72660 

SMDO with Easom -1 -2.1170e-08 -2.9777e-08 4.4813e-08 -4.34627 24.4713 

SMDO with GoldsteinPrice 3 248.7368 4.0397 2854.2248 14.16455 201.75833 

SMDO with Griewank 0 0.01319 2.8866e-05 0.0220 1.7918 6.0395 

SMDO with Hump 0 0.2901 0.0220 0.1082 5.2853 38.8661 

SMDO with Levy 0 0.1645 0.0038 0.3102 2.9967 15.5586 

SMDO with Matyas 0 0.0019 0.0279 0.0110 5.5704 32.0303 

SMDO with Perm 0 1.0699 0.0003 1.9015 6.0539 50.1328 

SMDO with Powell 0 0.7457 0.0067 4.2443 5.5668 32.0037 

SMDO with Rastrigin 0 0.04411 0.3961 0.2058 4.4399 20.7128 

SMDO with Rosenbrock 0 64.0465 813.7996 114.9534 1.9502 5.8908 

SMDO with Schwefel 0 789.9691 -18.3900 116.8345 -6.0896 41.3975 

SMDO with Shubert -186,73 -14.6498 3.6085e-05 10.8293 -2.6302 10.7316 

SMDO with Sphere 0 0.01348 4.0279e-05 0.08305 9.0685 100.8007 

SMDO with Zakharov  0 0.01573 0.0079 0.1058 9.7663 113.6100 

Table 5.4 Results of SMDO Algorithm with Different Benchmark Functions Using Binomial Distribution Function (Akpamukçu & Ateş, 2020) 
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SMDO with Extreme Value 

Distribution 

Global Min. Val. 
Mean(First 

Moment) 

SMDO With 

Uniform 

(Mean) 

Variance(Second 

Moment) 

Skewness(Third 

Moment) 

Kurtosis(Fourth 

Moment) 

SMDO with Ackley 0 0.0142 0.0079 0.01537 2.14544 9.2053 

SMDO with Beale 0 0.0874 0.0065 0.9954 14.0801 200.12788 

SMDO with Bohachecsky 0 0.0023 0.0018 0.0045 3.15584 13.8019 

SMDO with Booth 0 0.0003 0.0010 0.00056 3.85149 26.6506 

SMDO with Branin 0,3978 0.3915 0.4092 0.05555 -6.9114 48.8571 

SMDO with DixonPrice 0 0.00376 0.0351 0.0045 2.5793 12.739 

SMDO with Easom -1 -7.8097e-08 -2.9777e-08 1.1694e-07 -2.0064 6.1050 

SMDO with GoldsteinPrice 3 3.5185 4.0397 1.0694 2.41662 21.346 

SMDO with Griewank 0 0.00017 2.8866e-05 0.00096 9.1354 90.4217 

SMDO with Hump 0 0.003568 0.0220 0.00478 3.01209 14.6803 

SMDO with Levy 0 0.0003 0.0038 0.000401 2.92719 15.7236 

SMDO with Matyas 0 3.3554e-05 3.3132e-05 3.0966e-05 0.542472 1.93375 

SMDO with Perm 0 0.0085 0.0279 0.01061 2.52858 11.58471 

SMDO with Powell 0 0 0.0003 0 NaN NaN 

SMDO with Rastrigin 0 0.02889 0.0067 0.0856 6.8884 62.67449 

SMDO with Rosenbrock 0 0.1388 0.3961 0.14363 2.27359 10.0489 

SMDO with Schwefel 0 813.7992 813.7996 115.3717 -6.929 49.0199 

SMDO with Shubert -186,73 -22.0883 -18.3900 19.2324 -1.19970 2.9960 

SMDO with Sphere 0 6.7565e-05 3.6085e-05 0.000192 11.5382 151.334 

SMDO with Zakharov  0 0.0003 4.0279e-05 0.00123 7.0040 55.8365 

Table 5.5 Results of SMDO Algorithm with Different Benchmark Functions Using Extreme Distribution Function (Akpamukçu & Ateş, 2020) 

 

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page3088.htm
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 USAGE EFFECT OF THE DISTRIBUTION FUNCTIONS IN MONARCHY 

BUTTERFLY OPTIMIZATION METHOD 

6.1.Monarchy Butterfly Optimization  

Monarchy Butterfly Optimization (MBO) algorithm is a stochastics search based  algorithm 

which tries to reach the optimal solution of a problem  by imitating migration behavior of 

monarchy butterflies. This method struggles with the problems which have ambiguity in 

finding the optimal point in the solution space. Since migration of monarchy butterflies 

confronts with the difficulties of real life, this is a big motivation to apply this method used 

by these butterflies to engineering problems which also stem from real life. Especially the 

random characteristics of this behavior makes possible to create a stochastics numerical 

algorithm. As it is stated above, the algorithm tries a simulation of the migration behavior 

and to make this, it formulates this behavior with a specified set of parameters. All 

butterflies, each of which symbolizes a candidate solution for the problem, are comprised of 

a specified number of components which are named as variable. These variables represent 

the values in each dimension of our real problem. So the final aim is to find an excellent 

butterfly whose variable values will be used for the real problem and this will have resulted 

in the optimal point in the solution space. To reach this goal, the algorithm takes into account 

all the life cycle of monarch butterflies which are new births, death, migration between the 

lands where they in live interchangeably. The realization of this events is not done one-to-

one but with a technique of an inspiration. For example, it is assumed that the population is 

always fixed numbered and a number of top best individuals will pass to next generation. So 

it is assumed that the individuals in latter generations will provide better variables which 

will be provide to approach the optimal point. The algorithm tries to reach this aim by 

applying some procedures and using the power of randomization. The algorithm is mainly 

based on the procedures of migration operator and butterfly adjusting operator which 

manage the change of the generations and individuals. The general flow of the algorithm 

starts with the initialization of the variables of individuals with predetermined values. These 

variables are the population size of the generation, the maximum generation count, the 

number of populations in the first land and the second land, the number of the variables in 

each butterfly, the ratio of monarch butterflies in land 1, maximum step size which shows 

the maximum walk step that a monarch butterfly can move in one step, butterfly adjusting 

rate which is used in butterfly adjusting operator, migration period and migration ratio which 

are used in the migration operator. These initializations direct the flow. So they should be 
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set meticulously. Then a fitness value for each individual is calculated with the variables 

inside the individuals. A sorting is done according to this evaluation and then all population 

is divided into two subpopulations like in the real life. At this phase the migration operator 

is applied to all the individuals of Land 1 iteratively. Then a number called “r” is calculated 

as in the Eq. 6.1 via the random number “rand” generated with using uniform distribution 

function and “peri”, holding the value of the migration period, specified in the initialization 

phase. 

 

r = rand * peri                                                                                                                     (6.1)            

           

At this point a comparison is made with the value of “p” called as the ratio of monarch 

butterflies. According to this comparison if the “r” is less than or equal to “p” an index value 

is generated to be used as an index to select a butterfly in Population 1. So the variable, 

which is the correspondent of current processed variable in the iteration, of this butterfly is 

used for the next generation. If the “r” is bigger than “p”, an index value is generated to be 

used as an index to select a butterfly in Population 2. So the variable, which is the 

correspondent of current processed variable in the iteration, of this butterfly is used for the 

next generation. So the critical parts in migration operator are; random numbers generated 

by the distribution function, “peri” which is the migration period and the “r” which is the 

ratio of monarch butterflies. After the end of application of migration operator, the butterfly 

adjusting operator is applied for all the butterflies in the Population 2. In this phase again a 

random number is generated with the uniform distribution function without using “peri” 

parameter. According to comparison of this random number with the “p” called as the ratio 

of monarch butterflies the correspondent variable value of the best individual is taken. If the 

generated random number is bigger than the ratio of monarch butterflies, then again a 

random number is acquired to use for index of the individual whose correspondent variable 

value will be used for the variable in recent iteration. At this point one more comparison is 

made with the predetermined value “BAR” and a new generated random number using 

uniform distribution function to decide whether use Levy flight algorithm to specify the 

value of variable current processed. If the random number is bigger than “BAR”, maximum 

step size parameter is used to calculate the weighting factor value which will be used with 

Levy flight to specify new variable value. So this procedure is repeatedly applied along with 

a count of specified generation number and finally a set of individuals is generated. Using 
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this list; the top individual, which yields the best solution as being more close to optimal 

point with its variables, is specified as the optimal solution candidate. 

6.2.The Usage of Distribution Functions in MBO Method 

 

The original MBO algorithm, whose parts use random numbers, is based on uniform 

distribution. This provides the power of randomization to algorithm by being a stochastics 

algorithm. But here a question of whether using different distribution functions will provide 

better performance arises. So to try this idea some modifications should be made to 

algorithm. But these modifications should not change the basic flow of algorithm except 

changing the process of acquiring random numbers that are needed. For these purposes 

firstly the points of MBO algorithm where the random numbers used are specified as done 

in previous section. These critical points are located in migration operator and butterfly 

adjusting operator. Then a mechanism of selecting the distribution function that will be used 

in random number generation is provided. So using this mechanism firstly in the migration 

operator is modified as in algorithm 6.1. The random numbers that are generated are shown 

as “randWithSelectedDistFunc”.  

Algorithm 6.1: Modified migration operator 

Begin 

for i= 1 to NP1 (for all monarch butterflies in Subpopulation 1) do 

for k=1 to D (all the elements in ith monarch butterfly) do 

Randomly generate a number randWithSelectedDistFunc by selected 

distribution function and its parameters; 

r= randWithSelectedDistFunc *peri; 

if r ≤ p then 

Randomly generate a number randWithSelectedDistFunc by 

selected distribution function and its parameters; 

Randomly select a monarch butterfly by using 

randWithSelectedDistFunc in Subpopulation 1 (say r1); 

Generate the kth element of the 
1t

ix  

else 

Randomly generate a number randWithSelectedDistFunc by 

selected distribution function and its parameters; 

Randomly select a monarch butterfly by using 

randWithSelectedDistFunc in Subpopulation 2 (say r2); 

Generate the kth element of the 
1t

ix  

end if 

end for k 

end for i 

End. 
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Secondly in the butterfly adjusting operator is modified as in algorithm 6.2. The random 

numbers that are generated are also shown as randWithSelectedDistFunc as in migration 

operator.  

 

Algorithm 6.2: Butterfly adjusting operator 

Begin 

for j= 1 to NP2 (for all monarch butterflies in Subpopulation 2) do 

 Calculate the walk step dx 

 Calculate the weighting factor 

for k=1 to D (all the elements in jth monarch butterfly) do 

Randomly generate a number randWithSelectedDistFunc by selected 

distribution function and its parameters; 

if randWithSelectedDistFunc ≤ p then 

Generate the kth element of the 1t

jx  

else 

Randomly generate a number randWithSelectedDistFunc by 

selected distribution function and its parameters; 

Generate the kth element of the 1t

jx  

       if randWithSelectedDistFunc ≤ BAR then 

 1

,

t

kjx  = 1

,

t

kjx  +   x (dxk – 0.5); 

end if 

end if 

end for k 

end for j 

End. 

 

So with these modifications the selected distribution function can be used. Besides this, some 

other mechanisms are added to MBO algorithm by providing the trial chance of benchmark 

functions and real engineering problems in a flexible way. The ability of changing the 

parameters of distribution functions is also added to get the more optimal usage combination 

of distribution function for the target objective function. So with the use of this method, the 

possibility of the best combination of distribution function and its parameters in the MBO 

algorithm that fit to selected objective function is increased. Finally, with the trials of this 

modified form of MBO, strong evidences will be acquired about the usage effects of using 

different distribution functions in stochastics algorithms which is the basic claim of this 

thesis. 
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6.3.Modified MBO with Benchmark Test Functions 

 

After the necessary modifications have been made on MBO algorithm, 12 benchmark 

functions have been run with 17 different distribution functions to analyze the performance 

changes. The results of these runs are shown with some tables below. In these tables in each 

row the result of Modified MBO’s with different distribution functions are shown. In these 

rows the original MBO result and the results of different optimization algorithms; which are 

ABC, ACO, BBO, DE, SGA; are also shown that are acquired from the original MBO study 

to make comparison (G. G. Wang et al., 2019) (A. Ateş & Akpamukçu, 2021). In these tables 

the results are shown in proportional values to each other. This is done by dividing all the 

values with the best value in the row. So the value of “1” shows the best value. This method 

gives simplicity as it is done in the original MBO study. (G. G. Wang et al., 2019)(A. Ateş 

& Akpamukçu, 2021). 

In this study, benchmark functions had been run with M2BO algorithm via using the 

distribution functions; Beta, Gamma, Chi-square, Binomial, F, Geometric, Exponential, 

Extreme Value, Generalized Extreme Value, Generalized Pareto, Student’s T, Lognormal, 

Negative Binomial, Normal, Poisson, Rayleigh, Weibull. Below these runs the results of the 

basic MBO, ABC, ACO, BBO, DE, SGA algorithms are also given which are taken from 

the original MBO study. (G. G. Wang et al., 2019)(A. Ateş & Akpamukçu, 2021). The runs 

are done under the same conditions specified in the original MBO study. 

In Table 6.1; Ackley benchmark function is used to analyze. When the results are analyzed 

it is seen that M2BO-EXTREMEVALUE yields the best value. It can also be observed that 

most of the distribution functions apart from the uniform distribution make an enhancement 

in the result. So the clear effect of the distribution function change in an optimization 

function can be seen. It can be inferred that the using of proper distribution function can 

contribute positive effect on the randomization process of a stochastics optimization 

algorithm by reflecting positive effects on the results. 

In Table 6.2; Bohachevsky benchmark function is used to analyze. In this benchmark 

function the performance of the basic MBO was below the literature as shown in table. The 

usage of different distribution functions especially SUDENT’S T yields the better value over 

the classical MBO algorithm. So there is a positive contribution of using a different 

distribution function over the classical algorithm. So again it can be inferred that the using 
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of proper distribution function can contribute positive effect on the randomization process 

of a stochastics optimization algorithm by reflecting positive effects on the results. 

In Table 6.3; Easom benchmark function is used to analyze. When the results are analyzed, 

it is seen that M2BO-LOGNORMAL yields the best value. In this benchmark function the 

ABC algorithm was the best resulting algorithm. But when the modified MBO with 

lognormal function is applied to Easom benchmark function, it can be seen that the results 

are better. So the modified MBO with lognormal has passed not only the classical MBO but 

also the best performing algorithm. So this application can be also shown as a proof for the 

usage effect of different distribution functions in stochastics optimization algorithms. 

In Table 6.4; Goldsteinprice benchmark function is used to analyze. For this benchmark 

function DE optimization algorithm was shown as the best performing algorithm in the 

original study. (A. Ateş & Akpamukçu, 2021). At this point modified MBO with different 

distribution functions couldn’t pass that performance but M2BO algorithm with student’s 

distribution has passed the performance of classical MBO. So this also shows the 

enhancement that our thesis claims. 

In Table 6.5; Hump benchmark function is used to analyze. In the original study the ABC 

algorithm yields best results. But as it can be seen from the table M2BO with Lognormal and 

M2BO with Normal algorithms have passed the performance of ABC. So changing the 

random number acquiring mechanism with using different distribution function made a 

drastic effect. 

In Table 6.6; Matyas benchmark function is used to analyze. M2BO with Normal yields 

better results according to basic MBO and other optimization algorithms. 

In Table 6.7; Perm benchmark function is used to analyze. From the table it can be seen that 

M2BO with Chi-square yields better results according to basic MBO but the results are not 

good according to DE algorithm. So there is again an improvement in the performance. 

In Table 6.8; Rastrigin benchmark function is used to analyze. As it can be seen from the 

results M2BO with Rayleigh gets better results according to classical MBO and existing 

literature. So there is again a very good performance via the distribution function change. 

Like Rastrigin benchmark function, the benchmark functions Rosenbrock, Sphere and 

Zakharov as shown in Table 6.9, Table 6.10 and Table 6.11; M2BO with Rayleigh produced 

best result according to classical MBO and existing literature. 
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In Table 6.12 Shubert benchmark function is used to analyze. At this study, none of MBO 

variations could get better results according to ABC algorithm but the M2BO with Rayleigh 

got better results according to classical MBO. 

In all test runs, conditions were kept same. So a fair assessment is tried to done to see clearly 

the effect of distribution functions. As it can be seen form the tables, this offered 

modification about the distribution functions in randomization processes of stochastics 

algorithms makes a great effect. First of all, it can be seen that all the results are better than 

the classical MBO algorithm. So the tuning of randomization with using proper distribution 

contribute an enhancement on basic algorithm. This is succeeded with not changing the 

backbone of algorithm. That is to say only random number acquisition process is changed. 

The migration process or butterfly adjusting operator mechanism is not changed. So a 

controlled experiment is realized. Besides this success, for some benchmark functions the 

modified algorithm overwhelmed not only classical MBO but also the other algorithms in 

the literature that are mentioned in the original article of MBO. (G. G. Wang et al., 2019)(A. 

Ateş & Akpamukçu, 2021). So the effect of usage of proper distribution functions in 

randomization process cannot be ignored. This method provides a good contribution to the 

search process of stochastics optimization algorithms. So the algorithms go closer to the 

optimal points. It can be inferred that this method increments the power of algorithms to 

solve problems. 
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 Mean Best Worst Parameters 

M2BO-BETA 1,30 8,20 1,00 A=1 B=1 

M2BO-GAMMA 1,38 5,20 1,00 A=1 B=1 

M2BO-CHISQUARE 1,30 9,40 1,00 A=1 

M2BO-BINOMIAL 1,36 4,80 1,01 A = 2 B = 0,5 

M2BO-F 1,23 5,20 1,00 A=1 B=1 

M2BO-GEOMETRIC 1,45 2,60 1,00 A = 0,3 

M2BO-EXPONENTIAL 1,29 16,00 1,00 A=1 

M2BO-EXTREMEVALUE 1,00 19,60 1,00 A=0 B=1 

M2BO-GEN. EXT. VALUE 1,35 20,00 1,00 A=0 B=1 C=0 

M2BO-GEN. PARETO 2,24 6562,40 1,00 A=1 B=1 C=1 

M2BO-STUDENTST 1,24 57,80 1,00 A=1 

M2BO-LOGNORMAL 1,03 4,00 1,00 A=0 B=1 

M2BO-NEG. BINOMIAL 1,35 19,80 1,00 A=3 B=0,5 

M2BO-NORMAL 1,20 6,00 1,00 A=0 B=1 

M2BO-POISSON 1,50 1,00 1,00 A=1 B=0 

M2BO-RAYLEIGH 1,02 10,20 1,00 A=1 

M2BO-WEIBULL 1,24 11,20 1,00 A=1 B=1 

MBO (Classical) 1,52 20,00 1,00  

ABC 3,27 2,4E6 1,00  

ACO 3,71 2,8E6 1,00  

BBO 2,02 1,24E6 1,00  

DE 2,95 2,4E6 1,00  

SGA 2,15 1,44E6 1,00  

Table 6.1 ACKLEY with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 Mean Best Worst Parameters 

M2BO-BETA 62,67 20,22 260,99 A=1 B=1 

M2BO-GAMMA 52,83 16,53 200,69 A=0,9 B=0,9 

M2BO-CHISQUARE 71,58 1,00 335,05 A=1 

M2BO-BINOMIAL 2,46E2 2,63E3 252,29 A=1 B=0,5 

M2BO-F 53,50 1,04E3 294,35 A=2 B=2 

M2BO-GEOMETRIC 63,82 2,67E3 250,37 A=0,3 

M2BO-EXPONENTIAL 34,05 1,87E2 319,43 A=1 

M2BO-EXTREMEVALUE 59,99 7,04E4 338,21 A=4 B=30 

M2BO-GEN. EXT. VALUE 58,46 2,02E4 294,75 A=0 B=1 C=0 

M2BO-GEN. PARETO 2,38E3 3,5E10 248,83 A=1 B=1 C=1 

M2BO-STUDENTST 31,28 7,04E2 341,35 A=2 

M2BO-LOGNORMAL 57,54 1,92E2 203,61 A=0 B=2 

M2BO-NEG. BINOMIAL 57,70 16,97 249,23 A=2 B=0,45 

M2BO-NORMAL 47,22 8,96E3 294,93 A=0 B=5 

M2BO-POISSON 89,31 1,5E3 286,54 A=1 

M2BO-RAYLEIGH 4,12E2 2,86E4 222,89 A=1 

M2BO-WEIBULL 32,87 1,52E2 192,52 A=0,5 B=0,5 

MBO (Classical) 69,49 1,62E3 293,62  

ABC 1,00 1,62E3 1,00  

ACO 2,27 1,83E3 1,63  

BBO 5,91 2,11E3 3,55  

DE 1,13 1,62E3 1,15  

SGA 2,01 1,62E3 2,05  

Table 6.2 BOHACHEVSKY with M2BO (A. Ateş & Akpamukçu, 2021) 
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 Mean Best Worst Parameters 

M2BO-BETA 1,02 1,00 1,00 A=0,1 B=0,1 

M2BO-GAMMA 1,08 1,00 1,00 A=1,1 B=1,1 

M2BO-CHISQUARE 1,06 1,00 1,00 A=1 

M2BO-BINOMIAL 1,07 1,00 1,00 A=1 B=0,5 

M2BO-F 1,04 1,00 1,00 A=1 B=1 

M2BO-GEOMETRIC 1,04 1,00 1,00 A=0,4 

M2BO-EXPONENTIAL 1,04 1,00 1,00 A=1 

M2BO-EXTREMEVALUE 1,05 1,00 1,00 A=5 B=30 

M2BO-GEN. EXT. VALUE 1,08 1,00 1,00 A=0 B=1 C=0 

M2BO-GEN. PARETO 1,53 0,46 1,00 A=1 B=1 C=1 

M2BO-STUDENTST 1,09 1,00 1,00 A=3 

M2BO-LOGNORMAL 1,00 1,00 1,00 A=0 B=10 

M2BO-NEG. BINOMIAL 1,05 1,00 1,00 A=1 B=0,5 

M2BO-NORMAL 1,05 1,00 1,00 A=0 B=5 

M2BO-POISSON 1,05 1,00 1,00 A=1,2 

M2BO-RAYLEIGH 1,08 1,00 1,00 A=0,4 

M2BO-WEIBULL 1,07 1,00 1,00 A=0,3 B=0,5 

MBO (Classical) 1,09 1,00 1,00  

ABC 1,05 1.5E3 1,00  

ACO 1,12 2.0E3 1,00  

BBO 1,18 1.2E4 1,00  

DE 1,14 3.2E3 1,00  

SGA 1,10 91.68 1,00  

Table 6.3 EASOM with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

Table 6.4 GOLDSTEINPRICE with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 

 Mean Best Worst Parameters 

M2BO-BETA 4,65 1,00 6,10 A=1 B=1 

M2BO-GAMMA 4,65 1,00 5,99 A=1 B=1 

M2BO-CHISQUARE 4,65 1,00 6,54 A=1 

M2BO-BINOMIAL 6,27 1,00 5,23 A=1 B=0,5 

M2BO-F 5,64 1,00 7,69 A=1 B=1 

M2BO-GEOMETRIC 14,81 1,03 5,33 A=0,01 

M2BO-EXPONENTIAL 4,46 1,00 6,40 A=1 

M2BO-EXTREMEVALUE 4,05 1,00 6,38 A=0 B=20 

M2BO-GEN.EXT.VALUE 3,89 1,00 5,72 A=0 B=1 C=0 

M2BO-GEN. PARETO 13,70 1,01 4,99 A=1 B=1 C=1 

M2BO-STUDENTST 3,40 1,00 6,68 A=1 

M2BO-LOGNORMAL 4,48 1,00 5,98 A=0 B=1 

M2BO-NEG. BINOMIAL 6,47 1,00 7,41 A=1 B=0,5 

M2BO-NORMAL 3,86 1,00 6,02 A=0 B=1 

M2BO-POISSON 6,49 1,00 6,08 A=1 

M2BO-RAYLEIGH 4,38 1,00 6,12 A=0,51 

M2BO-WEIBULL 4,03 1,00 6,20 A=1 B=1 

MBO (Classical) 4,74 1,00 6,13  

ABC 1.43 1,00 1.00  

ACO 1.09 1,00 1.00  

BBO 1.58 1,00 1.97  

DE 1.00 1,00 1.02  

SGA 2.33 1,00 1.00  
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 Mean Best Worst Parameters 

M2BO-BETA 1,28 1,00 277,77 A=1 B=1 

M2BO-GAMMA 1,06 1,00 287,40 A=1 B=1 

M2BO-CHISQUARE 1,43 1,00 155,16 A=1 

M2BO-BINOMIAL 2,80 1,00 440,37 A=1 B=0,5 

M2BO-F 1,40 1,00 223,63 A=2 B=2 

M2BO-GEOMETRIC 4,19 1,00 234,01 A=0,55 

M2BO-EXPONENTIAL 1,28 1,00 271,31 A=0,5 

M2BO-EXTREMEVALUE 1,39 1,00 97,80 A=4 B=30 

M2BO-GEN. EXT. VALUE 1,05 1,00 504,62 A=0 B=1 C=0 

M2BO-GEN. PARETO 84,54 591 594,86 A=1 B=1 C=1 

M2BO-STUDENTST 1,03 1,00 207,74 A=1 

M2BO-LOGNORMAL 1,00 1,00 89,62 A=0 B=10 

M2BO-NEG. BINOMIAL 1,45 1,00 343,25 A=0,6 B=0,125 

M2BO-NORMAL 1,00 1,00 154,02 A=0 B=3 

M2BO-POISSON 1,15 1,00 264,05 A=1 

M2BO-RAYLEIGH 1,33 1,00 302,87 A=0,4 

M2BO-WEIBULL 1,36 1,00 927,43 A=0,5 B=0,5 

MBO (Classical) 1,49 1,00 303,21  

ABC 1,25 1,00 1.00  

ACO 1,26 1,00 1.00  

BBO 1,28 1,00 1.00  

DE 1,25 1,00 1.00  

SGA 1,26 1,00 303,21  

Table 6.5 HUMP with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 
 Mean Best Worst Parameters 

M2BO-BETA 1,42 1,92E3 2,13 A=1 B=1 

M2BO-GAMMA 1,12 1,17E3 1,45 A=0,9 B=0,9 

M2BO-CHISQUARE 1,17 5,31E3 1,65 A=1 

M2BO-BINOMIAL 2,52 28,37 1,71 A=1 B=0,5 

M2BO-F 1,44 5,39E3 1,35 A=1 B=1 

M2BO-GEOMETRIC 11,58 4,61E5 1,85 A=0,01 

M2BO-EXPONENTIAL 1,21 1,68E2 1,50 A=0,5 

M2BO-EXTREMEVALUE 1,26 6,55 1,34 A=4 B=30 

M2BO-GEN. EXT. VALUE 1,41 4,77E2 1,71 A=0 B=1 C=0 

M2BO-GEN. PARETO 15,88 6,11E7 1,31 A=1 B=1 C=1 

M2BO-STUDENTST 1,08 1,00 1,88 A=1 

M2BO-LOGNORMAL 1,39 87,99 1,27 A=0 B=5 

M2BO-NEG. BINOMIAL 2,02 9,61E3 1,74 A=1 B=0,5 

M2BO-NORMAL 1,00 2,95E2 1,53 A=0 B=1 

M2BO-POISSON 2,45 1,43E5 1,81 A=1 

M2BO-RAYLEIGH 1,33 32,10 1,36 A=0,3 

M2BO-WEIBULL 1,27 36,13 1,34 A=1 B=1 

MBO (Classical) 1,55 319,80 1,08  

ABC 1,53 319,80 1.01  

ACO 1,53 319,80 1.00  

BBO 1,55 319,80 1.00  

DE 1,52 319,80 1.00  

SGA 1,53 319,80 2.05  

Table 6.6 MATYAS with M2BO (A. Ateş & Akpamukçu, 2021) 
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 Mean Best Worst Parameters 

M2BO-BETA 1,17E5 3,42E3 4,72E5 A=1,2 B=1,2 

M2BO-GAMMA 1,16E5 1,12E4 4,31E5 A=1 B=1 

M2BO-CHISQUARE 1,02E5 9,66E3 2,69E5 A=1 

M2BO-BINOMIAL 2,57E5 6,51E3 4,73E5 A=1 B=0,5 

M2BO-F 1,20E5 1,22E4 4,39E5 A=1 B=1 

M2BO-GEOMETRIC 9,56E5 8,90E4 3,40E5 A=0,01 

M2BO-EXPONENTIAL 1,29E5 6,97E4 6,33E5 A=1 

M2BO-EXTREMEVALUE 6,37E4 4,61E4 2,27E5 A=0 B=1 

M2BO-GEN. EXT. VALUE 1,35E5 1,31E4 4,40E5 A=0 B=1 C=0 

M2BO-GEN. PARETO 2,76E5 1,05E5 4,01E5 A=1 B=1 C=1 

M2BO-STUDENTST 7,89E4 1,02E4 2,77E5 A=1 

M2BO-LOGNORMAL 1,17E5 9,76E3 2,64E5 A=0 B=1 

M2BO-NEG. BINOMIAL 2,69E5 4,58E4 3,75E5 A=1 B=0,5 

M2BO-NORMAL 9,11E4 7,37E3 6,70E5 A=0 B=1 

M2BO-POISSON 3,34E5 5,39E4 3,08E5 A=1 

M2BO-RAYLEIGH 1,76E5 1,02E3 1,96E5 A=1 

M2BO-WEIBULL 1,09E5 1,26E5 2,61E5 A=0,6 B=0,6 

MBO (Classical) 1,4E5 6.0E3 7.8E5  

ABC 7,3E4 2.8E4 1.6E6  

ACO 5,2E4 5.9E8 7.8E5  

BBO 4,1E5 5.9E8 1.0E8  

DE 1,00 1.00 1.00  

SGA 1,1E4 5.9E8 7.8E5  

Table 6.7 PERM with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 
 Mean Best Worst Parameters 

M2BO-BETA 2,09 5,85 3,07 A= 0,1 B=0,1 

M2BO-GAMMA 1,99 9,71 3,13 A=1 B=1 

M2BO-CHISQUARE 2,19 46,76 3,08 A=1 

M2BO-BINOMIAL 3,11 5,27 3,09 A=1 B=0,5 

M2BO-F 1,85 8,06 3,11 A=1 B=1 

M2BO-GEOMETRIC 1,86 8,76E2 3,15 A=0,01 

M2BO-EXPONENTIAL 2,01 2,63 3,14 A=1 

M2BO-EXTREMEVALUE 1,50 22,73 3,21 A=0 B=1 

M2BO-GEN. EXT. VALUE 2,20 17,92 3,22 A=0 B=1 C=0 

M2BO-GEN. PARETO 5,48 7,72E4 3,06 A=1 B=1 C=1 

M2BO-STUDENTST 1,78 72,54 3,12 A=1 

M2BO-LOGNORMAL 1,30 24,40 3,05 A=0 B=1 

M2BO -NEG. BINOMIAL 3,56 1,00 3,05 A=1 B=0,5 

M2BO-NORMAL 2,10 13,79 3,13 A=0 B=1 

M2BO-POISSON 1,30 9,10 3,02 A=2 

M2BO-RAYLEIGH 1,00 34,94 3,09 A=1 

M2BO-WEIBULL 2,06 16,27 3,11 A=1 B=1 

MBO (Classical) 2,63 52,25 3,10  

ABC 6,78 1,88E8 3,97  

ACO 12,52 5,17E8 7,89  

BBO 2,71 7,84E7 1,00  

DE 11,02 4,70E8 5,94  

SGA 3,60 1,1E8 1,77  

Table 6.8 RASTRIGIN with M2BO (A. Ateş & Akpamukçu, 2021) 
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 Mean Best Worst Parameters 

M2BO-BETA 4,30 1,00 1,13 A=0,1 B=0,1 

M2BO-GAMMA 4,93 31,83 1,15 A=1 B=1 

M2BO-CHISQUARE 5,41 39,09 1,13 A=1 

M2BO-BINOMIAL 9,16 1,42 1,00 A=1 B=0,5 

M2BO-F 5,08 39,90 1,06 A=1 B=1 

M2BO-GEOMETRIC 4,65 1,57E3 1,16 A=0,01 

M2BO-EXPONENTIAL 4,95 86,72 1,11 A=1 

M2BO-EXTREMEVALUE 3,69 20,60 1,20 A=0 B=1 

M2BO-GEN. EXT. VALUE 6,62 39,39 1,09 A=0 B=1 C=0 

M2BO-GEN.PARETO 15,40 1,23E5 1,17 A=1 B=1 C=1 

M2BO-STUDENTST 6,31 18,98 1,05 A=1 

M2BO-LOGNORMAL 2,54 74,89 1,12 A=0 B=1 

M2BO-NEG. BINOMIAL 8,18 5,29 1,12 A=1 B=0,5 

M2BO-NORMAL 5,58 72,57 1,11 A=0 B=1 

M2BO-POISSON 1,83 45,89 1,09 A=2 

M2BO-RAYLEIGH 1,00 1,15E2 1,04 A=1 

M2BO-WEIBULL 4,17 4,05 1,11 A=1 B=1 

MBO (Classical) 6,95 16,82 1,08  

ABC 43,36 3,87E6 27,89  

ACO 249,39 1,85E7 87,66  

BBO 14,87 1,19E6 10,18  

DE 38,63 4,04E6 22,95  

SGA 15,36 1,4E6 5,68  

Table 6.9 ROSENBROCK with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 

 

 
 Mean Best Worst Parameters 

M2BO-BETA 9,32 26,14 18,76 A=1 B=1 

M2BO-GAMMA 8,07 1,40 19,32 A=1 B=1 

M2BO-CHISQUARE 7,57 4,71 19,12 A=1 

M2BO-BINOMIAL 16,85 4,31 20,25 A=1 B=0,5 

M2BO-F 6,45 1,00 20,08 A=1 B=1 

M2BO-GEOMETRIC 7,90 50,83 19,60 A=0,01 

M2BO-EXPONENTIAL 6,59 18,64 19,16 A=1 

M2BO-EXTREMEVALUE 4,28 31,36 19,72 A=0 B=1 

M2BO-GEN. EXT. VALUE 8,00 6,18 20,23 A=0 B=1 C=0 

M2BO-GEN. PARETO 23,49 3,83E5 19,74 A=1 B=1 C=1 

M2BO-STUDENTST 7,70 10,11 20,89 A=1 

M2BO-LOGNORMAL 3,07 1,25 20,31 A=0 B=1 

M2BO-NEG. BINOMIAL 16,17 4,65 20,32 A=1 B=0,5 

M2BO-NORMAL 5,86 42,28 19,71 A=0 B=1 

M2BO-POISSON 3,32 1,03 19,96 A=2 

M2BO-RAYLEIGH 1,00 18,00 20,08 A=1 

M2BO-WEIBULL 5,98 6,78 20,31 A=1 B=1 

MBO (Classical) 11,29 2,47 21,21  

ABC 45,43 7,40E7 1,00  

ACO 117,52 1,73E8 5,44  

BBO 8,89 7,89E6 21,21  

DE 22,93 4,93E7 21,21  

SGA 9,60 1,01E7 21,21  

Table 6.10 SPHERE with M2BO (A. Ateş & Akpamukçu, 2021) 
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 Mean Best Worst Parameters 

M2BO-BETA 2,06 44,24 1,65 A=1 B=1 

M2BO-GAMMA 1,93 2,47E2 2,01 A=1 B=1 

M2BO-CHISQUARE 1,90 31,54 2,26 A=1 

M2BO-BINOMIAL 3,05E2 5,84 2,34 A=1 B=0,5 

M2BO-F 1,83 23,87 1,22 A=1 B=1 

M2BO-GEOMETRIC 5,88 9,40E4 3,19 A=0,01 

M2BO-EXPONENTIAL 1,81 89,19 2,67 A=1 

M2BO-EXTREMEVALUE 1,61 9,44 1,42 A=0 B=1 

M2BO-GEN. EXT. VALUE 2,13 117,56 2,05 A=0 B=1 C=0 

M2BO-GEN. PARETO 2,06 8,99E4 2,14 A=1 B=1 C=1 

M2BO-STUDENTST 1,92 38,21 1,80 A=1 

M2BO-LOGNORMAL 1,50 1,75E2 3,78 A=0 B=1 

M2BO-NEG. BINOMIAL 2,49E2 1,00 2,13 A=1 B=0,5 

M2BO-NORMAL 2,07 8,42 1,62 A=0 B=1 

M2BO-POISSON 1,59 5,430E3 1,00 A=2 

M2BO-RAYLEIGH 1,00 1,97E2 3,74 A=1 

M2BO-WEIBULL 1,85 17,18 2,33 A=1 B=1 

MBO (Classical) 2,23 55,64 1,77  

ABC 1,93 2,23E7 5,00  

ACO 1,46E2 1,72E7 2,04  

BBO 1,12 9,46E6 2,82  

DE 2,34 3,28E7 5,16  

SGA 1,76 1,45E7 30,38  

Table 6.11 ZAKHAROV with M2BO (A. Ateş & Akpamukçu, 2021) 

 

 

 

 

 

 

 

 
 Mean Best Worst Parameters 

M2BO-BETA 63,69 29,00 1,99 A=1 B=1 

M2BO-GAMMA 80,60 1,00 1,77 A=1 B=1 

M2BO-CHISQUARE 50,25 1,00 1,42 A=1 

M2BO-BINOMIAL 244,56 39,00 1,78 A=2 B=0,7 

M2BO-F 74,69 9,00 1,54 A=1 B=1 

M2BO-GEOMETRIC 77,95 19,00 1,65 A=0,55 

M2BO-EXPONENTIAL 74,56 9,00 1,61 A=1,5 

M2BO-EXTREMEVALUE 72,14 9,00 1,19 A=0 B=10 

M2BO-GEN. EXT.VALUE 68,74 49,00 1,21 A=0 B=1 C=0 

M2BO-GEN. PARETO 701,42 5,42E4 1,62 A=1 B=1 C=1 

M2BO-STUDENTST 112,01 9,00 2,08 A=1 

M2BO-LOGNORMAL 64,25 9,00 1,28 A=0 B=2 

M2BO-NEG. BINOMIAL 115,86 1,00 1,00 A=1 B=0,5 

M2BO-NORMAL 79,74 1,00 1,84 A=0 B=5 

M2BO-POISSON 81,61 1,00 1,41 A=1 

M2BO-RAYLEIGH 196,77 9,00 1,31 A=1 

M2BO-WEIBULL 69,30 9,00 1,95 A=0,6 B=0,6 

MBO (Classical) 82,54 29,00 1,62  

ABC 1,00 73,66 1,62  

ACO 63,93 1,31E4 35,41  

BBO 34,42 1,31E4 1,62  

DE 31,31 6,89E3 4,55  

SGA 2,76 1,31E4 1,62  

Table 6.12 SHUBERT with M2BO (A. Ateş & Akpamukçu, 2021) 
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6.4.Tuning of 3 DOF Hover System Controller Parameters with Modified MBO 

 

In this study, in order to apply the topic that is claimed in this thesis to a real engineering 

problem, the 3 Degree of Freedom Hover system is  used. This system simulates the flight 

control experiment which is produced by Quanser. It can simulate the quadcopter flight 

system. This simulation is done by trying to act as if using the pitch, roll and yaw angles of 

the real system. To simulate these angles, the system uses multi input signals. At this point 

a K feedback gain matrix is used to control the simulation. This control is realized by using 

these multiple input signals in the simulation. So the main focus is on the K feedback gain 

matrix if the control performance would be enhanced. In the basic model LQR control 

structure is used to get the K matrix. In this model quadratic Riccati Equations, shown in Eq. 

6.2, are solved according to Q and R symmetry matrices and the control signal is acquired 

shown in Eq. 6.3.(A. Ateş & Akpamukçu, 2021) 

 

T T

0

1
J X QX U RU dt

2



   
                                                                                (6.2) 

 

U KE                                                                                                         (6.3)

                                                         

K represents feedback gain matrix. E feedback errors from sensors.  

After calculating the K matrix, the values are applied to system and the control is ensured. 

Since this calculation phase is complicated, in the literature the idea of using optimization 

algorithms came into prominence. In the literature for example the SMDO and DSO 

algorithms are used for this problem. In this study, as introduced in the above chapter M2BO 

algorithm will be used by using different distribution functions to see the effect of the claims 

of this thesis on a real engineering problem. The results will be compared with classical 

MBO, SMDO and DSO. 

6.4.1. K feedback gain matrix optimization with M2BO for simulation model of 3 

DOF hover: 

In this part, K feedback gain matrix will be optimized with the M2BO algorithm with using 

different distribution functions. The entities that will be optimized will be the four different 

parameters of K feedback gain matrix. The optimized parameters will be applied to system 

and the result changes will be observed. The flow chart of the proposed algorithm shown in 

Fig. 6.2 and the algorithm structure is shown in Fig. 6.1. 
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In this algorithmic structure the distribution function that will used should be selected first. 

In this study seventeen distribution function will be used to observe the change effect. After 

each run, the 4 parameters for the K feedback gain matrix are acquired to apply to 3 DOF 

Hover System. 

It is known that all optimization problems need an objective function to minimize or 

maximize. In this problem since there are multi inputs and outputs, six error function values, 

that are calculated according to mean square error. A weighting coefficient is assigned with 

each error and a new formula of error, which is a combination of these six error functions, 

is formed as objective function. This function is called as multi-objective function (MOF). 

The formula is given in Eq. 6.4.(A. Ateş & Akpamukçu, 2021) 

MOF= w1MSE1+w2MSE2+w3MSE3+w4MSE4+w5MSE5+w6MSE6                        (6.4) 

In this formula w1, w2, w3, w4, w5, w6 are the weighting factors. MSE1, MSE2, MSE3, 

MSE4, MSE5, MSE6 are six mean square error functions that constitutes the MOF. In this 

study the weighting factors are set as “1”. So the main aim is to specify parameters that form 

the K matrix to minimize MOF. Table 34 shows the results that are acquired from the runs 

of M2BO to gain that parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Optimization process of the 3 DOF Hover (A. Ateş & Akpamukçu, 2021) 
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Figure 6.2 Flow chart of M2BO Algorithm (A. Ateş & Akpamukçu, 2021) 
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It is seen in the Table 6.13 that 17 different distribution functions are used with M2BO. The 

K feedback gain matrix is formed with each parameter combination and applied to the 

simulation model of 3 DOF Hover system. As it is known, the results of SMDO and DSO 

for this system was obtained in (A. Ateş & Akpamukçu, 2021). By the way, the results for 

the classical MBO are also derived. Now in Figure 6.3, Figure 6.4 and Figure 6.5; the pitch, 

roll and yaw angles are depicted respectively.  

In Figure 6.3 pitch angle responses are depicted. Firstly, it can be seen that classical MBO 

(red-dot) is very successful according to other optimization algorithms. It is known that all 

optimization algorithms are not suitable for a particular problem. But here it can be seen that 

MBO is very effective for 3 DOF Hover system controller problem. On the other hand, it 

can be seen from the Figure 6.3 that M2BO algorithm with different distribution functions is 

better than the classical MBO. Especially M2BO with Normal Distribution is the best 

performing algorithm. So it can be inferred that this concept of changing randomization via 

using different distribution functions is applicable not only for benchmark functions but also 

for the real engineering problems. This effect can also have seen from the settling and rising 

times too. 

Likewise, the pitch angle, the roll angles also show the positive effect. As it is seen in Table 

6.13 classical MBO overwhelmed the DSO and SMDO. It shows a very good performance 

as it is seen in Fig. 6.4. But M2BO (red-dot), especially M2BO with Normal Distribution, 

again shows a superior performance.  

For the yaw angle the results are closer but M2BO with Generated Pareto optimization has a 

better rise and settling time performance as it is seen in the Figure 6.5 and Table 6.13. 

As a result, it can be said that MBO is a suitable algorithm for real engineering problems. 

Although this algorithm shows a good performance, better performances can be acquired by 

tuning the randomization process. In the result the net effect of this change is seen by the use 

of M2BO algorithm with different distribution functions. This study is also important from 

the point of view that, this concept can enhance not only benchmarks but the real engineering 

problems.  
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 K1 K2 K3 K4 Dist. Parameters 

M2BO-BETA 57.8398 166.2913 41.4616 61.8107 A=1 B=1 

M2BO-GAMMA 59.7688 165.6915 42.2567 63.6452 A=1 B=1 

M2BO-CHISQUARE 58.0510 167.1579 41.1612 61.6889 A=1 

M2BO-BINOMIAL 58.0130 166.3435 41.4548 61.8323 A=1 B=0.5 

M2BO-F 58.7392 164.7325 42.0116 62.0901 A=1 B=1 

M2BO-GEOMETRIC 59.8624 165.8864 41.7143 65.6227 A=0.01 

M2BO-EXPONENTIAL 58.1030 165.1236 42.1255 64.5606 A=1 

M2BO-EXTREMEVALUE 59.0080 169.0899 41.2377 60.9626 A=0 B=1 

M2BO-GEN. EXT. VALUE 59.2014 166.8629 41.4716 61.8465 A=0 B=1 C=0 

M2BO-GEN. PARETO 59.4067 166.2895 40.5275 65.4693 A=1 B=1 C=1 

M2BO-STUDENTST 59.1608 167.9788 40.6408 61.6892 A=1 

M2BO-LOGNORMAL 57.8919 164.6466 43.0579 64.4928 A=0 B=1 

M2BO-NEG. BINOMIAL 59.0665 168.0757 41.3283 62.8102 A=1 B=0.5 

M2BO-NORMAL 58.2249 167.8959 40.4795 60.1212 A=0 B=1 

M2BO-POISSON 58.1361 166.4314 42.2236 64.7353 A=2 

M2BO-RAYLEIGH 57.9360 163.8931 42.9294 64.1748 A=1 

M2BO-WEIBULL 58.8751 165.1920 41.2942 62.6386 A=1 B=1 

MBO (Classical) 64.4677 173.2275 52.6065 76.9007  

SMDO (Abdullah Ates et 

al., 2020) 

61.2391 79.5224 48.1529 43.7932  

DSO (Abdullah Ates et al., 

2020) 

78.9259 68.7503 60.6965 68.1820  

Table 6.13 Controller Parameters for 3 DOF Hover System (A. Ateş & Akpamukçu, 2021) 
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Figure 6.3 Pitch Angle Input Signals Comparisons for 3 DOF Hover Simulation Model (A. Ateş & 

Akpamukçu, 2021) 

 

Figure 6.4 Roll Angle Input Signals Comparisons for 3 DOF Hover Simulation Model(A. Ateş & 

Akpamukçu, 2021) 
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Figure 6.5 Yaw Angle Input Signals Comparisons for 3 DOF Hover Simulation Model (A. Ateş & 

Akpamukçu, 2021) 

6.4.2. Experimental result: 

In this study 3 DOF Hover system experiment set was used. This set was manufactured by 

Quanser. The system is comprised of four propellers and four DC motors. The set is depicted 

in Fig. 6.6. This system does its work by rotating the roll, pitch and yaw angles. Pitch and 

roll angles are used to produce lift force and the propeller motors are used to produce total 

torque. Two of the propellers are counter-rotating; so that the total torque in the system is 

balanced when the thrust of the four propellers is approximately equal (3 DOF Hover - 

Quanser,2020). 

 

 

 

 

 

 

 

 

 

Figure 6.6 DOF Hover Experimental Setup (A. Ateş & Akpamukçu, 2021) 
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The values acquired by the M2BO for K feedback gain matrix shown in the Table 6.13 were 

applied in the experiment set given in Figure 6.6. The pitch, roll and the yaw angles derived 

from the experiment set are comparatively. 

In Figure 6.7 pitch angle responses are depicted in the experiment set. As it can be seen from 

the figure classical MBO (bold blue) has better rise and settlement time in comparison with 

the other optimization algorithms DSO and SMDO. On the other hand, it can be seen from 

the Figure 6.7 that M2BO algorithm (bold green) with different distribution functions is 

better than the classical MBO. Especially M2BO with Beta Distribution is the best 

performing algorithm. So it can be inferred that this concept of changing randomization via 

using different distribution functions is applicable to real engineering problems. In this case, 

this approach not only enhanced the original algorithm but also resulted in best result in the 

literature. This result gives us a good evidence of applicability of our approach. 

Likewise, the pitch angle, the roll angles also show the positive effect. As it is seen in Figure 

6.8 classical M2BO with Beta Distribution shows a superior performance compared to other 

optimization algorithms.  

Finally, for the yaw angle system, the positive effect can have seen in Figure 6.9. Especially 

M2BO with Beta Distribution shows a superior performance compared to other optimization 

algorithms.  

So from the above studies, it is obvious that the M2BO algorithm is very successful in 

benchmark functions and 3 DOF Hover System which is a real engineering problem. The 

contribution of modifying the random number acquiring mechanism of stochastics 

algorithms is promising. As it can be seen above studies, the basic philosophy of the 

algorithm is not changed. The only thing that is done is tuning the randomization process. 

And this effort resulted in best optimal values for the algorithms and this made the target 

systems more robust. Evaluating this studies, an induction can be done as stochastics 

optimization algorithms can be enhanced by using the proper distribution functions in their 

random number acquirement steps. 
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Figure 6.7 Pitch Angle Input Signals Comparisons for 3 DOF Hover Real System(A. Ateş & 

Akpamukçu, 2021) 

 

Figure 6.8 Yaw Angles Input Signals Comparisons for 3 DOF Hover Real System(A. Ateş & 

Akpamukçu, 2021) 
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Figure 6.9 Roll Angle Input Signals Comparisons for 3 DOF Hover Real System (A. Ateş & 

Akpamukçu, 2021) 
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 CONCLUSION 

 

In this thesis the usage effect of the different distribution functions in stochastics 

optimization algorithms is analyzed. Firstly the characteristics of the distribution functions 

and statistical moments are presented. Probability distribution, statistical moments and 

finally 15 different distribution functions are analyzed mathematically. Secondly the usage 

of distribution functions in acquisition of random numbers is indicated so that the importance 

of distribution functions is shown in randomization processes and the main reason of 

selecting this topic in this thesis is emphasized. Then the randomness characteristics of 

stochastics methods is analyzed. Then the usage effect of the distribution functions in 

stochastic optimization methods is exemplified over the SMDO method. For this 

exemplification, an application is used so that all the results can be observed easily. So for 

these purposes; firstly, the original SMDO algorithm is explained. Then how the different 

distribution functions in the SMDO method will be used is presented. Then the benchmark 

test functions are explained and the specifications are shown. After that, the MATLAB 

toolbox “SMDO Benchmark Test Distribution Test Program” introduced. Then the results 

of using distribution functions in SMDO method is analyzed and compared with existing 

literature results and finally the original MBO method is explained. Then different 

distribution functions are used with MBO to change randomization process. Then this 

modified form of MBO is applied on most used benchmark functions. Furthermore modified 

MBO is applied on 3 DOF Hover system parameter tuning and the results are shown and 

compared. 

So from all the analyzes taken part in this thesis the effect of using different distribution 

functions other than uniform distribution, which is classically used in literature, is shown. In 

most trials in this thesis this effect was positive. So this topic deserves to be evaluated in 

different areas. Especially in real engineering problems small improvements in processes are 

very valuable. As it is shown in this thesis, it is very probable by using suitable distribution 

functions in randomization phases of stochastics methods if they are used in the processes 

of real engineering problems. In this study very hard benchmark functions that are accepted 

in the literature are used. And the method offered gained success substantially which gives 

great hope for other studies. As it is known all problems have their own conditions that must 

be taken into account. But randomization is a general area which is used in lots of problem. 

So efforts to improve the performance of stochastic based optimization algorithms with 
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reasonable analyzes, in our case with using suitable distribution functions, are promising 

studies. 
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