T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SONLU ELEMANLAR YÖNTEMİ İLE MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN SAYISAL ÇÖZÜMLERİ

Seydi Battal Gazi KARAKOÇ

DOKTORA TEZİ MATEMATİK ANABİLİM DALI

> MALATYA Aralık 2011

İNÖNÜ UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

NUMERICAL SOLUTIONS OF MODIFIED EQUAL WIDTH WAVE EQUATION WITH FINITE ELEMENTS METHOD

Seydi Battal Gazi KARAKOÇ

Ph. D. Thesis MATHEMATICS DEPARTMENT

MALATYA

December 2011

Tezin Başlığı	:	Sonlu Elemanlar Yöntemi ile Modifiye Edilmiş Eşit Genişlikli
		Dalga Denkleminin Sayısal Çözümleri
Tezi Hazırlayan	:	Seydi Battal Gazi KARAKOÇ

Sınav Tarihi : 23.12.2011

Yukarıda adı geçen tez jürimizce değerlendirilerek Matematik Anabilim Dalı'nda Doktora Tezi olarak kabul edilmiştir.

Sınav Jüri Üyeleri (İlk isim jüri başkanı, ikinci isim tez danışmanı)

Prof. Dr. İdris DAĞ	
Yrd. Doç. Dr. Turabi GEYİKLİ	
Prof. Dr. Bilal ALTAY	
Doç. Dr. Alaattin ESEN	
Yrd. Doç. Dr. Dursun IRK	

Yrd. Doç. Dr. Turabi GEYİKLİ Tez Danışmanı

İnönü Üniversitesi Fen Bilimleri Enstitüsü Onayı

Prof. Dr. Asım KÜNKÜL Enstitü Müdürü

ONUR SÖZÜ

Doktora Tezi olarak sunduğum "Sonlu Elemanlar Yöntemi ile Modifiye Edilmiş Eşit Genişlikli Dalga Denkleminin Sayısal Çözümleri" başlıklı bu çalışmanın bilimsel ahlak ve geleneklere aykırı düşecek bir yardıma başvurmaksızın tarafımdan yazıldığını ve yararlandığım bütün kaynakların, hem metin içinde hem de kaynakçada yöntemine uygun biçimde gösterilenlerden oluştuğunu belirtir, bunu onurumla doğrularım.

Seydi Battal Gazi KARAKOÇ

ÖZET

Doktora Tezi

SONLU ELEMANLAR YÖNTEMİ İLE MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN SAYISAL ÇÖZÜMLERİ

Seydi Battal Gazi KARAKOÇ

İnönü Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı

219+xxv sayfa

2011

Danışman: Yrd. Doç. Dr. Turabi GEYİKLİ

Bu doktora tezi beş bölümden oluşmaktadır. Birinci bölümde sonlu fark, varyasyonel, ağırlıklı kalan ve sonlu elemanlar gibi sayısal yöntemler ile ilgili genel bilgiler verildikten sonra spline ve B-spline baz fonksiyonlar hakkında temel kavramlar verildi. Ayrıca, tez boyunca sayısal çözümleri araştırılan Modified Equal Width wave (MEW) denklemi ve model problemler tanıtıldı.

İkinci, üçüncü, dördüncü ve beşinci bölümler bu tezin orijinal kısımlarını oluşturmaktadır. İkinci bölümde, MEW denkleminin sayısal çözümleri, kuadratik ve kübik B-spline fonksiyonlar kullanılarak Galerkin sonlu eleman yöntemi ile elde edildi. Bu yöntem Bölüm 1'de verilen iki model probleme uygulandı. Elde edilen sayısal sonuçlar literatürdeki mevcut sonuçlar ile karşılaştırılarak I_1 , I_2 ve I_3 ile gösterilen korunum sabitleri ile L_2 ve L_{∞} hata normları tablolar halinde verildi. Uçüncü bölümde; lineer, kuadratik ve kübik B-spline fonksiyonlar kullanılarak Petrov-Galerkin sonlu eleman yöntemi ile MEW denkleminin sayısal çözümleri elde edildi. Bu yöntem Bölüm 1'de verilen iki model probleme uygulandı. Elde edilen sayısal sonuçlar literatürdeki mevcut sonuçlar ile karşılaştırılarak korunum sabitleri ile hata normları tablolar halinde verildi.

Dördüncü bölümde; kuartik ve sektik B-spline fonksiyonlar kullanılarak Subdomain sonlu eleman yöntemi ile MEW denkleminin sayısal çözümleri elde edildi. Bu yöntem Bölüm 1'de verilen iki model probleme uygulandı. Elde edilen sayısal sonuçlar literatürdeki mevcut sonuçlar ile karşılaştırılarak korunum sabitleri ile hata normları tablolar halinde verildi.

Beşinci bölümde; kübik, kuintik ve septik B-spline fonksiyonlar kullanılarak Kollokasyon sonlu eleman yöntemi ile MEW denkleminin sayısal çözümleri elde edildi. Bu yöntem Bölüm 1'de verilen üç model probleme uygulandı. Elde edilen sayısal sonuçlar literatürdeki mevcut sonuçlar ile karşılaştırılarak korunum sabitleri ile hata normları tablolar halinde verildi. MEW denkleminin sayısal çözümlerini elde etmek için kullanılan bütün yöntemler için kararlılık analizi yapıldı.

ANAHTAR KELİMELER: Modified Equal Width Wave Denklemi, Sonlu Elemanlar Yöntemi, B-Spline Fonksiyonlar, Galerkin Yöntemi, Petrov-Galerkin Yöntemi, Subdomain Yöntemi, Kollokasyon Yöntemi, Kararlılık Analizi.

ABSTRACT

Ph.D. Thesis

NUMERICAL SOLUTIONS OF MODIFIED EQUAL WIDTH WAVE EQUATION WITH FINITE ELEMENTS METHOD

Seydi Battal Gazi KARAKOÇ

İnönü University Graduate School of Natural and Applied Sciences Department of Mathematics

219+xxv pages

2011

Supervisor: Yrd. Doç. Dr. Turabi GEYİKLİ

This Ph.D. thesis consists of five chapters. In the first chapter, after giving general information about the numerical methods such as finite difference, variatonal, weighted residual and finite elements method, fundamental concepts about spline and B-spline basis functions are given. Moreover, Modified Equal Width Wave (MEW) equation and model problems of which solutions are sought throughout the thesis are introduced.

The second, third, fourth and fifth chapters constitute the orijinal parts of this thesis. In the second chapter, numerical solutions of the MEW equation are obtained by Galerkin finite element method with quadratic and cubic B-spline functions. This method is applied to two model problems given in Chapter 1. The obtained numerical results are compared with existing results in the literature and the invariants denoted by I_1 , I_2 and I_3 and the error norms L_2 and L_{∞} are given in the form of tables.

In the third chapter, numerical solutions of the MEW equation are obtained by Petrov-Galerkin finite element method with linear, quadratic and cubic B-spline functions. This method is applied to two model problems given in Chapter 1. The obtained numerical results are compared with existing results in the literature and the invariants and the error norms are given in the form of tables.

In the fourth chapter, numerical solutions of the MEW equation are obtained by Subdomain finite element method with quartic and sextic B-spline functions. This method is applied to two model problems given in Chapter 1. The obtained numerical results are compared with existing results in the literature and the invariants and the error norms are given in the form of tables.

In the fifth chapter, numerical solutions of the MEW equation are obtained by Collocation finite element method with cubic, quintic and septic B-spline functions. This method is applied to three model problems given in Chapter 1. The obtained numerical results are compared with existing results in the literature and the invariants and the error norms are given in the form of tables. Stability analysis has been made for all the methods used to obtain the numerical solutions of the MEW equation.

KEY WORDS: Modified Equal Width Wave Equation, Finite Elements Method, B-Spline Functions, Galerkin Method, Petrov-Galerkin Method, Subdomain Method, Collocation Method, Stability Analysis.

TEŞEKKÜR

Doktora eğitimim süresince danışmanlığımı yürüten ve bu tezin hazırlanması sırasında her zaman yakın ilgi ve yardımlarını gördüğüm değerli hocam Sayın Yrd. Doç. Dr. Turabi GEYİKLİ'ye ayrıca yüksek lisans ve doktora süresince bana sürekli yardımcı olan bölüm başkanımız, Sayın Prof. Dr. Sadık KELEŞ'in şahsında bütün bölüm hocalarıma, karşılaştığım güçlüklerin üstesinden gelmem için bana yol gösteren değerli hocalarım Doç. Dr. Alaattin ESEN ve Prof. Dr. Bilal ALTAY'a, tez süresince bana her zaman destek olan değerli arkadaşlarım Öğr. Grv. Dr. N. Murat YAĞMURLU ve Öğr. Grv. Dr. Yusuf UÇAR'a, sabır ve sevgi ile bana destek olan eşim Meltem, kızlarım Elif Azra ve Zehra Rana'ya, hiçbir zaman emeklerini ödeyemeyeceğim sevgili annem ve babama teşekkürü bir borç bilirim.

İÇİNDEKİLER

Ö	ZET			i
A	BST	RACT	ı	iii
\mathbf{T}	EŞEI	KKÜR		\mathbf{v}
İζ	ÇİNE	EKİL	ER	vi
G	iriş			1
1	\mathbf{TE}	MEL F	AVRAMLAR	4
	1.1	Sonlu	Fark Yöntemleri	4
	1.2	Varya	syonel Yöntemler	5
		1.2.1	Rayleigh-Ritz Yöntemi	6
	1.3	Ağırlı	klı Kalan Yöntemleri	7
		1.3.1	Galerkin Yöntemi	8
		1.3.2	Petrov-Galerkin Yöntemi	8
		1.3.3	Kollokasyon Yöntemi	9
		1.3.4	Subdomain Yöntemi	10
	1.4	Sonlu	Elemanlar Yöntemi	10
	1.5	Spline	e Fonksiyonlar	12
	1.6	B-Spli	ine Fonksiyonlar	15
		1.6.1	Lineer B-Spline Fonksiyonlar	16
		1.6.2	Kuadratik B-Spline Fonksiyonlar	18
		1.6.3	Kübik B-Spline Fonksiyonlar	19
		1.6.4	Kuartik B-Spline Fonksiyonlar	21
		1.6.5	Kuintik B-Spline Fonksiyonlar	22
		1.6.6	Sektik B-Spline Fonksiyonlar	25
		1.6.7	Septik B-Spline Fonksiyonlar	27
	1.7	Modif	iye Edilmiş Eşit Genişlikli (MEW) Dalga Denklemi	29

		1.7.1 Model Problemler	33
2	M	DDİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİ-	
	NİP	N GALERKIN SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ	36
	2.1	Kuadratik B-spline Fonksiyonlar ile Galerkin Yöntemi	37
	2.2	Kübik B-spline Fonksiyonlar ile Galerkin Yöntemi	49
3	MC	DİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİ-	
	NİP	n petrov-galerkin sonlu eleman yöntemi ile	
	ÇÖ	ZÜMÜ	73
	3.1	Kuadratik B-spline Fonksiyonlar ile Petrov-Galerkin Yöntemi	73
	3.2	Kübik B-spline Fonksiyonlar ile Petrov-Galerkin Yöntemi	92
4	MC	DİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİ-	
	NİP	N SUBDOMAIN SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ	113
	4.1	Kuartik B-spline Fonksiyonlar ile Subdomain Yöntemi	113
	4.2	Sektik B-spline Fonksiyonlar ile Subdomain Yöntemi	133
5	MC	DİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİ-	
	NİP	n kollokasyon sonlu eleman yöntemi ile çö-	
	ZÜ	MÜ	154
	5.1	Kübik B-spline Kollokasyon Yöntemi	154
	5.2	Kuintik B-spline Kollokasyon Yöntemi	177
	5.3	Septik B-spline Kollokasyon Yöntemi	193
K	AYN	AKLAR	215
ÖZ	ZGE	ÇMİŞ	219

TABLOLAR LİSTESİ

Tablo	1.1	$Q_m(x)$ ve $Q_m'(x)$ 'in düğüm noktalarındaki değerleri	18
Tablo	1.2	$\phi_m(x), \phi_m'(x)$ ve $\phi_m''(x)$ 'in düğüm noktalarındaki değerleri	20
Tablo	1.3	$\phi_m(x), \phi_m'(x), \phi_m''(x)$ ve $\phi_m'''(x)$ 'in düğüm noktalarındaki değerleri.	22
Tablo	1.4	$\phi_m(x), \phi_i'(x), \phi_i''(x), \phi_i'''(x)$ ve $\phi_i^{(iv)}(x)$ 'in düğüm noktalarındaki değer-	
		leri	24
Tablo	1.5	$\phi_m(x), \ \phi_m'(x), \phi_m''(x), \phi_m'''(x), \phi_m^{(iv)}(x)$ ve $\phi_m^{(v)}(x)$ 'in düğüm noktaların-	
		daki değerleri.	26
Tablo	1.6	$\phi_m(x), \phi'_m(x), \phi''_m(x), \phi'''_m(x), \phi^{(iv)}_m(x), \phi^{(v)}_m(x)$ ve $\phi^{(vi)}_m(x)$ 'nın düğüm nok-	
		talarındaki değerleri	28
Tablo	2.1	$\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
		1 ile elde edilen sayısal değerleri	42
Tablo	2.2	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 1	
		ile elde edilen sayısal değerleri	43
Tablo	2.3	$\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
		2 ile elde edilen sayısal değerleri	43
Tablo	2.4	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
		ile elde edilen sayısal değerleri	44
Tablo	2.5	$\mu=1,h=0.1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in	
		Uygulama 3 ile elde edilen sayısal değerleri	46
Tablo	2.6	$\mu=1,h=0.1,A=0.25,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
		ile elde edilen sayısal değerleri	47
Tablo	2.7	μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
		Uygulama 3 ile elde edilen korunum sabitleri	47
Tablo	2.8	$\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
		Uygulama 3 ile elde edilen korunum sabitleri	48

Tablo	2.9 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	4 ile elde edilen sayısal değerleri	48
Tablo	2.10 $\mu=1,h=0.1,A=0.25,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	49
Tablo	2.11 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri.	49
Tablo	2.12 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	50
Tablo	2.13 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	1 ile elde edilen sayısal değerleri	55
Tablo	2.14 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 1	
	ile elde edilen sayısal değerleri	55
Tablo	2.15 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	2 ile elde edilen sayısal değerleri	56
Tablo	2.16 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 2	
	ile elde edilen sayısal değerleri	57
Tablo	2.17 μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
	Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.	58
Tablo	2.18 h = 0.1, Δt = 0.01, 0 \leq x \leq 80 olmak üzere Problem 1'in farklı A	
	değerleri için elde edilen korunum sabitleri ve hata normları	60
Tablo	2.19 Problem 1'in $0 \leq x \leq 80$ aralığında $h=0.1, \Delta t=0.05$ ve $A=0.25,$	
	0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik	
	ve hız değerleri	60
Tablo	2.20 Δt = 0.05, A = 0.25, t = 20, 0 \leq x \leq 80 için hesaplanan hata	
	normları ve yakınsama oranları	61
Tablo	2.21 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	61
Tablo	2.22 Problem 2'nin 0 $\leq x \leq 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
	$\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.	62
Tablo	2.23 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	63

Tablo	2.24	4 Problem 2'nin 0 $\leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
		1, $\Delta t=0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
		ması	63
Tablo	2.25	$5~\mu=1,~A=0.25,~\Delta t=0.05,~0\leq x\leq 80$ için Problem 1'in Uygulama	
		3 ile elde edilen sayısal değerleri	65
Tablo	2.26	$5~\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
		ile elde edilen sayısal değerleri	65
Tablo	2.27	$7~\mu=1,~A=0.25,~\Delta t=0.05,~0\leq x\leq 80$ için Problem 1'in Uygulama	
		4 ile elde edilen sayısal değerleri	67
Tablo	2.28	$8~\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
		ile elde edilen sayısal değerleri	67
Tablo	2.29	$\theta \mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
		Uygulama 4 ile elde edilen korunum sabitleri. . .	68
Tablo	2.30	$\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
		Uygulama 4 ile elde edilen korunum sabitleri	68
Tablo	2.31	$\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
		Uygulama 5 ile elde edilen sayısal değerleri	69
Tablo	2.32	$2\mu=1,A=0.25,h=0.1$ için $0\leq x\leq 80$ aralığında Problem 1'in	
		Uygulama 5 ile elde edilen sayısal değerleri	69
Tablo	2.33	$B \mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
		Uygulama 5 ile elde edilen korunum sabitleri. .	70
Tablo	2.34	$4 \mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
		Uygulama 5 ile elde edilen korunum sabitleri	70
Tablo	2.35	5 Problem 1'in 0 $\leq x \leq$ 80 aralığında $h = 0.1, \mu = 1, A = 0.25,$	
		$\Delta t = 0.05$, için $t = 20$ 'de farklı uygulama ve çalışmalardan elde	
		edilen korunum sabitleri ve hata norm değerleri	71
Tablo	3.1	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 1 ile elde edilen sayısal değerleri	77
Tablo	3.2	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 1 ile elde edilen sayısal değerleri	77

Tablo	3.3	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 2 ile elde edilen sayısal değerleri	78
Tablo	3.4	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
		ile elde edilen sayısal değerleri	79
Tablo	3.5	μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
		Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.	80
Tablo	3.6	h = 0.1, Δt = 0.01, 0 $\leq x \leq$ 80 olmak üzere Problem 1'in farklı A	
		değerleri için elde edilen korunum sabitleri ve hata norm değerleri	81
Tablo	3.7	Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve $A = 0.25$,	
		0.5,0.75,1.0değerleri için Uygulama 2 ile elde edilen konum, genlik	
		ve hız değerleri	81
Tablo	3.8	Δt = 0.05, A = 0.25, t = 20, 0 \leq x \leq 80, için hesaplanan hata	
		normları ve yakınsama oranları	82
Tablo	3.9	h = 0.1, A_1 = 1, A_2 = 0.5, μ = 1, $0 \leq x \leq 80$ için Problem 2'nin	
		Uygulama 2 ile elde edilen sayısal değerleri	83
Tablo	3.10	Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
		$\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.	84
Tablo	3.11	$\mu=1,h=0.1,A_1=-2,A_2=1,0\leq x\leq 150$ için Problem 2'nin	
		Uygulama 2 ile elde edilen sayısal değerleri	85
Tablo	3.12	Problem 2'nin 0 $\leq x \leq$ 150 aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
		1, $\Delta t=0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
		ması	86
Tablo	3.13	$\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
		3 ile elde edilen sayısal değerleri	87
Tablo	3.14	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
		ile elde edilen sayısal değerleri	87
Tablo	3.15	$\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
		4 ile elde edilen sayısal değerleri	90
Tablo	3.16	$\mu=1,h=0.1,A=0.25,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
		ile elde edilen sayısal değerleri	90

Tablo	$3.17\;\mu$ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 $\leq x$ \leq 80 için Problem 2'nin	
	Uygulama 4 ile elde edilen sayısal değerleri	91
Tablo	3.18 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	91
Tablo	3.19 $\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	92
Tablo	3.20 μ = 1, A = 0.25, h = 0.1 için 0 \leq x \leq 80 aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	92
Tablo	$3.21\;\mu$ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 $\leq x$ \leq 80 için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	93
Tablo	3.22 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	93
Tablo	3.23 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	1 ile elde edilen sayısal değerleri	97
Tablo	$3.24~\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 1	
	ile elde edilen sayısal değerleri	97
Tablo	$3.25\;\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	2 ile elde edilen sayısal değerleri	98
Tablo	3.26 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
	ile elde edilen sayısal değerleri	99
Tablo	3.27 μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
	Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.	. 100
Tablo	3.28 h = 0.1, Δt = 0.01, 0 \leq x \leq 80 olmak üzere Problem 1'in farklı A	
	değerleri için elde edilen korunum sabitleri ve hata normları. $\ .\ .$	101
Tablo	3.29 Problem 1'in $0 \leq x \leq 80$ aralığında $h=0.1, \Delta t=0.05$ ve $A=0.25,$	
	0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik	
	ve hız değerleri	101
Tablo	3.30 Δt = 0.05, 0 \leq x \leq 80, A = 0.25, t = 20 için hesaplanan hata	
	normları ve yakınsama oranları	102
Tablo	$3.31\;\mu$ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	102

Tablo	3.32 Problem 2'nin 0 $\leq x \leq$ 80 aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
	$\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması	. 103
Tablo	$3.33 \ \mu = 1, \ h = 0.1, \ A_1 = -2, \ A_2 = 1, \ 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	103
Tablo	3.34 Problem 2'nin $0 \leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
	1, $\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
	ması	104
Tablo	$3.35\;\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	3 ile elde edilen sayısal değerleri	104
Tablo	3.36 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 3	
	ile elde edilen sayısal değerleri	105
Tablo	$3.37~\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	4 ile elde edilen sayısal değerleri	106
Tablo	3.38 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	107
Tablo	3.39 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5 0 \leq x \leq 80 için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	107
Tablo	3.40 μ = 1, h = 0.1, A_1 = -2, A_2 = 1 0 $\leq x \leq$ 150 için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	108
Tablo	$3.41\;\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	108
Tablo	$3.42\;\mu$ = 1, A = 0.25, h = 0.1 için 0 $\leq x$ \leq 80 aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	109
Tablo	$3.43\;\mu$ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	109
Tablo	3.44 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	110
Tablo	3.45 Problem 1'in 0 $\leq x \leq$ 80 aralığında h = 0.1, μ = 1, A = 0.25,	
	$\Delta t = 0.05$, için $t = 20$ ' de farklı uygulama ve çalışmalardan elde	
	edilen korunum sabitleri ve hata norm değerleri	111

Tablo	4.1	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 1 ile elde edilen sayısal değerleri	118
Tablo	4.2	$\mu=1,A=0.25,h=0.1$ ve $0\leq x\leq 80$ için Problem 1'in Uygulama	
		1 ile elde edilen sayısal değerleri	119
Tablo	4.3	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 2 ile elde edilen sayısal değerleri	120
Tablo	4.4	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
		ile elde edilen sayısal değerleri	121
Tablo	4.5	μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
		Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.	121
Tablo	4.6	h = 0.1, Δt = 0.01, 0 \leq x \leq 80 olmak üzere Problem 1'in farklı A	
		değerleri için elde edilen korunum sabitleri ve hata norm değerleri	123
Tablo	4.7	Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve $A = 0.25$,	
		0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik	
		ve hız değerleri	123
Tablo	4.8	Δt = 0.05, A = 0.25, t = 20, 0 \leq x \leq 80, için hesaplanan hata	
		normları ve yakınsama oranları	124
Tablo	4.9	h = 0.1, μ = 1, A_1 = 1, A_2 = 0.5, 0 $\leq x$ \leq 80 için Problem 2'nin	
		Uygulama 2 ile elde edilen sayısal değerleri	125
Tablo	4.10	Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
		$\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.	125
Tablo	4.11	$\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
		Uygulama 2 ile elde edilen sayısal değerleri	127
Tablo	4.12	2 Problem 2'nin 0 $\leq x \leq$ 150 aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
		1, $\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
		ması	127
Tablo	4.13	$\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
		3 ile elde edilen sayısal değerleri	128
Tablo	4.14	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
		ile elde edilen sayısal değerleri	129

Tablo	$4.15\;\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	4 ile elde edilen sayısal değerleri	130
Tablo	4.16 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	130
Tablo	4.17 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri.	131
Tablo	4.18 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri.	131
Tablo	4.19 $\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	132
Tablo	4.20 μ = 1, A = 0.25, h = 0.1 için 0 \leq x \leq 80 aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	133
Tablo	4.21 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	133
Tablo	$4.22 \ \mu = 1, \ h = 0.1, \ A_1 = -2, \ A_2 = 1, \ 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	134
Tablo	4.23 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	1 ile elde edilen sayısal değerleri	138
Tablo	4.24 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 1	
	ile elde edilen sayısal değerleri	139
Tablo	$4.25\;\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	2 ile elde edilen sayısal değerleri	140
Tablo	4.26 $\mu=1, A=0.25, h=0.1, 0\leq x\leq 80$ için Problem 1'in Uygulama 2	
	ile elde edilen sayısal değerleri	141
Tablo	4.27 μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
	Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri	. 141
Tablo	4.28 h = 0.1, Δt = 0.01, $0 \leq x \leq$ 80 olmak üzere Problem 1'in farklı A	
	değerleri için elde edilen korunum sabitleri ve hata normları. $\ .\ .$	142
Tablo	4.29 Problem 1'in $0 \leq x \leq 80$ aralığında $h=0.1, \Delta t=0.05$ ve $A=0.25,$	
	0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik	
	ve hız değerleri	143

Tablo	4.30 Δt = 0.05, A = 0.25, t = 20, 0 \leq x \leq 80, için hesaplanan hata	
	normları ve yakınsama oranları	143
Tablo	$4.31\;\mu=1,\;h=0.1,\;A_1=1,\;A_2=0.5,\;0\leq x\leq 80$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	144
Tablo	4.32 Problem 2'nin 0 $\leq x \leq 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
	$\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.	. 144
Tablo	4.33 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	145
Tablo	4.34 Problem 2'nin $0 \leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
	1, $\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
	ması	145
Tablo	4.35 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	3 ile elde edilen sayısal değerleri	146
Tablo	4.36 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
	ile elde edilen sayısal değerleri	147
Tablo	4.37 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	4 ile elde edilen sayısal değerleri	148
Tablo	4.38 $\mu=1,h=0.1,A=0.25,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	148
Tablo	4.39 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	149
Tablo	4.40 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	149
Tablo	4.41 $\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	150
Tablo	$4.42\;\mu=1,\;A=0.25,\;h=0.1$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 5 ile elde edilen sayısal değerleri	150
Tablo	4.43 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	151
Tablo	4.44 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 5 ile elde edilen korunum sabitleri	151

Tablo	4.45	Problem 1'in 0 \leq x \leq 80 aralığında h = 0.1, μ = 1, A = 0.25,	
		$\Delta t=0.05,\;$ için $t=20$ 'de farklı uygulama ve çalışmalardan elde	
		edilen korunum sabitleri ve hata norm değerleri	152
Tablo	5.1	$\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve $~0~\leq~x~\leq~80$ için Problem 1'in	
		Uygulama 1 ile elde edilen sayısal değerleri	158
Tablo	5.2	$\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 1	
		ile elde edilen sayısal değerleri	159
Tablo	5.3	μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
		Problem 1'in Uygulama 1 ile elde edilen konum, genlik ve hız değerleri.	160
Tablo	5.4	$h=0.1,\Delta t=0.01,0\leq x\leq 80$ olmak üzere Problem 1' in farklı A	
		değerleri için elde edilen korunum sabitleri ve hata norm değerleri	161
Tablo	5.5	Problem 1'in $0 \leq x \leq 80$ aralığında $h=0.1, \Delta t=0.05$ ve $A=0.25,$	
		0.5,0.75,1.0değerleri için Uygulama 1 ile elde edilen konum, genlik	
		ve hız değerleri	162
Tablo	5.6	Δt = 0.05, 0 \leq x \leq 80, A = 0.25, t = 20 için hesaplanan hata	
		normları ve yakınsama oranları	163
Tablo	5.7	μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 $\leq x \leq$ 80 için Problem 2'nin	
		Uygulama 1 ile elde edilen sayısal değerleri	163
Tablo	5.8	Problem 2'nin 0 $\leq x \leq 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
		$\Delta t = 0.025$ için referans [32]'de elde edilen sonuçlarla karşılaştırılması.	164
Tablo	5.9	$h=0.1,\mu=1,A_1=-2,A_2=1,0\leq x\leq 150$ için Problem 2'nin	
		Uygulama 1 ile elde edilen sayısal değerleri	165
Tablo	5.10	Problem 2'nin $0 \leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
		1, $\Delta t = 0.025$ için referans [36]'da elde edilen sonuçlarla karşılaştırıl-	
		ması	166
Tablo	5.11	Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko-	
		runum sabitleri	167
Tablo	5.12	$\mu=1,A=0.25,h=0.1$ ve $0\leq x\leq 80$ için Problem 1'in Uygulama	
		2 ile elde edilen sayısal değerleri	167

Tablo	5.13 $\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
	Uygulama 2 ile elde edilen sayısal değerleri	169
Tablo	5.14 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	3 ile elde edilen sayısal değerleri	169
Tablo	5.15 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1' in Uygulama 3	
	ile elde edilen sayısal değerleri	170
Tablo	5.16 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 3 ile elde edilen korunum sabitleri. .	171
Tablo	5.17 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 3 ile elde edilen korunum sabitleri	171
Tablo	5.18 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko-	
	runum sabitleri	172
Tablo	5.19 $\mu=1,A=0.25,\Delta t=0.05$ için $0\leq x\leq 80$ aralığında Problem 1'in	
	Uygulama 4 ile elde edilen sayısal değerleri	172
Tablo	5.20 μ = 1, A = 0.25, h = 0.1 için 0 $\leq x \leq$ 80 aralığında Problem 1'in	
	Uygulama 4 ile elde edilen sayısal değerleri	173
Tablo	$5.21\;\mu$ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \leq x \leq 80 için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	174
Tablo	$5.22 \ \mu = 1, \ h = 0.1, \ A_1 = -2, \ A_2 = 1, \ 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	174
Tablo		
	5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko-	
	5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri.	175
Tablo	5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko- runum sabitleri	175
Tablo	5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko- runum sabitleri	175 175
Tablo Tablo	 5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri. 5.24 μ = 1, h = 0.1, A = 0.25, Δt = 0.05, 0 ≤ x ≤ 80 için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.25 μ = 1, A = 0.25, h = 0.1 için 0 ≤ x ≤ 80 aralığında Problem 1'in 	175 175
Tablo Tablo	 5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri. 5.24 μ = 1, h = 0.1, A = 0.25, Δt = 0.05, 0 ≤ x ≤ 80 için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.25 μ = 1, A = 0.25, h = 0.1 için 0 ≤ x ≤ 80 aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 	175 175 176
Tablo Tablo Tablo	 5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri. 5.24 μ = 1, h = 0.1, A = 0.25, Δt = 0.05, 0 ≤ x ≤ 80 için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.25 μ = 1, A = 0.25, h = 0.1 için 0 ≤ x ≤ 80 aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.26 μ = 1, h = 0.1, A₁ = 1, A₂ = 0.5, 0 ≤ x ≤ 80 için Problem 2' nin 	175 175 176
Tablo Tablo Tablo	 5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri. 5.24 μ = 1, h = 0.1, A = 0.25, Δt = 0.05, 0 ≤ x ≤ 80 için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.25 μ = 1, A = 0.25, h = 0.1 için 0 ≤ x ≤ 80 aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.26 μ = 1, h = 0.1, A₁ = 1, A₂ = 0.5, 0 ≤ x ≤ 80 için Problem 2' nin Uygulama 5 ile elde edilen korunum sabitleri. 	175 175 176 176
Tablo Tablo Tablo Tablo	 5.23 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri. 5.24 μ = 1, h = 0.1, A = 0.25, Δt = 0.05, 0 ≤ x ≤ 80 için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.25 μ = 1, A = 0.25, h = 0.1 için 0 ≤ x ≤ 80 aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri. 5.26 μ = 1, h = 0.1, A₁ = 1, A₂ = 0.5, 0 ≤ x ≤ 80 için Problem 2' nin Uygulama 5 ile elde edilen korunum sabitleri. 5.27 μ = 1, A = 0.25, Δt = 0.05 ve 0 ≤ x ≤ 80 için Problem 1'in 	 175 175 176 176

Tablo	5.28 $\mu=1,A=0.25,h=0.1$ ve $0\leq x\leq 80$ için Problem 1'in Uygulama	
	1 ile elde edilen sayısal değerleri	181
Tablo	5.29 μ = 1, A = 0.25, Δt = 0.05 ve 0 \leq x \leq 80 için Problem 1'in	
	Uygulama 2 ile elde edilen sayısal değerleri	182
Tablo	5.30 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
	ile elde edilen sayısal değerleri	183
Tablo	5.31 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	184
Tablo	5.32 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 2 ile elde edilen sayısal değerleri	184
Tablo	5.33 Maxwellian başlangıç şartının farklı μ değerleri için elde edilen ko-	
	runum sabitleri	185
Tablo	5.34 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	3 ile elde edilen sayısal değerleri	185
Tablo	$5.35\;\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
	ile elde edilen sayısal değerleri	186
Tablo	5.36 μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
	Problem 1'in Uygulama 3 ile elde edilen konum, genlik ve hız değerleri.	187
Tablo	5.37 h = 0.1, Δt = 0.01, 0 $\leq x \leq$ 80 olmak üzere Problem 1'in farklı A	
	değerleri için elde edilen korunum sabitleri ve hata norm değerleri	188
Tablo	5.38 Problem 1'in $0 \leq x \leq 80$ aralığında $h=0.1, \Delta t=0.05$ ve $A=0.25,$	
	0.5, 0.75, 1.0 değerleri için Uygulama 3 ile elde edilen konum, genlik	
	ve hız değerleri	188
Tablo	5.39 Δt = 0.05, 0 \leq x \leq 80, A = 0.25, t = 20 için hesaplanan hata	
	normları ve yakınsama oranları	189
Tablo	5.40 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 3 ile elde edilen sayısal değerleri	189
Tablo	5.41 h = 0.1, A_1 = 1, A_2 = 0.5, Δt = 0.025 için 0 $\leq x \leq$ 80 aralığında	
	Problem 2' nin referans [43] ile elde edilen sonuçlar ile karşılaştırılması.	190
Tablo	5.42 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 3 ile elde edilen sayısal değerleri	190

Tablo	5.43 Problem 2'nin $0 \leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
	1, $\Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırıl-	
	ması	91
Tablo	5.44 Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri. 19	91
Tablo	5.45 $\mu~=~1,~A~=~0.25,~\Delta t~=~0.05$ ve 0 $\leq~x~\leq~80$ için Problem 1'in	
	Uygulama 4 ile elde edilen sayısal değerleri	92
Tablo	5.46 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	93
Tablo	5.47 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq$ 80 için Problem 2' nin	
	Uygulama 4 ile elde edilen korunum sabitleri	93
Tablo	5.48 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	1 ile elde edilen sayısal değerleri	98
Tablo	5.49 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 1	
	ile elde edilen sayısal değerleri	99
Tablo	5.50 μ = 1, A = 0.25, h = 0.1, Δt = 0.05 için 0 \leq x \leq 80 aralığında	
	Problem 1'in Uygulama 1 ile elde edilen konum, genlik ve hız değerleri. 1	99
Tablo	5.51 h = 0.1, Δt = 0.01, 0 \leq x \leq 80 olmak üzere Problem 1'in farklı A	
	değerleri için elde edilen korunum sabitleri ve hata normları. \ldots 20	00
Tablo	5.52 Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve $A = 0.25$,	
	0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik	
	ve hız değerleri	01
Tablo	5.53 Δt = 0.05, A = 0.25, t = 20, 0 \leq x \leq 80, için hesaplanan hata	
	normları ve yakınsama oranları	01
Tablo	5.54 μ = 1, h = 0.1, A_1 = 1, A_2 = 0.5, $0 \leq x \leq 80$ için Problem 2'nin	
	Uygulama 1 ile elde edilen sayısal değerleri	02
Tablo	5.55 Problem 2'nin 0 $\leq x \leq 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5,$	
	$\Delta t = 0.025$ için referans [43]'de elde edilen sonuçlarla karşılaştırılması. 20	02
Tablo	5.56 μ = 1, h = 0.1, A_1 = -2, A_2 = 1, $0 \leq x \leq$ 150 için Problem 2'nin	
	Uygulama 1 ile elde edilen sayısal değerleri	03

Tablo	5.57 Problem 2'nin $0 \leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 =$	
	1, $\Delta t = 0.025$ için referans [36]'da elde edilen sonuçlarla karşılaştırıl-	
	ması	203
Tablo	5.58 Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri.	204
Tablo	5.59 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	2 ile elde edilen sayısal değerleri	205
Tablo	5.60 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 2	
	ile elde edilen sayısal değerleri	205
Tablo	5.61 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	3 ile elde edilen sayısal değerleri	207
Tablo	$5.62\;\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 3	
	ile elde edilen sayısal değerleri	207
Tablo	5.63 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 3 ile elde edilen sayısal değerleri	208
Tablo	5.64 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 3 ile elde edilen korunum sabitleri	208
Tablo	5.65 Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri	209
Tablo	5.66 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	4 ile elde edilen sayısal değerleri	210
Tablo	5.67 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 4	
	ile elde edilen sayısal değerleri	210
Tablo	5.68 $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin	
	Uygulama 4 ile elde edilen sayısal değerleri	211
Tablo	5.69 $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin	
	Uygulama 4 ile elde edilen korunum sabitleri	211
Tablo	5.70 $\mu=1,A=0.25,\Delta t=0.05,0\leq x\leq 80$ için Problem 1'in Uygulama	
	5 ile elde edilen sayısal değerleri	212
Tablo	5.71 $\mu=1,A=0.25,h=0.1,0\leq x\leq 80$ için Problem 1'in Uygulama 5	
	ile elde edilen sayısal değerleri	213

Tablo	5.72 Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \mu = 1, A = 0.25,$	
	$\Delta t = 0.05$ için $t = 20$ ' de farklı uygulama ve çalışmalardan elde	
	edilen korunum sabitleri	214
Tablo	5.73 Problem 1'in 0 \leq x \leq 80 aralığında h = 0.1, μ = 1, A = 0.25,	
	$\Delta t = 0.05$ için $t = 20$ ' de farklı uygulama ve çalışmalardan elde	
	edilen hata norm değerleri	214

şekiller listesi

Şekil	1.1	Birinci Dereceden Spline Fonksiyon	14
Şekil	1.2	Sıfırıncı Dereceden B-Spline Fonksiyon	15
Şekil	1.3	Lineer B-spline Şekil Fonksiyonları.	17
Şekil	1.4	Kuadratik B-spline Şekil Fonksiyonları	19
Şekil	1.5	Kübik B-spline Şekil Fonksiyonları.	21
Şekil	1.6	Kuartik B-spline Şekil Fonksiyonları.	23
Şekil	1.7	Kuintik B-spline Şekil Fonksiyonları.	25
Şekil	1.8	Sektik B-spline Şekil Fonksiyonları.	27
Şekil	1.9	Septik B-spline Şekil Fonksiyonları.	29
Şekil	2.1	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=0$ ve	
		t = 20'deki hareketi.	58
Şekil	2.2	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=20'$ deki	
		hata grafiği	59
Şekil	2.3	Solitary dalganın 0 \leq x \leq 80 aralığında h = 0.1, Δt = 0.01 için	
		t=20zamanında farklı A değerleri için elde edilen grafikleri	59
Şekil	2.4	$h=0.1,A_1=1,A_2=0.5,\mu=1,0\leq x\leq 80$ için pozitif genlikli iki	
		solitary dalganın girişimi	62
Şekil	2.5	t=80için Şekil 2.4'ün grafiğinin büyütülmüş şekli	63
Şekil	2.6	h = 0.1, A_1 = -2, A_2 = 1, μ = 1, 0 $\leq x$ \leq 150 için iki dalganın	
		girişimi	64
Şekil	3.1	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=0$ ve	
		20'deki hareketi	80
Şekil	3.2	Solitary dalganın $h=0.1, \Delta t=0.05, \mu=1, A=0.25$ için $t=20'$ deki	
		hata grafiği	80

Şekil	3.3	Solitary dalganın 0 $\leq x \leq 80$ aralığında $h = 0.1, \; \Delta t = 0.01$ için	
		t=20zamanında farklı A değerleri için elde edilen grafikleri	82
Şekil	3.4	$h=0.1,A_1=1,A_2=0.5,\mu=1,0\leq x\leq 80$ için pozitif genlikli iki	
		dalganın girişimi	84
Şekil	3.5	t=80için Şekil 3.4'ün grafiğinin büyütülmüş şekli	85
Şekil	3.6	$h = 0.1, A_1 = -2, A_2 = 1, \mu = 1, 0 \le x \le 150$ için iki dalganın	
		girişimi	86
Şekil	3.7	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=20'$ deki	
		hata grafiği	100
Şekil	4.1	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=0$ ve	
		20'deki hareketi	122
Şekil	4.2	Solitary dalganın $h=0.1, \Delta t=0.05, \mu=1, A=0.25$ için $t=20'$ deki	
		hata grafiği	122
Şekil	4.3	Solitary dalganın 0 $\leq x \leq 80$ aralığında $h = 0.1, \Delta t = 0.01$ için	
		t=20zamanında farklı A değerleri için elde edilen grafikleri	124
Şekil	4.4	$h=0.1,A_1=1,A_2=0.5,\mu=1,0\leq x\leq 80$ için pozitif genlikli iki	
		dalganın etkileşimi	126
Şekil	4.5	t=80için Şekil 4.4'ün grafiğinin büyütülmüş şekli	126
Şekil	4.6	$h = 0.1, A_1 = -2, A_2 = 1, \mu = 1, 0 \le x \le 150$ için iki dalganın	
		girişimi	128
Şekil	4.7	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=20$ 'deki	
		hata grafiği	142
Şekil	5.1	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=0$ ve	
		20'deki hareketi	160
Şekil	5.2	Solitary dalganın $h=0.1, \Delta t=0.05, \mu=1, A=0.25$ için $t=20'$ deki	
		hata grafiği	161
Şekil	5.3	Solitary dalganın 0 $\leq x \leq 80$ aralığında $h = 0.1, \Delta t = 0.01$ için	
		t=20zamanında farklı A değerleri için elde edilen grafikleri	162
Şekil	5.4	$h=0.1,A_1=1,A_2=0.5,\mu=1,0\leq x\leq 80$ için pozitif genlikli iki	
		dalganın girişimi	164

Şekil	5.5	t=80için Şekil 5.4'ün grafiğinin büyütülmüş şekli	165
Şekil	5.6	$h = 0.1, A_1 = -2, A_2 = 1, \mu = 1, 0 \le x \le 150$ için iki dalganın	
		girişimi	166
Şekil	5.7	Maxwellian başlangıç şartının $t=12$ 'de $a)~\mu=1,~b)~\mu=0.5,~c)~\mu=$	
		0.1, d) $\mu=0.05,e)~\mu=0.02,f)~\mu=0.005$ değerleri için grafiği	168
Şekil	5.8	Solitary dalganın h = 0.1, Δt = 0.05, μ = 1, A = 0.25 için t = 20	
		zamanındaki hata grafiği	187
Şekil	5.9	Solitary dalganın $h=0.1,\Delta t=0.05,\mu=1,A=0.25$ için $t=20$ 'deki	
		hata grafiği	200

GİRİŞ

Doğadaki her olay ister biyolojik, ister jeolojik, ister mekanik olsun fizik kuralları yardımıyla matematiksel olarak ifade edilebilir. Bu olayların çoğu matematiksel olarak modellendiğinde diferansiyel, cebirsel veya integral denklemler elde edilir. Bilim adamları ve mühendisler bilinen analitik yöntemlerle çözümü zor veya imkansız olan lineer olmayan diferansiyel denklemlerle oldukça sık karşılaşırlar. Bu tip denklemlerle karşılaşan bilim adamları ve mühendisler tam çözümü veren analitik yöntemler yerine yaklaşık çözümü veren sayısal yöntemler kullanırlar. Son zamanlarda bu sayısal yöntemlerden; sonlu fark yöntemi, varyasyonel yöntemler, ağırlıklı kalan yöntemleri ve özellikle sonlu elemanlar yöntemi daha sıklıkla kullanılmaktadır [1, 2].

Sonlu elemanlar yöntemi verilen bir bölgeyi "sonlu eleman" adı verilen basit alt bölgelerin kolleksiyonu olarak gösteren bir yöntemdir. Bu gösterim her bir eleman üzerinde varyasyonel veya ağırlıklı kalan yöntemlerinin ihtiyaç duyduğu yaklaşım fonksiyonlarını sistematik olarak üretmeyi sağlar. Böylece sonlu eleman yöntemi yaklaşım fonksiyonlarının oluşturulması açısından varyasyonel ve ağırlıklı kalan yöntemlerinden farklıdır. Bu farklılık sonlu elemanlar yönteminin aşağıdaki üç temel özelliğinden kaynaklanır [1]:

1. Bütünün parçalara bölünmesi; yaklaşım fonksiyonlarının sistematik olarak türetilmesi için geometrik olarak karmaşık olan bölgeler, basit bölgelerin bir kolleksiyonu şeklinde temsil edilebilir.

2. Her bir eleman üzerinde yaklaşım fonksiyonlarının türetilmesi; bunlar daha çok interpolasyon teorisi kullanılarak türetilen cebirsel polinomlardır.

3. Elemanların birleştirilmesi; çözümün sürekliliğine ve iç kuvvetlerin dengesine dayanır.

Sonlu elemanlar yönteminin üç temel adımını oluşturan bu üç özellik birbiriyle

yakından ilişkilidir. Problemin çözüm bölgesini temsil etmekte kullanılan elemanların geometrisi, yaklaşım fonksiyonlarını tek olarak türetilebilecek şekilde olmalıdır. Yaklaşım fonksiyonları sadece geometrik yapıya değil aynı zamanda düğüm(*node*) diye adlandırılan noktaların yerine ve sayısına da bağlıdır. Sonlu eleman yönteminin temel fikri, sürekli fonskiyonlar yerine genellikle polinomlar olan parçalı yaklaşım fonksiyonlarını kullanmaktır.

Sonlu elemanlar yöntemi literatürde lineer veya lineer olmayan birçok diferansiyel denkleme yaygın olarak uygulanmıştır. Bu diferansiyel denklemlere örnek olarak

Burgers denklemi:

$$U_t + UU_x - vU_{xx} = 0$$

Korteweg-de Vries (KdV) denklemi:

$$U_t + \varepsilon U U_x + \mu U_{xxx} = 0$$

Modified Korteweg-de Vries (MKdV) denklemi:

$$U_t + \varepsilon U^2 U_x + \mu U_{xxx} = 0$$

Regularized Long Wave (RLW) denklemi:

$$U_t + U_x + \varepsilon U U_x - \mu U_{xxt} = 0$$

Modified Regularized Long Wave (MRLW) denklemi:

 $U_t + U_x + 6U^2U_x - \mu U_{xxt} = 0$

Equal Width Wave (EW) denklemi:

$$U_t + \varepsilon U U_x - \mu U_{xxt} = 0$$

verilebilir. Bu çalışmada, sığ olmayan su dalgaları ve iyon akustik plazma dalgaları gibi bir çok önemli fiziksel olayı tanımlayan EW denkleminin modifiye edilmiş hali olan

$$U_t + 3U^2 U_x - \mu U_{xxt} = 0$$

Modified Equal Width (MEW) denklemi göz önüne alınacaktır. Literatürde MEW denkleminin farklı yöntemlerle sayısal çözümleri mevcut olsa da sonlu eleman yöntemleri ile sayısal çözümleri üzerine az sayıda çalışma bulunmaktadır. Bu tezde, MEW denklemindeki U^2U_x lineer olmayan terimi yerine bazı yaklaşımlar kullanılarak sonlu elemanlar yöntemi ile sayısal çözümleri elde edilecektir.

BÖLÜM 1 TEMEL KAVRAMLAR

Bu bölümde; sonlu fark, varyasyonel ve ağırlıklı kalan yöntemlerinden kısaca bahsedildikten sonra tezde kullanılacak sonlu elemanlar yöntemi ile spline ve Bspline fonksiyonlar hakkında bazı temel bilgiler verilecektir. Ayrıca bu bölümde sonlu elemanlar yöntemi kullanılarak sayısal çözümleri elde edilecek olan MEW denklemi, farklı başlangıç ve sınır şartları ile birlikte tanıtılacaktır.

1.1 Sonlu Fark Yöntemleri

Farklı başlangıç ve sınır şartları ile verilen lineer ve lineer olmayan bir çok kısmi diferansiyel denklemin yaklaşık çözümünde sonlu fark yöntemleri yaygın olarak kullanılmaktadır. Bir kısmi diferansiyel denklemin sonlu fark yaklaşımını elde etmek için sırasıyla aşağıdaki adımlar uygulanır [3]:

1. Problemin çözüm bölgesi eşit veya farklı boyutta geometrik şekiller içeren kafeslere bölünür ve problemin yaklaşık çözümü her bir kafesin düğüm noktaları üzerinden hesaplanır.

2. Diferansiyel denklemde görülen türevler yerine Taylor seri açılımı ile elde edilen ileri, geri veya merkezi sonlu fark yaklaşımlarından biri yazılır. Böylece başlangıçta verilen diferansiyel denklemin çözümü problemi fark denklemlerinden oluşan bir cebirsel denklem sisteminin çözümü problemine indirgenir.

3. Elde edilen fark denkleminde çözüm bölgesi içinde olmayan hayali düğüm noktaları yok etmek için problem ile verilen sınır şartları yerine uygun sonlu fark yaklaşımları yazılır. Böylece bilinmeyen sayısı kadar cebirsel denklemden oluşan bir denklem sistemi elde edilir. Elde edilen bu cebirsel denklem sistemi direkt veya iteratif yöntemlerden biri yardımı ile kolayca çözülür.

Bir diferansiyel denklem sonlu fark formunda aşağıdaki yöntemlerden biri ile ifade edilir:

- 1. Açık (Explicit)
- 2. Kapalı (Implicit)
- 3. Crank-Nicolson

Sonlu fark yönteminde $a \leq x \leq b$ ve t > 0 olmak üzere problemin $U_N(x,t)$ yaklaşık çözümü düğüm noktaları üzerinde olacak şekilde problemin çözüm bölgesi N alt aralığa bölünür. Bu bölünme işleminde herbir $\Delta t \equiv k$ zaman adımı için $\Delta x \equiv h = \frac{b-a}{N}$ olacak şekilde eşit aralıklar göz önüne alınır. Düğüm noktalarında problem ile birlikte verilen sınır şartları uygulandıktan sonra elde edilen fark denklemleri çözülerek problemin yaklaşık çözümü bulunur. Sonlu fark yöntemi kolay uygulanabilir bir yöntem olmasına rağmen düzgün olmayan sınır şartlarının uygulanmasındaki zorluklar, karmaşık bölgelerde geometriksel gösterimin doğruluğundaki zorluklar ve yaklaşık çözümdeki türevlerin yanlışlığı gibi bazı dezavantajlara sahiptir.

1.2 Varyasyonel Yöntemler

Varyasyonel yöntemler ise tam çözüm yerine kullanılacak yaklaşık çözümü, diferansiyel denklemin zayıf formundan veya kuadratik fonksiyonelin minimumundan veya ağırlıklı integral ifadesinden elde ederler. Bu yöntemlerden bazıları Rayleigh-Ritz ve ağırlıklı-kalan yöntemleri' (Galerkin, Petrov-Galerkin, kollokasyon ve subdomain yöntemleri)dir. Bu yöntemlerde bir problemin yaklaşık çözümü $\sum c_j \phi_j + \phi_0$ şeklinde aranır. Burada ϕ_j 'ler genellikle polinom olan uygun yaklaşım fonksiyonlar ve c_j 'ler ise hesaplanacak bilinmeyen parametrelerdir. c_j parametreleri denklemin ağırlıklı integral formunu veya zayıf formunu sağlayacak şekilde veya denkleme karşılık gelen kuadratik fonksiyoneli minimum yapacak şekilde bulunur. $\sum c_j \phi_j + \phi_0$ yaklaşımı verilen diferansiyel denklemde doğrudan yazılırsa c_j parametrelerinin bulunması için her zaman gerekli ve yeterli sayıda lineer bağımsız denklem sistemi elde edilemeyebilir. Bu nedenle ağırlıklı integral forma ihtiyaç duyulur.

Ağırlıklı integral form, $\sum c_j \phi_j + \phi_0$ yaklaşık çözümünün diferansiyel denklemde yerine yazılmasıyla elde edilen kalan ile W ağırlık fonksiyonunun çarpımının bölge üzerindeki integralinin ifadesidir. Ağırlıklı integral formunda u_N yaklaşık çözümündeki ϕ_j yaklaşım fonksiyonları diferansiyel denklemin mertebesi kadar türevlenebilir olmalı ve problem ile birlikte verilen tüm sınır şartlarını sağlamalıdır. Çünkü ağırlıklı integral form problemin hiçbir sınır şartını içermez. Ağırlıklı integral formunda W ağırlık fonksiyonunun lineer bağımsız N farklı seçimi için $c_1, c_2, ..., c_N$ bilinmeyenlerinden oluşan N tane cebirsel denklem elde edilir. Bu denklemlerden c_j parametreleri kolayca elde edilir.

Zayıf form ise denklemdeki diferansiyelin bağımlı değişken ile ağırlık fonksiyonu arasında paylaştırıldığı ve aynı zamanda verilen problemin doğal sınır şartlarını içeren ağırlıklı integral ifadesidir. Verilen her denklemin ağılıklı integral ifadesi elde edilebilirken, zayıf formu elde edilemeyebilir. Varyasyonel yöntemler W ağırlık fonksiyonu ve ϕ_j yaklaşım fonksiyonlarının seçimi bakımından biribirinden farklıdırlar. Varyasyonel yöntemlerde yaklaşık çözüm bulunurken verilen denkleme karşılık gelen zayıf form kullanılır. Her denklemin zayıf formu oluşturulamayabileceği için sınırlı sayıda denkleme uygulanabilirler [1].

1.2.1 Rayleigh-Ritz Yöntemi

Rayleigh-Ritz yönteminde, yaklaşımın c_j katsayıları verilen problemin zayıf formu kullanılarak elde edilir. Ağırlık fonksiyonları ile yaklaşım fonksiyonları aynı $(W = \phi_i)$ seçilir. Zayıf form hem diferansiyel denklemi hem de problemin doğal sınır şartlarını içerdiğinden, yaklaşım fonksiyonları üzerindeki süreklilik gerektirmeleri, orijinal diferansiyel denklem veya ağırlıklı integral formdaki gerektirmelerden daha azdır. Rayleigh-Ritz yönteminde yaklaşık çözüm,

$$u_N = \sum_{j=1}^N c_j \phi_j + \phi_0$$

biçiminde sonlu bir seri şeklinde aranır. Burada c_j sabitleri Ritz katsayıları olarak adlandırılır. Denklemin zayıf formunda ağırlık fonksiyonları yerine yaklaşım fonksiyonları yazılırsa c_j (j = 1, 2, ..., N) bilinmeyenleri için N-adet lineer bağımsız cebirsel denklem sistemi elde edilir. ϕ_j ve ϕ_0 yaklaşım fonskiyonları bir takım şartları sağlamalıdır. u_N yaklaşımı, problem ile verilen temel sınır şartlarını sağlamalıdır. Çünkü zayıf form problemin doğal sınır şartlarını içermektedir. ϕ_0 fonksiyonunun tek rolü, problem ile verilen temel sınır şartlarının homojen olmayan kısmını sağlamaktır. ϕ_0 fonksiyonu yerine temel sınır şartlarını sağlayan düşük dereceden herhangi bir fonksiyon kullanılabilir. Eğer temel sınır şartlarının hepsi homojen ise o zaman $\phi_0 = 0$ olur. ϕ_j yaklaşım fonksiyonları ise aşağıdaki şartları sağlamalıdırlar.

1. ϕ_j yaklaşım fonksiyonları, verilen problemin temel sınır şartlarının homojen kısmını sağlamalıdır.

2. Herhangi bir N değeri için, $\{\phi_j\}_{j=1}^N$ kümesi lineer bağımsız olmalıdır.

3. $\{\phi_j\}$ yaklaşım fonksiyonları tam olmalıdır. ϕ_j yaklaşım fonksiyonları cebirsel polinomlar ise, tamlık $\{\phi_j\}$ yaklaşım fonksiyonları kümesinin izin verilen en düşük dereceden, istenilen en yüksek dereceye kadar tüm terimlerini içermelidir [1].

1.3 Ağırlıklı Kalan Yöntemleri

Bir diferansiyel denklemin tam çözümü ile yaklaşık çözümü arasındaki farkın, sıfırdan farklı bir ağırlık fonksiyonu ile çarpılıp toplamlarının en küçük yapılması işlemi, ağırlıklı kalan yaklaşımı olarak bilinir. Bu yaklaşıma dayanan yöntemlere ise ağırlıklı kalan yöntemleri denir. Her denklemin ağırlıklı integral formu oluşturulabileceği için her denkleme uygulanabilirler. Dolayısıyla varyasyonel yöntemlerden daha geniş bir aralıktaki problemlere uygulanabilirler. Ağırlıklı kalan yöntemleri her denklemin ağırlıklı integral formunu oluşturmakta kullanılabilir. Ağırlıklı integral form problemin sınır şartlarından hiçbirini içermediğinden, ağırlık fonksiyonları yaklaşık çözümün hem doğal hem de temel sınır şartlarını sağlayacak şekilde seçilmelidir. Ağırlıklı kalan yöntemlerini ifade etmek için Ω bölgesinde

$$A(u) = f \tag{1.3.1}$$

operatör denklemini göz önüne alalım. Burada A lineer veya lineer olmayan bir operatör, u bağımlı değişken ve f bağımsız değişkenin bir fonksiyonu olarak tanımlanır. Buradaki u çözümüne, bir yaklaşım olarak

$$u_N = \sum_{j=1}^N c_j \phi_j + \phi_0 \tag{1.3.2}$$

kullanılır ve (1.3.1) denkleminde (1.3.2) ile verilen u_N yaklaşık çözüm yerine yazıldığında $f_N = A(u_N)$ fonksiyonu elde edilir ki bu fonksiyon genellikle f'ye eşit değildir.
$A(u_N)$ ile f fonksiyonu arasındaki farka

$$R = A(u_N) - f = A(\sum_{j=1}^N c_j \phi_j + \phi_0) - f \neq 0$$
(1.3.3)

yaklaşımın kalanı (rezidüsü) denir. Burada R kalan fonksiyonu c_j parametrelerine bağlı olduğu kadar konuma da bağlıdır. Ağırlıklı kalan yöntemlerinde c_j parametreleri

$$\int_{\Omega} \psi_i(x, y) R(x, y, c_j) dx dy = 0 \qquad (i = 1, 2, 3, ..., N)$$
(1.3.4)

ağırlıklı kalan integralindeki R kalanı sıfır olacak şekilde seçilir. Burada Ω iki boyutlu bir bölge ve ψ_i ' ler ise ağırlıklı kalan fonksiyonlarıdır. (1.3.4) integralinin hesaplanması ile elde edilen denklemlerin çözülebilmesi için seçilen ψ_i ağırlıklı kalan fonksiyonlar kümesinin lineer bağımsız olması gerekir. Ağırlıklı kalan yöntemlerinden bazıları Galerkin, Petrov-Galerkin, Kollokasyon ve Subdomain yöntemleridir [1].

1.3.1 Galerkin Yöntemi

Bu yöntemde ψ_i ağırlık fonksiyonları ϕ_i yaklaşım fonksiyonlarıyla aynı seçilir. Galerkin yaklaşımının cebirsel denklemleri

$$\sum_{j=1}^{N} A_{ij} c_j = F_i \tag{1.3.1.1}$$

şeklinde olup burada

$$A_{ij} = \int_{\Omega} \phi_i A(\phi_j) dx dy$$
$$F_i = \int_{\Omega} \phi_i [f - A(\phi_0)] dx dy$$

dir [1].

1.3.2 Petrov-Galerkin Yöntemi

 $\psi_i \neq \phi_i$ alınırsa bu yöntem ağırlıklı kalan yöntemlerinden Petrov-Galerkin yöntemi olarak bilinir. A lineer bir operatör olmak üzere Ω bölgesinde (1.3.4) yaklaşımı,

$$\sum_{j=1}^{N} \left[\int_{\Omega} \psi_i A(\phi_j) dx dy \right] c_j = \int_{\Omega} \psi_i [f - A(\phi_0)] dx dy$$

veya

$$\sum_{j=1}^{N} A_{ij} c_j = F_i$$

şeklinde basit bir formda yazılabilir. Bu yöntemde elde edilen $[A_{ij}]$ katsayılar matrisi simetrik değildir. Yani,

$$A_{ij} = \int_{\Omega} \psi_i A(\phi_j) dx dy \neq A_{ji}$$

dir [1].

1.3.3 Kollokasyon Yöntemi

Kollokasyon yönteminde Ω çözüm bölgesinden seçilen N adet $\mathbf{x}^i \equiv (x^i, y^i)$ kollokasyon noktasında kalanın sıfır olması istenir. Yani

$$R(x^{i}, y^{i}, c_{j}) = 0$$
 $(i = 1, 2, ..., N)$

olmalıdır. \mathbf{x}^i kollokasyon noktalarının denklem sistemi iyi şartlı olacak şekilde seçilmesi önemlidir. Bu yöntemde $\psi_i = \delta(\mathbf{x} - \mathbf{x}^i)$ alınır ve (1.3.4) denkleminde yerine yazılırsa

$$\int_{\Omega} \delta(\mathbf{x} - \mathbf{x}^i) R(\mathbf{x}, c_j) dx dy = 0$$

veya

 $R(\mathbf{x}^i, c_j) = 0$

elde edilir. Burada $\delta(x)$ Dirac delta fonksiyonudur ve

$$\int_{\Omega} f(\mathbf{x})\delta(x-\xi)dxdy = f(\xi)$$

şeklinde tanımlanır [1, 4].

1.3.4 Subdomain Yöntemi

Bu yöntemde ψ_i ağırlık fonksiyonları

$$\psi_i = \begin{cases} 1, & x_i \le x \le x_{i+1} \\ 0, & \text{diger durumlar} \quad i = 0, 1, \dots N \end{cases}$$

şeklinde seçilir. Alt aralıkların sayısı c_j parametrelerinin sayısına eşit olacak şekilde belirlenmelidir [4]. ψ_i ağırlık fonksiyonları (1.3.4) denkleminde yazılırsa

$$\int_{\Omega} R(x, y, c_j) dx dy = 0 \qquad (i = 0, 1, ..., N)$$

elde edilir. Bu denklem sisteminin çözülmesi ile c_j parametreleri elde edilir.

1.4 Sonlu Elemanlar Yöntemi

Varyasyonel yöntemler bir problemin yaklaşık çözümünün bulunmasında oldukça kolay ve etkili yöntemlerdir. Ancak bu yöntemlerde yaklaşım fonksiyonlarının oluşturulması işleminin zor olması yöntemlerin etkinliğini azaltmaktadır. Çünkü yaklaşım fonksiyonları sürekli, tam, lineer bağımsız ve aynı zamanda problemin temel sınır şartlarını sağlamalıdır. Ayrıca yaklaşım fonksiyonlarını üretecek sistematik bir algoritma bulunmamaktadır. Eğer problemin çözüm bölgesi karmaşık ise yaklaşım fonksiyonlarını belirleme işlemi oldukça zor hatta bazen imkansız olmaktadır. Varyasyonel yöntemlerin bu dezavantajlarını ortadan kaldırmak için son zamanlarda sonlu elemanlar yöntemi daha sıklıkla kullanılır hale gelmiştir [1].

Sonlu elemanlar yönteminin modern kullanımı ilk olarak yapısal mühendislik alanında başlamıştır. Bu alandaki ilk çalışmalar gerçek ayrık elemanlar (*cubuk ve kirişler gibi*) ile sürekli olan katı cismin parçaları arasında benzerlik geliştiren Hrennikoff [5] ve McHenry tarafından gerçekleştirilmiştir [6]. Virtüel iş prensibine dayalı direkt bir yaklaşım, Argyris tarafından verilmiş ve bir dizi makalede kendisi ve meslektaşları hesaplama tekniklerini kullanarak karmaşık problemlerin çözümü için bu çalışmayı geliştirmişlerdir [7]. "Sonlu eleman" terimi ilk olarak 1960 yılında Clough tarafından düzlem esnekliğindeki uygulamaları tanımladığı makalesinde ortaya atılmıştır [8]. Son elli yılda dijital bilgisayarlardaki gelişmeler sonlu eleman yönteminin çok hızlı gelişmesine yol açmış ve her geçen gün mühendisler, fizikçiler ve uygulamalı matematikçiler bu yöntem ile ilgili artan sayıda çalışmalar yapmışlardır [9].

Sonlu elemanlar yöntemi; yapı mühendisliği, yapı mekaniği, akışkanlar mekaniği, uzay mühendisliği, nükleer enerji mühendisliği, biomekanik ve elastik cisimlerin mekaniği, donanma mimarlığı, dinamik ve ısı iletim problemleri gibi değişik alanlardaki problemlere kolaylıkla uygulanabilmektedir. Sonlu elemanlar yönteminin diğer yöntemlere göre avantajları aşağıdaki gibi sıralanabilir [2];

1. Düzensiz şekilli yapıları ve diğer yöntemlerle modellenemeyen farklı karmaşık bölgeleri oldukça kolay bir şekilde modelleyebilmesi,

2. Eleman denklemleri ayrı ayrı oluşturulduğundan farklı malzemelerden oluşan yapıları modelleyebilmesi,

3. Çok farklı sınır şartları ile birlikte kullanılabilmesi. Sınır şartlarının değişmesi durumunda sonlu eleman modelinin değişmemesi,

- 4. Gerektiğinde elemanların büyüklüklerinin değiştirilebilmesi,
- 5. Sonlu eleman modelinin istenildiği zaman kolayca değiştirilebilmesi,
- 6. Bilgisayar programlama mantığına uygun olması.

Sonlu elemanlar yönteminin bu avantajlarının yanında çözüm bölgesinin alt bölgelere ayrılması işleminin belirli bir tecrübeyi gerektirmesi, süreklilik şartlarının alt bölgelere uygulanmasında birtakım zorluklarla karşılaşılması ve bilgisayar programında veri girişi sırasında hatalar yapılması gibi bazı dezavantajları da vardır. Bir problemin sonlu eleman analizinde kullanılan temel adımlar şunlardır [1]:

1. Problemin çözüm bölgesinin ayrıklaştırılması (diskritizasyonu):

a. Önceden belirlenen elemanların sonlu eleman kümesi oluşturulur.

b. Elemanlar ve düğüm noktaları numaralandırılır.

c. Problem için gerekli olan geometrik özellikler (örneğin koordinatlar ve kesit alanları gibi) üretilir.

2. Çözüm bölgesindeki bütün tipik elemanlar için eleman denklemlerinin türetilmesi:

a. Tipik elemanlar üzerinde verilen diferansiyel denklemin varyasyonel formülü oluşturulur.

b. Tipik bir "*u*" bağımlı değişkeni

$$u = \sum_{i=1}^{n} u_i \psi_i$$

formunda olduğu varsayılır ve bu yaklaşım Adım 2a da yerine yazılır ve

$$[K^e]\{u^e\} = \{F^e\}$$

formunda eleman denklemleri elde edilir.

c. ψ_i yaklaşım fonksiyonları literatürde mevcut ise hazır alınır veya türetilir ve eleman matrisleri hesaplanır.

3. Verilen problemin denklemlerini elde etmek için eleman denklemlerinin birleştirilmesi:

a. Eleman düğümleri global düğümlerle eşleştirilerek birincil değişkenler arasında elemanlar arası süreklilik şartları (yerel serbestlik dereceleri ile global serbestlik dereceleri arasında ilişki-elemanların birleştirilebilirliği) tanımlanır.

b. Ikincil değişkenler arasında denge şartları belirlenir (yerel kaynak veya kuvvet bileşenleri ile global tanımlı kaynak bileşenleri arasında ilişki).

c. Adım 3a ve 3b yi kullanarak eleman denklemleri birleştirilir.

4. Problemin sınır şartlarının uygulanması:

a. Global birincil serbestlik dereceleri belirlenir.

b. (Eğer önceden adım 3b de yapılmadı ise) Global ikincil serbestlik dereceleri belirlenir.

5. Birleştirilmiş denklemlerin çözülmesi.

6. Çözüm sonunda sonuçların değerlendirilmesi:

a. Adım 5 de elde edilen birincil serbestlik derecelerinden hareketle çözümlerin gradyanı veya diğer istenilen özellikleri hesaplanır.

b. Sonuçlar grafik/tablo şeklinde verilir.

1.5 Spline Fonksiyonlar

Yaklaşım yöntemleri temel bilimlerin birçok alanında (fizik, kimya v.b.) ve mühendislikte olduğu gibi matematiğin bir çok alanında da yaygın olarak kullanılmaktadır. Genel olarak iki tip yaklaşım probleminden söz edilebilir. Birinci tip problemlerde bu yöntemler, eldeki mevcut verileri kullanarak bilinmeyen fonksiyonları yaklaşık olarak bulmak için kullanılır. Bu tip problemler veri uydurma problemi olarak adlandırılır. İkinci tip yaklaşımlar ise çeşitli fiziksel problemler için bir operatör denklem tarafından temsil edilen matematiksel modellerden ortaya çıkarlar. Bu tür problemler; özdeğer ve özvektör problemleri, integro-diferansiyel denklemleri, adi ve kısmi diferansiyel denklemler için sınır değer problemleri içermektedir. Her iki problem tipinde de, en iyi çözümü bulmak için iki önemli sorunla karşılaşılabilir;

- 1. Yaklaşım şartlarını yerine getiren uygun fonksiyonların sınıfını seçmek,
- 2. Yaklaşımın etkili olması amacıyla iyi bir yöntem seçmek.

Yaklaşım yöntemleri içinde polinom yaklaşımları önemli bir yer tutmaktadır. Fakat polinom yaklaşımı ile her zaman istenilen hassassiyette sonuç elde edilemeyebilir. Köşeleri keskin olan, yüksek mertebeden türevlerde hızlı değişim gösteren fonksiyonlara ve hatta bazı düzgün fonksiyonlara bile yüksek dereceden polinomlar ile istenilen hassasiyette bir yaklaşım yapılamayabilir. Nokta sayısı arttığında yaklaşımda kullanılacak polinomun derecesi de artar. Bu ise bazı hesaplama hatalarına neden olabilir. Ayrıca yaklaşımda kullanılacak polinom fonksiyon esas fonksiyondan farklı olabilir. Bu durumda birinci ve ikinci tip problemler için ard arda gelen iki veri arasında birinci, ikinci veya üçüncü dereceden fonksiyonlarla yaklaşımın yapıldığı Spline interpolasyon yöntemi kullanılır. Bu yöntem, veri noktalarını çeşitli aralıklara bölerek her bir aralıkta daha düşük dereceden polinomlarla yaklaşma esasına dayanır. Verilere kolayca adapte olabilen veteri kadar esnekliğe sahip, bilinmeyen fonksiyonların yaklaşık çözümünde kullanılan spline fonksiyonlar ve uygulamaları son zamanlarda oldukça yaygın olarak kullanılmaktadır. Spline fonksiyonlar parçalı polinomlar sınıfından olup bu fonksiyonlar polinomların süreklilik özelliklerini taşıyan dizilişleri ile oluşmaktadır.

Spline fonksiyonlar; interpolasyon, veri uydurma, adi ve kısmi diferansiyel denklemlerin çözümünde, eğri ve yüzey yaklaşımında ve karmaşık geometrik nesnelerin matematiksel modellemesinde sıkça kullanılırlar. Spline terimi ilk defa Schoenberg tarafından 1946'da ortaya atıldı [10]. Spline fonksiyon teorisi 1960'lı yıllara kadar yavaş bir gelişim göstermiştir. Bir takım etkili yaklaşım gücünün yanında bir çok yapısal özelliklere de sahip olan spline fonksiyonlara olan ilgi her geçen gün artmıştır. Depolanması, işlenmesi ve kullanılması kolay olan spline fonksiyonlar dijital bilgisayarlardaki gelişmeler ile daha önemli hale gelmiştir [11]. Reel sayıların monoton artan bir dizisi

$$-\infty = x_0 < x_1 < \dots < x_n < x_{n+1} = \infty$$

olacak şeklinde $x_1, x_2, ..., x_n$ ' e bağlı ve reel doğru üzerinde tanımlı m. dereceden bir s(x) spline fonksiyonu aşağıdaki iki özelliği sağlar.

1. s(x) her bir (x_i, x_{i+1}) (i = 0, ..., n) aralığında m. veya daha düşük dereceden bir polinomdur. Burada $x_0 = -\infty, x_{n+1} = \infty$ 'dır.

2. s(x) fonksiyonu ve s(x)'in 1, 2, ..., (m-1). mertebeden türevleri, tanımlanan her aralıkta ve x_i , (i = 1, 2, ..., n) bölünme noktalarında süreklidir.

Yukarıdaki tanıma göre parçalı polinom fonksiyonlarının süreklilik durumlarında ve türevlerinin belirli koşulları sağlaması durumunda bir spline fonksiyon oluşur. m = 0 için ikinci şart geçersizdir. Sıfırıncı dereceden spline fonksiyon adım fonksiyonu olarak adlandırılır. m = 1 olması durumunda s(x) fonksiyonu bir poligon(kırık cizgi) olup Şekil 1.1'de görüldüğü gibi doğrusal polinomların birleştirilmesi ile oluşur.

Şekil 1.1. Birinci Dereceden Spline Fonksiyon.

Spline fonksiyonlar aşağıdaki özelliklere sahiptir:

1. Spline fonksiyonlar düzgün (*smooth*) fonksiyonlardır,

2. Spline fonksiyonların cümlesi uygun bazlara sahip sonlu boyutlu lineer uzaylardır,

3. Spline fonksiyonların türevleri ve integralleri yine spline fonksiyonlardır,

4. Spline fonksiyonlar dijital bilgisayarlarda işleme, hesaplama ve depolama açısından uygun fonksiyonlardır.

5. Spline fonksiyonlar kullanıldığında ortaya çıkan matrisler uygun işaretleri ve determinant özellikleri açısından kolay hesaplanabilir,

6. Düşük dereceli spline fonksiyonlar oldukça esnektirler ve polinomlardaki gibi keskin salınımlar sergilemezler,

7. Yaklaşım işlemi sonucunda elde edilen yapılar (işaretler ve katsayılar gibi) polinomların yapıları ile de ilgilidir,

8. Spline fonksiyonlar kullanıldığında yakınsaklık ve kararlılığın incelenmesi daha kolay olur,

9. Spline fonksiyonlar ve türevleri aynı anda yaklaşık olarak hesaplanır.

1.6 B-Spline Fonksiyonlar

Spline problemlerin hesaplanmasıyla lineer veya lineer olmayan sistemler elde edilir. Bu sistemler istenilen parametrelerin hesaplanmasına izin vermeyecek şekilde bazen ill-conditioned (*iyi şartlı olmayan*) olabilir. Ayrıca spline yaklaşımları elde etme sürecinde sayısal kararsızlıklarla karşılaşılabilir. Bu zorluklar "B-spline" olarak adlandırılan farklı bir spline fonksiyon sınıfı ile aşılabilir. Bu fonksiyonlara B-spline denmesinin nedeni, bütün spline fonksiyonlar kümesi için bir baz oluşturmalarıdır. B-spline fonksiyonlar sayısal hesaplamalar için oldukça kullanışlıdırlar [12]. Sıfırıncı dereceden bir B-spline fonksiyonun grafiği Şekil 1.2'deki gibi olup

Şekil 1.2. Sıfırıncı Dereceden B-Spline Fonksiyon.

$$B_i^0 = \begin{cases} 1 , & x_i \le x < x_{i+1} \\ 0 , & \text{diger durumlar} \end{cases}$$

şeklinde tanımlanır. Bu tanıma göre $B_i^0(x_i) = 1$ ve $B_i^0(x_{i+1}) = 0$ 'dır. Sıfırıncı dereceden bir B-spline fonksiyonunun bazı özellikleri aşağıdaki gibi sıralanabilir:

1. $B_i^0(x)$ B-spline fonksiyonu $[x_i, x_{i+1})$ yarı açık aralığında tanımlıdır.

2. $\forall \; x \; \mathrm{ve} \; i \; \mathrm{ler}$ için $B^0_i(x) \geq 0$ eşitsizliği vardır.

3. B_i^0 fonksiyonu sayı doğrusu üzerinde sıçramanın olduğu tüm düğüm noktalarında sağdan süreklidir.

4. $\forall x \in R$ için $\sum_{i=-\infty}^\infty B_i^0(x) = 1$ eşitliği geçerlidir.

5. Düğüm noktaları dizisi üzerinde 0. dereceden tüm spline fonksiyonlar bir baz oluştururlar.

Sıfırıncı dereceden B-spline fonksiyonlar kullanılarak daha yüksek dereceden B-spline fonksiyonlar k = 1, 2, ... ve $i = 0, \pm 1, \pm 2, ...$ olmak üzere

$$B_i^k(x) = \frac{x - x_i}{x_{i+k} - x_i} B_i^{k-1}(x) + \frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}} B_{i+1}^{k-1}(x)$$

şeklinde tümevarım yöntemi ile hesaplanabilir [12, 13].

1.6.1 Lineer B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $L_m(x)$ lineer B-spline fonksiyonlar m = 0(1)N noktaları için;

$$L_{m} = \frac{1}{h} \begin{cases} (x_{m+1} - x) - 2(x_{m} - x) , & [x_{m-1}, x_{m}] \\ (x_{m+1} - x), & [x_{m}, x_{m+1}] \\ 0 , & \text{diger durumlar} \end{cases}$$
(1.6.1.1)

şeklinde tanımlanır [14]. $\{L_0(x), L_1(x), \ldots, L_N(x)\}$ kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Lineer B-spline fonksiyon ve türevi $[x_{m-1}, x_{m+1}]$ aralığı dışında sıfırdır. Şekil 1.3'te görüldüğü gibi her bir L_m B-spline fonksiyonu $[x_{m-1}, x_{m+1}]$ aralığında ardışık iki elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman L_m , L_{m+1} gibi iki lineer B-spline fonksiyonu tarafından örtülmektedir. Bir $[x_m, x_{m+1}]$ aralığı

$$h\xi = x - x_m, \quad 0 \le \xi \le 1 \tag{1.6.1.2}$$

lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Böylece lineer B-spline fonksiyonlar [0, 1] aralığında ξ cinsinden

$$L_m = 1 - \xi,$$

 $L_{m+1} = \xi$
(1.6.1.3)

şeklinde bulunur.

Şekil 1.3. Lineer B-spline Şekil Fonksiyonları.

1.6.2 Kuadratik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $Q_m(x)$ kuadratik B-spline fonksiyonlar m = -1(1)N noktaları için;

$$Q_{m}(x) = \frac{1}{h^{2}} \begin{cases} (x_{m+2} - x)^{2} - 3(x_{m+1} - x)^{2} + 3(x_{m} - x)^{2}, & [x_{m-1}, x_{m}] \\ (x_{m+2} - x)^{2} - 3(x_{m+1} - x)^{2}, & [x_{m}, x_{m+1}] \\ (x_{m+2} - x)^{2}, & [x_{m+1}, x_{m+2}] \\ 0, & \text{diger durumlar} \end{cases}$$

$$(1.6.2.1)$$

şeklinde tanımlanır [14]. $\{Q_{-1}(x), Q_0(x), \ldots, Q_N(x)\}$ kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Kuadratik B-spline $Q_m(x)$ fonksiyonu ve türevleri $[x_{m-1}, x_{m+2}]$ aralığı dışında sıfırdır. Şekil 1.4'te görüldüğü gibi her bir $Q_m(x)$ kuadratik B-spline fonksiyonu bu aralıkta ardışık üç elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman Q_{m-1}, Q_m, Q_{m+1} gibi üç kuadratik Bspline fonksiyon tarafından örtülmektedir. $Q_m(x)$ ve birinci mertebeden türevinin düğüm noktalarındaki değerleri Tablo 1.1 ile verildi. Bir $[x_m, x_{m+1}]$ aralığı (1.6.1.2)

Tablo 1.1. $Q_m(x)$ ve $Q'_m(x)$ 'in düğüm noktalarındaki değerleri.

x	x_{m-1}	x_m	x_{m+1}	x_{m+2}
ϕ_m	0	1	1	0
$h\phi'_m$	0	2	-2	0

lokal koordinat dönüşümü yardıyla [0, 1] aralığına dönüşür. Böylece kuadratik Bspline fonksiyonlar [0, 1] aralığında ξ cinsinden,

$$Q_{m-1} = (1 - \xi)^2,$$

$$Q_m = 1 + 2\xi - 2\xi^2,$$

$$Q_{m+1} = \xi^2$$

(1.6.2.2)

şeklinde bulunur. (1.6.2.2) kuadratik B-spline fonksiyonlar kullanılarak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre birinci mertebeden türevi δ_m eleman parametreleri cinsinden,

$$U_N(x_m, t) = U_m = \delta_{m-1} + \delta_m,$$

$$U'_m = \frac{2}{h}(-\delta_{m-1} + \delta_m)$$
(1.6.2.3)

biçiminde yazılabilir.

Şekil 1.4. Kuadratik B-spline Şekil Fonksiyonları.

1.6.3 Kübik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $\phi_m(x)$ kübik B-spline fonksiyonlar, m = -1(1)N + 1 noktaları için;

$$\phi_m(x) = \frac{1}{h^3} \begin{cases} (x - x_{m-2})^3, & [x_{m-2}, x_{m-1}] \\ h^3 + 3h^2(x - x_{m-1}) + 3h(x - x_{m-1})^2 - 3(x - x_{m-1})^3, & [x_{m-1}, x_m] \\ h^3 + 3h^2(x_{m+1} - x) + 3h(x_{m+1} - x)^2 - 3(x_{m+1} - x)^3, & [x_m, x_{m+1}] \\ (x_{m+2} - x)^3, & [x_{m+1}, x_{m+2}] \\ 0, & \text{diğer durumlar} \\ (1.6.3.1) \end{cases}$$

şeklinde tanımlanır [14]. { $\phi_{-1}(x), \phi_0(x), \ldots, \phi_N(x), \phi_{N+1}(x)$ } kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Kübik B-spline $\phi_m(x)$ fonksiyonu ve türevleri $[x_{m-2}, x_{m+2}]$ aralığı dışında sıfırdır. Şekil 1.5'te görüldüğü gibi her bir $\phi_m(x)$ kübik B-spline fonksiyonu $[x_{m-2}, x_{m+2}]$ aralığında ardışık dört elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ aralığındaki sonlu eleman $\phi_{m-1}, \phi_m, \phi_{m+1},$ ϕ_{m+2} gibi dört kübik B-spline fonksiyonu tarafından örtülmektedir. $\phi_m(x)$ ve ikinci mertebeye kadar olan $\phi'_m(x)$ ve $\phi''_m(x)$ türevlerinin düğüm noktalarındaki değerleri Tablo 1.2'de verildi. Tipik bir $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) lokal koordinat

Tablo 1.2. $\phi_m(x), \phi'_m(x)$ ve $\phi''_m(x)$ 'in düğüm noktalarındaki değerleri.

x	x_{m-2}	x_{m-1}	x_m	x_{m+1}	x_{m+2}
ϕ_m	0	1	4	1	0
$h\phi'_m$	0	3	0	-3	0
$h^2 \phi_m''$	0	6	-12	6	0

dönüşümü yardımıyla [0, 1] aralığına dönüşür. Böylece bir $[x_m, x_{m+1}]$ aralığını örten $\phi_{m-1}, \phi_m, \phi_{m+1}, \phi_{m+2}$ kübik B-spline fonksiyonlar [0, 1] aralığında ξ cinsinden,

$$\phi_{m-1} = (1-\xi)^3,$$

$$\phi_m = 1 + 3(1-\xi) + 3(1-\xi)^2 - 3(1-\xi)^3,$$

$$\phi_{m+1} = 1 + 3\xi + 3\xi^2 - 3\xi^3,$$

$$\phi_{m+2} = \xi^3$$

(1.6.3.2)

şeklinde bulunur. (1.6.3.2) kübik B-spline fonksiyonlar kullanı larak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre ikinci mertebeye kadar olan türevleri δ_m eleman parametreleri cinsinden,

$$U_N(x_m, t) = U_m = \delta_{m-1} + 4\delta_m + \delta_{m+1},$$

$$U'_m = \frac{3}{h}(-\delta_{m-1} + \delta_{m+1}),$$

$$U''_m = \frac{6}{h^2}(\delta_{m-1} - 2\delta_m + \delta_{m+1})$$

(1.6.3.3)

biçiminde yazılabilir.

Şekil 1.5. Kübik B-spline Şekil Fonksiyonları.

1.6.4 Kuartik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $\phi_m(x)$ kuartik B-spline fonksiyonlar m = -2(1)N + 1 noktaları için;

$$\phi_{i}(x) = \frac{1}{h^{4}} \begin{cases} (x - x_{m-2})^{4} , & [x_{m-2}, x_{m-1}] \\ (x - x_{m-2})^{4} - 5(x - x_{m-1})^{4} , & [x_{m-1}, x_{m}] \\ (x - x_{m-2})^{4} - 5(x - x_{m-1})^{4} + 10(x - x_{m})^{4} , & [x_{m}, x_{m+1}] \\ (x_{m+3} - x)^{4} - 5(x_{m+2} - x)^{4} , & [x_{m+1}, x_{m+2}] \\ (x_{m+3} - x)^{4} , & [x_{m+2}, x_{m+3}] \\ 0 , & \text{diger durumlar} \\ \end{cases}$$
(1.6.4.1)

şeklinde tanımlanır [14]. $\{\phi_{-2}(x), \phi_{-1}(x), \dots, \phi_N(x), \phi_{N+1}(x)\}$ kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Kuartik B-spline $\phi_m(x)$ fonksiyonu ve türevleri $[x_{m-2}, x_{m+3}]$ aralığı dışında sıfırdır. Şekil 1.6'da görüldüğü gibi her bir $\phi_m(x)$ kuartik B-spline $[x_{m-2}, x_{m+3}]$ aralığında ardışık beş elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman $\phi_{m-2}, \phi_{m-1}, \phi_m, \phi_{m+1}, \phi_{m+2}$ gibi beş kuartik B-spline fonksiyon tarafından örtülmektedir. $\phi_m(x)$ ve üçüncü mertebeye kadar olan $\phi'_m(x), \phi''_m(x), \phi'''_m(x)$ türevlerinin düğüm noktalarındaki değerleri Tablo 1.3'te verildi. Tipik bir $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) lokal koordinat dönüşümü

Tablo 1.3. $\phi_m(x), \phi'_m(x), \phi''_m(x)$ ve $\phi'''_m(x)$ 'in düğüm noktalarındaki değerleri.

x	x_{m-2}	x_{m-1}	x_m	x_{m+1}	x_{m+2}	x_{m+3}
ϕ_m	0	1	11	11	1	0
$h\phi'_m$	0	4	12	-12	-4	0
$h^2 \phi_m''$	0	12	-12	-12	12	0
$h^3 \phi_m^{\prime\prime\prime}$	0	24	-72	72	-24	0

yardımıyla [0, 1] aralığına dönüşür. Böylece kuartik B-spline fonksiyonlar [0, 1] aralığında ξ cinsinden,

$$\begin{split} \phi_{m-2} &= 1 - 4\xi + 6\xi^2 - 4\xi^3 + \xi^4, \\ \phi_{m-1} &= 11 - 12\xi - 6\xi^2 + 12\xi^3 - \xi^4, \\ \phi_m &= 11 + 12\xi - 6\xi^2 - 12\xi^3 + \xi^4, \\ \phi_{m+1} &= 1 + 4\xi + 6\xi^2 + 4\xi^3 - \xi^4, \\ \phi_{m+2} &= \xi^4 \end{split}$$
(1.6.4.2)

şeklinde bulunur. (1.6.4.2) kuartik B-spline fonksiyonlar kullanılarak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre üçüncü mertebeye kadar olan türevleri δ_m eleman parametreleri cinsinden,

$$U_{N}(x_{m},t) = U_{m} = \delta_{m-2} + 11\delta_{m-1} + 11\delta_{m} + \delta_{m+1},$$

$$U'_{m} = \frac{4}{h}(-\delta_{m-2} - 3\delta_{m-1} + 3\delta_{m} + \delta_{m+1}),$$

$$U''_{m} = \frac{12}{h^{2}}(\delta_{m-2} - \delta_{m-1} - \delta_{m} + \delta_{m+1}),$$

$$U''_{m} = \frac{24}{h^{3}}(-\delta_{m-2} + 3\delta_{m-1} - 3\delta_{m} + \delta_{m+1})$$
(1.6.4.3)

biçiminde yazılabilir.

1.6.5 Kuintik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanış
ı $a = x_0 < x_1 < \ldots < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzer
e x_m düğüm noktalarında $\phi_m(x)$ ku
intik B-spline

Şekil 1.6. Kuartik B-spline Şekil Fonksiyonları.

fonksiyonlar, m = -2(1)N + 2 noktaları için;

$$\phi_{m}(x) = \frac{1}{h^{5}} \begin{cases} (x - x_{m-3})^{5}, & [x_{m-3}, x_{m-2}] \\ (x - x_{m-3})^{5} - 6(x - x_{m-2})^{5}, & [x_{m-2}, x_{m-1}] \\ (x - x_{m-3})^{5} - 6(x - x_{m-2})^{5} + 15(x - x_{m-1})^{5}, & [x_{m-1}, x_{m}] \\ (x - x_{m-3})^{5} - 6(x - x_{m-2})^{5} + 15(x - x_{m-1})^{5} - \\ 20(x - x_{m})^{5}, & [x_{m-1}, x_{m+1}] \\ 20(x - x_{m})^{5} - 6(x - x_{m-2})^{5} + 15(x - x_{m-1})^{5} - \\ 20(x - x_{m})^{5} + 15(x - x_{m+1})^{5} & [x_{m+1}, x_{m+2}] \\ 20(x - x_{m})^{5} - 6(x - x_{m-2})^{5} + 15(x - x_{m-1})^{5} - \\ 20(x - x_{m})^{5} - 6(x - x_{m-2})^{5} + 15(x - x_{m-1})^{5} - \\ 20(x - x_{m})^{5} - 15(x - x_{m+1})^{5} - 6(x - x_{m+2})^{5} & [x_{m+2}, x_{m+3}] \\ 0, & \text{diger durumlar} \end{cases}$$

şeklinde tanımlanır [14]. $\{\phi_{-2}(x), \phi_{-1}(x), \dots, \phi_{N+1}(x), \phi_{N+2}(x)\}$ kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Kuintik Bspline $\phi_m(x)$ fonksiyonu ve türevleri $[x_{m-3}, x_{m+3}]$ aralığı dışında sıfırdır. Şekil 1.7'de görüldüğü gibi her bir $\phi_m(x)$ kuintik B-spline $[x_{m-3}, x_{m+3}]$ aralığında ardışık altı elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman $\phi_{m-2}, \phi_{m-1}, \phi_m, \phi_{m+1}, \phi_{m+2}, \phi_{m+3}$ gibi altı kuintik B-spline fonksiyon tarafından örtülmektedir. $\phi_m(x)$ ve dördüncü mertebeye kadar olan $\phi'_i(x), \phi''_i(x), \phi'''_i(x)$ ve $\phi^{(iv)}_i(x)$ türevlerinin düğüm noktalarındaki değerleri Tablo 1.4'te verildi.

Tipik bir $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Böylece kuintik B-spline fonksiyonlar [0, 1] aralığında ξ

x	x_{m-3}	x_{m-2}	x_{m-1}	x_m	x_{m+1}	x_{m+2}	x_{m+3}
ϕ_m	0	1	26	66	26	1	0
$h\phi'_m$	0	5	50	0	-50	-5	0
$h^2 \phi_m''$	0	20	40	-120	40	20	0
$h^3 \phi_m^{\prime\prime\prime}$	0	60	-120	0	120	-60	0
$h^4 \phi_m^{(iv)}$	0	120	-480	720	-480	120	0

Tablo 1.4: $\phi_m(x), \phi'_i(x), \phi''_i(x), \phi''_i(x)$ ve $\phi_i^{(iv)}(x)$ 'in düğüm noktalarındaki değerleri.

cinsinden,

$$\begin{split} \phi_{m-2} &= 1 - 5\xi + 10\xi^2 - 10\xi^3 + 5\xi^4 - \xi^5, \\ \phi_{m-1} &= 26 - 50\xi + 20\xi^2 + 20\xi^3 - 20\xi^4 + 5\xi^5, \\ \phi_m &= 66 - 60\xi^2 + 30\xi^4 - 10\xi^5, \\ \phi_{m+1} &= 26 + 50\xi + 20\xi^2 - 20\xi^3 - 20\xi^4 + 10\xi^5, \\ \phi_{m+2} &= 1 + 5\xi + 10\xi^2 + 10\xi^3 + 5\xi^4 - 5\xi^5, \\ \phi_{m+3} &= \xi^5 \end{split}$$
(1.6.5.2)

şeklinde bulunur. (1.6.5.2) kuintik B-spline fonksiyonlar kullanılarak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre dördüncü mertebeye kadar olan türevleri δ_m eleman parametreleri cinsinden,

$$U_{N}(x_{m},t) = U_{m} = \delta_{m-2} + 26\delta_{m-1} + 66\delta_{m} + 26\delta_{m+1} + \delta_{m+2},$$

$$U'_{m} = \frac{5}{h}(-\delta_{m-2} - 10\delta_{m-1} + 10\delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{20}{h^{2}}(\delta_{m-2} + 2\delta_{m-1} - 6\delta_{m} + 2\delta_{m+1} + \delta_{m+2}),$$

$$U'''_{m} = \frac{60}{h^{3}}(-\delta_{m-2} + 2\delta_{m-1} - 2\delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{120}{h^{4}}(\delta_{m-2} - 4\delta_{m-1} + 6\delta_{m} - 4\delta_{m+1} + \delta_{m+2})$$

(1.6.5.3)

biçiminde yazılabilir.

Şekil 1.7. Kuintik B-spline Şekil Fonksiyonları.

1.6.6 Sektik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $\phi_m(x)$ sektik B-spline fonksiyonlar m = -3(1)N + 2 noktaları için;

$$\phi_{m}(x) = \frac{1}{h^{6}} \begin{cases} (x - x_{m-3})^{6}, & [x_{m-3}, x_{m-2}] \\ (x - x_{m-3})^{6} - 7(x - x_{m-2})^{6}, & [x_{m-2}, x_{m-1}] \\ (x - x_{m-3})^{6} - 7(x - x_{m-2})^{6} + 21(x - x_{m-1})^{6}, & [x_{m-1}, x_{m}] \\ (x - x_{m-3})^{6} - 7(x - x_{m-2})^{6} + 21(x - x_{m-1})^{6} - \\ 35(x - x_{m})^{6}, & [x_{m}, x_{m+1}] \\ (x - x_{m+4})^{6} - 7(x - x_{m+3})^{6} + 21(x - x_{m+2})^{6}, & [x_{m+1}, x_{m+2}] \\ (x - x_{m+4})^{6} - 7(x - x_{m+3})^{6}, & [x_{m+2}, x_{m+3}] \\ (x - x_{m+4})^{6}, & [x_{m+3}, x_{m+4}] \\ 0, & \text{diger durumlar} \end{cases}$$
(1.6.6.1)

şeklinde tanımlanır [14]. { $\phi_{-3}(x), \phi_{-2}(x), \ldots, \phi_{N+1}(x), \phi_{N+2}(x)$ } kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Sektik B-spline $\phi_m(x)$ fonksiyonu ve türevleri $[x_{m-3}, x_{m+4}]$ aralığı dışında sıfırdır. Şekil 1.8'de görüldüğü gibi her bir $\phi_m(x)$ sektik B-spline $[x_{m-3}, x_{m+4}]$ aralığında ardışık yedi elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman $\phi_{m-3}, \phi_{m-2}, \phi_{m-1}, \phi_m, \phi_{m+1}, \phi_{m+2}$ ve ϕ_{m+3} gibi yedi sektik B-spline fonksiyon tarafından örtülmektedir. $\phi_m(x)$ ve beşinci mertebeye kadar olan $\phi'_m(x), \phi''_m(x), \phi'''_m(x), \phi^{(iv)}_m(x), \phi^{(v)}_m(x)$ türevlerinin düğüm noktalarındaki değerleri Tablo 1.5'te verildi.

x	x_{m-3}	x_{m-2}	x_{m-1}	x_m	x_{m+1}	x_{m+2}	x_{m+3}	x_{m+4}
ϕ_m	0	1	57	302	302	57	1	0
$h\phi'_m$	0	6	150	240	-240	-150	-6	0
$h^2 \phi_m''$	0	30	270	-300	-300	270	30	0
$h^3 \phi_m'''$	0	120	120	-960	960	-120	-120	0
$h^4 \phi_m^{(iv)}$	0	360	-1080	720	720	-1080	360	0
$h^5 \phi_m^{(v)}$	0	720	-3600	7200	7200	3600	-720	0

Tablo 1.5: $\phi_m(x), \phi'_m(x), \phi''_m(x), \phi'''_m(x), \phi_m^{(iv)}(x)$ ve $\phi_m^{(v)}(x)$ 'in düğüm noktalarındaki değerleri.

Tipik bir $[x_m, x_{m+1}]$ sonlu eleman aralığı(1.6.1.2) lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Böylece sektik B-spline fonksiyonlar [0, 1] aralığında ξ cinsinden,

$$\begin{split} \phi_{m-3} &= 1 - 6\xi + 15\xi^2 - 20\xi^3 + 15\xi^4 - 6\xi^5 + \xi^6, \\ \phi_{m-2} &= 57 - 150\xi + 135\xi^2 - 20\xi^3 - 45\xi^4 + 30\xi^5 - 6\xi^6, \\ \phi_{m-1} &= 302 - 240\xi - 150\xi^2 + 160\xi^3 + 30\xi^4 - 60\xi^5 + 15\xi^6, \\ \phi_m &= 302 + 240\xi - 150\xi^2 - 160\xi^3 + 30\xi^4 + 60\xi^5 - 20\xi^6, \\ \phi_{m+1} &= 57 + 150\xi + 135\xi^2 + 20\xi^3 - 45\xi^4 - 30\xi^5 + 15\xi^6, \\ \phi_{m+2} &= 1 + 6\xi + 15\xi^2 + 20\xi^3 + 15\xi^4 + 6\xi^5 - 6\xi^6, \\ \phi_{m+3} &= \xi^6 \end{split}$$

şeklinde bulunur. (1.6.6.2) sektik B-spline fonksiyonlar kullanılarak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre beşinci mertebeye kadar olan türevleri δ_m eleman parametreleri cinsinden,

$$U_{N}(x_{m},t) = U_{m} = \delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_{m} + 57\delta_{m+1} + \delta_{m+2},$$

$$U'_{m} = \frac{6}{h}(-\delta_{m-3} - 25\delta_{m-2} + 10 - 40\delta_{m-1} + 40\delta_{m} + 25\delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{30}{h^{2}}(\delta_{m-3} + 9\delta_{m-2} - 10\delta_{m-1} - 10\delta_{m} + 9\delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{120}{h^{3}}(-\delta_{m-3} - \delta_{m-2} + 8\delta_{m-1} - 8\delta_{m} + \delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{360}{h^{4}}(\delta_{m-3} - 3\delta_{m-2} + 2\delta_{m-1} + 2\delta_{m} - 3\delta_{m+1} + \delta_{m+2}),$$

$$U''_{m} = \frac{720}{h^{5}}(-\delta_{m-3} + 5\delta_{m-2} - 10\delta_{m-1} + 10\delta_{m} - 5\delta_{m+1} + \delta_{m+2}),$$
(1.6.6.3)

biçiminde yazılabilir.

Şekil 1.8. Sektik B-spline Şekil Fonksiyonları.

1.6.7 Septik B-Spline Fonksiyonlar

[a, b] aralığının düzgün bir parçalanışı $a = x_0 < x_1 < ... < x_{N-1} < x_N = b$ olsun. $h = x_{m+1} - x_m$ olmak üzere x_m düğüm noktalarında $\phi_m(x)$ septik B-spline fonksiyonlar m = -3(1)N + 3 noktaları için;

$$\phi_m(x) = \frac{1}{h^7} \begin{cases} (x - x_{m-4})^7, & [x_{m-4}, x_{m-3}] \\ (x - x_{m-4})^7 - 8(x - x_{m-3})^7, & [x_{m-3}, x_{m-2}] \\ (x - x_{m-4})^7 - 8(x - x_{m-3})^7 + 28(x - x_{m-2})^7, & [x_{m-2}, x_{m-1}] \\ (x - x_{m-4})^7 - 8(x - x_{m-3})^7 + 28(x - x_{m-2})^7 - \\ 56(x - x_{m-1})^7, & [x_{m-1}, x_m] \\ (x_{m+4} - x)^7 - 8(x_{m+3} - x)^7 + 28(x_{m+2} - x)^7 - \\ 56(x_{m+1} - x)^7, & [x_{m+4}, x_{m+1}] \\ 56(x_{m+4} - x)^7 - 8(x_{m+3} - x)^7 + 28(x_{m+2} - x)^7, & [x_{m+1}, x_{m+2}] \\ (x_{m+4} - x)^7 - 8(x_{m+3} - x)^7, & [x_{m+2}, x_{m+3}] \\ (x_{m+4} - x)^7, & [x_{m+3}, x_{m+4}] \\ 0, & \text{diğer durumlar} \end{cases}$$

$$(1.6.7.1)$$

)

şeklinde tanımlanır [14]. $\{\phi_{-3}(x), \phi_{-2}(x), \dots, \phi_{N+2}(x), \phi_{N+3}(x)\}$ kümesi $a \leq x \leq b$ aralığında tanımlı fonksiyonlar için bir baz oluşturur. Septik B-spline $\phi_m(x)$ fonksiyonu ve türevleri $[x_{i-4}, x_{i+4}]$ aralığı dışında sıfırdır. Şekil 1.9'da görüldüğü gibi her bir $\phi_m(x)$ septik B-spline $[x_{m-4}, x_{m+4}]$ aralığında ardışık sekiz elemanı örtmekte ve dolayısıyla her bir $[x_m, x_{m+1}]$ sonlu eleman $\phi_{m-3}, \phi_{m-2}, \phi_{m-1}, \phi_m, \phi_{m+1}, \phi_{m+2}, \phi_{m+3}$ ve ϕ_{m+4} gibi sekiz spline tarafından örtülmektedir. $\phi_m(x)$ ve altıncı mertebeye kadar olan $\phi'_m(x), \phi''_m(x), \phi''_m(x), \phi^{(iv)}_m(x), \phi^{(v)}_m(x), \phi^{(vi)}_m(x)$ türevlerinin düğüm noktalarındaki değerleri Tablo 1.6'da verildi.

Tablo 1.6: $\phi_m(x), \phi'_m(x), \phi''_m(x), \phi''_m(x), \phi^{(iv)}_m(x), \phi^{(v)}_m(x)$ ve $\phi^{(v)}_m(x)$ 'nın düğüm noktalarındaki değerleri.

x	x_{m-4}	x_{m-3}	x_{m-2}	x_{m-1}	x_m	x_{m+1}	x_{m+2}	x_{m+3}	x_{m+4}
ϕ_m	0	1	120	1191	2416	1191	120	1	0
$h\phi_m'$	0	-7	-392	-1715	0	1715	392	7	0
$h^2 \phi_m''$	0	42	1008	630	-3360	630	1008	42	0
$h^3 \phi_m^{\prime\prime\prime}$	0	-210	-1680	3990	0	-3990	1680	210	0
$h^4 \phi_m^{(iv)}$	0	840	0	-7560	13440	-7560	0	840	0
$h^5 \phi_m^{(v)}$	0	-2520	10080	-12600	0	12600	-10080	2520	0
$h^6 \phi_m^{(vi)}$	0	5040	-30240	75600	-100800	75600	-30240	5040	0

Tipik bir $[x_m, x_{m+1}]$ sonlu eleman aralığı (1.6.1.2) lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Böylece septik B-spline fonksiyonlar [0, 1]aralığında ξ cinsinden,

$$\begin{split} \phi_{m-3} &= 1 - 7\xi + 21\xi^2 - 35\xi^3 + 35\xi^4 - 21\xi^5 + 7\xi^6 - \xi^7, \\ \phi_{m-2} &= 120 - 392\xi + 504\xi^2 - 280\xi^3 + 84\xi^5 - 42\xi^6 + 7\xi^7, \\ \phi_{m-1} &= 1191 - 1715\xi + 315\xi^2 + 665\xi^3 - 315\xi^4 - 105\xi^5 + 105\xi^6 - 21\xi^7, \\ \phi_m &= 2416 - 1680\xi^2 + 560\xi^4 - 140\xi^6 + 35\xi^7, \\ \phi_{m+1} &= 1191 + 1715\xi + 315\xi^2 - 665\xi^3 - 315\xi^4 + 105\xi^5 + 105\xi^6 - 35\xi^7, \\ \phi_{m+2} &= 120 + 392\xi + 504\xi^2 + 280\xi^3 - 84\xi^5 - 42\xi^6 + 21\xi^7, \\ \phi_{m+3} &= 1 + 7\xi + 21\xi^2 + 35\xi^3 + 35\xi^4 + 21\xi^5 + 7\xi^6 - 7\xi^7, \\ \phi_{m+4} &= \xi^7 \end{split}$$

şeklinde bulunur. (1.6.7.2) septik B-spline fonksiyonlar kullanılarak x_m düğüm noktasında U_N yaklaşık çözümü ve x'e göre altıncı mertebeye kadar olan türevleri δ_m eleman parametreleri cinsinden,

$$U_{N}(x_{m},t) = \delta_{m-3} + 120\delta_{m-2} + 1191\delta_{m-1} + 2416\delta_{m} + 1191\delta_{m+1} + 120\delta_{m+2} + \delta_{m+3},$$

$$U'_{m} = \frac{7}{h}(-\delta_{m-3} - 56\delta_{m-2} - 245\delta_{m-1} + 245\delta_{m+1} + 56\delta_{m+2} + \delta_{m+3}),$$

$$U''_{m} = \frac{42}{h^{2}}(\delta_{m-3} + 24\delta_{m-2} + 15\delta_{m-1} - 80\delta_{m} + 15\delta_{m+1} + 24\delta_{m+2} + \delta_{m+3}),$$

$$U'''_{m} = \frac{210}{h^{3}}(-\delta_{m-3} - 8\delta_{m-2} + 19\delta_{m-1} - 19\delta_{m+1} + 8\delta_{m+2} + \delta_{m+3}),$$

$$U'''_{m} = \frac{840}{h^{4}}(\delta_{m-3} - 9\delta_{m-1} + 16\delta_{m} - 9\delta_{m+1} + \delta_{m+3}),$$

$$U''_{m} = \frac{2520}{h^{5}}(-\delta_{m-3} + 4\delta_{m-2} - 5\delta_{m-1} + 5\delta_{m+1} - 4\delta_{m+2} + \delta_{m+3}),$$

$$U''_{m} = \frac{5040}{h^{6}}(\delta_{m-3} - 6\delta_{m-2} + 15\delta_{m-1} - 20\delta_{m} + 15\delta_{m+1} - 6\delta_{m+2} + \delta_{m+3}),$$
(1.6.7.3)

biçiminde yazılabilir.

Şekil 1.9. Septik B-spline Şekil Fonksiyonları.

1.7 Modifiye Edilmiş Eşit Genişlikli (MEW) Dalga Denklemi

Morrison ve arkadaşları [15] tarafından sunulan eşit genişlikli dalga (EW) denklemi,

$$U_t + \varepsilon U U_x - \mu U_{xxt} = 0 , \qquad (1.7.1)$$

şeklinde bir kısmi diferansiyel denklem olup sığ olmayan su dalgaları ve iyon akustik plazma dalgaları gibi bir çok önemli fiziksel olayı tanımladığı için lineer olmayan dalga yayılımı konusunda önemli bir rol oynamaktadır [16, 17]. Burada U = U(x,t)konum değişkeni x ve zaman değişkeni t'nin bir fonksiyonudur. ε ve μ ise pozitif parametrelerdir. Akışkanlar mekaniğinde U = U(x,t) dalga genliğini veya benzer fiziksel bir niceliği göstermesine rağmen plazma uygulamalarında negatif elektrostatik potansiyeli göstermektedir. Denklemdeki UU_x ve U_{xxt} terimleri sırasıyla lineer olmayan dalganın yükselmesini ve yayılımını göstermektedir.

EW denkleminin sayısal çözümleri birçok araştırmacı tarafından farklı yöntemlerle elde edilmiştir. Gardner ve Gardner [18, 19], kübik B-spline fonksiyonlar kullanarak Galerkin yöntemi ve kuadratik B-spline fonksiyonlarını kullanarak Petrov-Galerkin sonlu eleman yöntemi ile EW denkleminin sayısal çözümlerini elde etmişlerdir. Garcia ve Archilla [20], EW denklemi için bir spektral yöntem geliştirmişlerdir. Zaki [21, 22], en küçük kareler ve şekil fonksiyonlarını kuadratik B-spline fonksiyonlar alarak Petrov-Galerkin yöntemi ile EW denkleminin sayısal çözümlerini bulmuştur. Hamdi [23], EW denkleminin sayısal çözümleri için çizgi adaptasyon yöntemini (MOL) sunmuştur. Dağ ve Saka [24], kübik B-spline fonksiyonlar kullanarak kollokasyon yöntemi ile Esen [25], kuadratik B-spline fonksiyonlar kullanarak lumped Galerkin yöntemi ile EW denkleminin yaklaşık çözümlerini bulmuşlardır. Doğan [26], lineer B-spline fonksiyonlar kullanarak Galerkin yöntemi ile EW denkleminin sayısal çözümlerini bulmuştur. Raslan [27], kuartik B-spline ve Irk vd. [28] kübik B-spline fonksiyonlar kullanarak kollokasyon yöntemi ile Saka [29], konumsal parçalama (space splitting) tekniğini kullanarak kuadratik B-spline Galerkin yöntemi ile EW denklemini sayısal olarak çözmüşlerdir. Dağ vd. [30], kuadratik Bspline fonksiyonlar kullanarak Galerkin sonlu eleman yöntemi ile EW denkleminin sayısal çözümlerini elde etmişlerdir.

Genelleştirilmiş eşit genişlikli dalga (GEW) denklemi

$$U_t + \varepsilon U^p U_x - \mu U_{xxt} = 0 , \qquad (1.7.2)$$

şeklinde olup p pozitif bir tamsayıdır. Hamdi vd. [31], Maple yazılımını kullanarak GEW denkleminin solitary dalga çözümlerini analitik olarak elde etmişlerdir. Raslan [32], GEW denkleminin sayısal çözümünü kübik B-spline fonksiyonlar kullanarak kollokasyon yöntemi ile ve yine Raslan ve Evans [33], GEW denkleminin solitary dalga çözümü, iki dalganın girişimi ve dalga oluşumu problemlerinin sayısal çözümlerini kuadratik B-spline kollokasyon yöntemini kullanarak elde etmişlerdir.

Bu denklemde p = 1 alınırsa EW denklemi elde edilir. EW denkleminde solitary ve diğer dalga hareketleri için sınır şartları $x \to \pm \infty$ için $U(x,t) \to 0$ şeklindedir. Bu denklemin solitary dalga analitik çözümü

$$U(x,t) = A \sec h(k[x - x_0 - vt])$$

biçimindedir. Burada k dalga sayısı ve v dalga hızı olup $k = \sqrt{\frac{1}{4\mu}}$ ve v = c'dir. Bu analitik çözüm v'nin işaretine bağlı olarak x'in pozitif veya negatif yönünde hareket eden solitary dalgaların hareketine karşılık gelir. EW denkleminin solitary dalga çözümleri $-\infty < v < +\infty$ aralığındaki dalga hızları için oluşmaktadır. Solitary dalganın genişliği $\lambda = \frac{2}{k} \sec h^{-1} \left[\sqrt{\bar{u}} \right] = 4 \sqrt{\mu} \sec h^{-1} (\sqrt{\bar{u}})$ şeklinde tanımlanır [23]. Burada \bar{u} dalganın genliği olup $\bar{u} = u_{\lambda}/u_{zirve} = \sec h^2 \left[k\lambda/2\right]$ şeklindedir. EW denkleminde solitary dalgalar herhangi dalga genliği ve hızı için sabit bir genişliğe sahiptir. Çünkü k ve λ sadece μ ' ye bağlıdır. EW denklemi ismini bu özelliğinden almıştır. Bu denklemin çözümleri, bozulmuş solitary dalganın salınan bir izle bozulan veya patlayan genlikli büzüşen bir dalgaya dönüşebilir. EW denkleminin çözümlerinin solitary dalga etkileşimleri hız ve genlikçe sınırsız büyüyebilir veya bir dizi zayıf dalgaya parçalanabilir. Bu etkileşimler elastik olmayan veya açık olmayan etkileşimler olarak adlandırılır. Matematiksel olarak EW denklemi integrallenemezdir ve bu durum onun dalga etkileşimlerini içeren elastik olmayan özelliklerinden kaynaklanmaktadır. İntegrallenebilir bir denklem sonsuz sayıda korunum kanununa sahipken integrallenemeyen denklemler sınırlı sayıda korunum kanununa sahiptir. Olver [34], EW denkleminin çözümlerinin sadece üç tane korunum kanununa sahip olduğunu göstermiştir. Bu kanunlar akışkanlar mekaniğinde kütle, momentum ve enerjinin korunumu kanununa karşılık gelmektedir. Olver bu korunum kanunların

$$I_{1} = \int_{-\infty}^{+\infty} u dx, \quad I_{2} = \int_{-\infty}^{+\infty} \left(u^{2} + \mu u_{x} u_{x} \right) dx, \quad I_{3} = \int_{-\infty}^{+\infty} u^{3} dx$$

olduğunu göstermiştir. Birbirleri ile çarpışktan sonra veya oldukça uzun mesafelerde hareket ederken orijinal büyüklüklerinde, şekillerinde ve hızlarında kayda değer bir değişiklik olmadan hareket eden dalgalara "soliton" adı verilir. Solitonlar elastik dalga etkileşim özelliğine sahip özel tipte dalgalardır. EW denklemi gibi integrallenemeyen denklemler ile ilişkili olan solitary dalgalar soliton değildir. Daha önceleri EW denkleminin orijinalde integrallenebilir ve elastiki dalga etkileşimlerine sahip olduğu düşünülürdü. Bu düşünce tam olmayan veya düşük çözünürlüklü sayısal yöntemlerin hesaplamalarından ve elastik olmayan dalga etkileşimlerinin küçük etkilerinin gözden kaçtığı sayısal çözümlerden kaynaklanmıştır. Mesala solitary dalganın yavaş yavaş bozulması ve zayıf iz dalgalarını bırakması izah edilemiyordu veya sayısal olarak üretilmiş salınım olarak yorumlanıyordu. Bu sayısal zorluk ilk defa aktarılmış dalgalar arasında solitary dalgaların izi halinde büyük ve kolaylıkla gözlenebilir elastik olmayan etkiler üreten iki solitary dalganın bir boyutlu çarpışmasındaki çalışmasında Santarelli tarafından tanımlanmış ve çalışılmıştır [35].

GEW denkleminde $p=2,\,\varepsilon=3$ alındığında

$$U_t + 3U^2 U_x - \mu U_{xxt} = 0 (1.7.3)$$

MEW denklemi elde edilir. Modifiye edilmiş denklemler lineer olmayan dalga denklemleridir ve hepsi solitary dalga çözümlerine sahiptir. Bu solitary dalgalar pozitif veya negatif büyüklüğe sahip olabilir ve bu dalgaların hepsi genlikleri ile orantılı olarak pozitif hıza ve yine hepsi aynı $k = \sqrt{\frac{1}{\mu}}$ dalga sayısına sahiptirler. Bundan dolayı bütün solitary dalgalar eşit genişliğe sahiptir. EW denkleminde olduğu gibi MEW denkleminin de sınırlı sayıda başlangıç ve sınır şartlarına bağlı analitik çözümleri vardır. Bu nedenle MEW denklemi ile ilgili olayları anlayabilmek için çeşitli başlangıç ve sınır şartlarını ihtiva eden sayısal çözümlerin gerekliliği ortaya çıkmıştır.

EW denklemi gibi MEW denkleminin sayısal çözümleri de birçok araştırmacı tarafından farklı yöntemlerle elde edilmiştir. Zaki [36], MEW denkleminin yaklaşık çözümlerini kuintik B-spline baz fonksiyonlar kullanarak, Petrov-Galerkin sonlu eleman yöntemi ile bulmuştur. Wazwaz [37], MEW denkleminin lineer olmayan iki formu için tanh ve sine-cosine yöntemlerini sunmuştur. Esen [38], kuadratik B-spline fonksiyonlar kullanarak lumped Galerkin sonlu eleman yöntemi ile MEW denkleminin sayısal çözümlerini bulmuştur. Saka [39], zaman ve konuma göre parçalama (*split*) tekniğini kullanarak kuintik B-spline kollokasyon yöntemi ile MEW denkleminin sayısal çözümlerini elde etmiştir. Lu [40], He'nin varyasyonel iterasyon yöntemini kullanarak MEW denkleminin sayısal çözümlerini bulmuştur. Rui vd. [41], çattallama (*bifurcation*) yöntemini , Esen ve Kutluay [42], lineerleştirilmiş kapalı sonlu fark yöntemini kullanarak MEW denkleminin sayısal çözümlerini elde etmişlerdir. İslam vd. [43], kuartik B-spline kollokasyon yöntemi ile ve Mohyud-Din vd. [44], homotopy pertürbasyon yöntemi ile MEW denkleminin sayısal çözümlerini bulmuşlardır.

EW ve MEW denklemleri analitik çözüm için sınırlı sayıda başlangıç ve sınır şartlarına sahip olduklarından ve birçok farklı fiziksel alanlarda artan çalışmalardan dolayı lineer olmayan kısmi diferansiyel denklemler içinde önemli bir yere sahiptir. Bu nedenle daha fazla sayıda başlangıç ve sınır şartları ile birlikte çözümler elde etmek için sayısal yöntemlere ihtiyaç duyulmuştur.

1.7.1 Model Problemler

Lineer olmayan MEW denkleminin çözümü için kullanılan sayısal yöntemlerin doğruluğu üç farklı problem ile gösterildi. Model problemlerde I_1 , I_2 ve I_3 ile ifade edilen kütle, momentum ve enerjinin korunum sabitleri

$$I_1 = \int_{-\infty}^{+\infty} U \, dx, \qquad I_2 = \int_{-\infty}^{+\infty} (U^2 + \mu (U_x)^2 dx, \qquad I_3 = \int_{-\infty}^{+\infty} U^4 \, dx$$

sayısal çözümlerin doğruluğunu göstermek için kullanıldı. Hata analizleri hesaplanırken ise

$$L_{2} = \left\| U^{tam} - U_{N} \right\|_{2} \simeq \sqrt{h \sum_{J=1}^{N} \left| U_{j}^{tam} - (U_{N})_{j} \right|^{2}},$$

ortalama hata normu ile

$$L_{\infty} = \left\| U^{tam} - U_N \right\|_{\infty} \simeq \max_{j} \left| U_j^{tam} - (U_N)_j \right|,$$

maksimum hata normu kullanıldı [36].

Problem 1: Solitary Dalga Çözümü

Problem 1 için MEW denklemi

$$U(x,0) = A \sec h(k[x-x_0])$$

başlangıç şartı ve $x \to \pm \infty$ için $U \to 0$ sınır şartları ile ele alındı. Bu problemin solitary dalga analitik çözümü,

$$U(x,t) = A \sec h(k[x - x_0 - vt])$$

şeklinde olup burada A bağımsız solitary dalganın genliği , $v = A^2/2$ dalganın hızı ve $k = \sqrt{1/\mu}$ ise dalga sayısıdır. Bu problem için I_1 , I_2 ve I_3 ile ifade edilen kütle, momentum ve enerjinin korunum sabitlerinin analitik değerleri $\mu = 1$, A = 0.25, $x_0 = 30$ parametreleri için

$$I_1 = \frac{A\pi}{k} = 0.7853982,$$

$$I_2 = \frac{2A^2}{k} + \frac{2\mu k A^2}{3} = 0.16666667,$$

$$I_3 = \frac{4A^4}{3k} = 0.0052083$$

şeklinde bulunur [36].

Problem 2: İki Solitary Dalganın Girişimi

Bu problemde MEW denklemi

$$U(x,0) = A_1 \sec h[k(x-x_1)] + A_2 \sec h[k(x-x_2)]$$

başlangıç şartı ve $x \to \pm \infty$ için $U \to 0$ sınır şartları ile ele alındı. $0 \le x \le 80$ aralığında $\mu = 1, x_1 = 15, x_2 = 30, A_1 = 1, A_2 = 0.5$ değerleri için I_1, I_2 ve I_3 ile ifade edilen kütle, momentum ve enerjinin korunum sabitlerinin analitik değerleri

$$I_{1} = \pi (A_{1} + A_{2}) = 4.7123889,$$

$$I_{2} = \frac{8}{3} (A_{1}^{2} + A_{2}^{2}) = 3.33333333,$$

$$I_{3} = \frac{4}{3} (A_{1}^{4} + A_{2}^{4}) = 1.4166667$$
(1.7.1.2.2)

şeklindedir [33]. $0 \le x \le 150$ aralığında $\mu = 1, x_1 = 15, x_2 = 30, A_1 = -2, A_2 = 1$ değerleri için korunum sabitlerinin değerleri (1.7.1.2.2) denklemi kullanılarak sırası ile

$$I_1 = -3.1415927,$$

 $I_2 = 13.3333333,$
 $I_3 = 22.66666667$

şeklinde bulunur.

Problem 3: Dalga Oluşumu

Bu problem için

$$U(x,0) = e^{-x^2}$$

Maxwellian başlangıç şartı ve

$$U(-20,t) = U_x(-20,t) = U(20,t) = U_x(20,t) = 0$$

sınır şartları kullanılarak (1.7.3) denkleminin sayısal çözümleri μ 'nün farklı değerleri için elde edildi [39].

BÖLÜM 2 MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN GALERKIN SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ

Bu bölümde (1.7.3) ile verilen MEW denkleminin sayısal çözümleri kuadratik ve kübik B-spline fonksiyonlar kullanılarak Galerkin sonlu eleman yöntemi ile elde edildi. Galerkin yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılık analizi *Mathematica* programı kullanılarak von Neumann yöntemi ile incelendi. Solitary dalga çözümleri ve iki solitary dalganın girişimi problemleri ele alındı. Yaklaşım ve ağırlık fonksiyonları aynı alınarak uygulanan Galerkin yöntemi ile elde edilen denklem sistemleri Thomas algoritması kullanılarak çözüldü.

Galerkin, Petrov-Galerkin ve Subdomain sonlu eleman yöntemleri kullanılarak (1.7.3) ile verilen MEW denkleminin ağırlıklı integral formu oluşturulurken denklem W ağırlık fonksiyonu ile çarpılır ve verilen bölge üzerinden integrali alınırsa

$$\int_{a}^{b} W(U_t + 3U^2 U_x - \mu U_{xxt}) dx = 0$$
(2.1)

elde edilir. Bu denklemde Bölüm 1'de (1.6.1.2) ile verilen dönüşümün kullanılması ile (2.1) denklemi $[x_m, x_{m+1}]$ elemanı için

$$\int_0^1 W(U_t + \frac{3}{h}U^2 U_{\xi} - \frac{\mu}{h^2} U_{\xi\xi t}) d\xi = 0$$
(2.2)

şeklinde yazılır. (2.2) ile verilen denklemde kısmi integrasyon uygulanır, $\frac{3U^2}{h} = \lambda$ ve $\frac{\mu}{h^2} = \beta$ denirse MEW denkleminin zayıf formu

$$\int_{0}^{1} [W(U_{t} + \lambda U_{\xi}) + \beta W_{\xi} U_{\xi t}] d\xi = \beta W U_{\xi t}|_{0}^{1}$$
(2.3)

şeklinde bulunur.

2.1 Kuadratik B-spline Fonksiyonlar ile Galerkin Yöntemi

Bu kısımda, (1.7.3) ile verilen MEW denklemine Galerkin sonlu eleman yöntemi uygulandı. Ağırlık fonksiyonları olarak Bölüm 1'de (1.6.2.2) ile verilen kuadratik Bspline fonksiyonlar alınırsa problemin U(x,t) tam çözümüne karşılık gelen $U_N(x,t)$ yaklaşımı

$$U_N(x,t) = \sum_{j=-1}^{N} Q_j(x)\delta_j(t)$$
 (2.1.1)

şeklinde yazılabilir [14]. Burada δ_j 'ler zamana bağlı bilinmeyen parametrelerdir. (2.1.1) yaklaşımı (1.6.2.2) ile verilen kuadratik B-spline baz fonksiyonlar cinsinden $[x_m, x_{m+1}]$ elemanı üzerinde

$$U_N(x,t) = \sum_{j=m-1}^{m+1} Q_j(x)\delta_j(t)$$
(2.1.2)

şeklinde yazılır. (1.6.2.2) ile verilen kuadratik B-spline fonksiyonlar ve (2.1.2) yaklaşımı kullanılırsa x_m düğüm noktasında U_m ve U_m 'nin x'e göre birinci mertebeden türevinin δ_m eleman parametrelerine göre noktasal değerleri Bölüm 1'de verilen (1.6.2.3)'deki gibi elde edilir. Burada m = 0(1)N olup üst indis x'e göre türevi göstermektedir. Ağırlık fonksiyonu olarak (1.6.2.2) ile verilen kuadratik B- spline fonksiyonlar alınır, (2.1.2) yaklaşımı (2.3) integral denkleminde yazılır ve gerekli işlemler yapılırsa

$$\sum_{j=m-1}^{m+1} \left[\int_0^1 (Q_i Q_j + \beta Q_i' Q_j') d\xi \right] \dot{\delta}_j^e + \sum_{j=m-1}^{m+1} \lambda \int_0^1 (Q_i Q_j' d\xi) \delta_j^e = \sum_{j=m-1}^{m+1} (\beta Q_i Q_j') \dot{\delta}_j^e \Big|_0^1 \quad (2.1.3)$$

denklem sistemi elde edilir. Burada

$$\begin{aligned} A^e_{ij} &= \int_0^1 Q_i Q_j d\xi, \\ B^e_{ij} &= \int_0^1 Q'_i Q'_j d\xi, \\ C^e_{ij} &= Q_i Q'_j |_0^1, \\ D^e_{ij} &= \int_0^1 Q_i Q'_j d\xi \end{aligned}$$

alınırsa (2.1.3) denklem sistemi matris formunda

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \lambda D^e \delta^e \tag{2.1.4}$$

şeklinde yazılabilir. Burada $\delta^e = (\delta_{m-1}, \delta_m, \delta_{m+1})^T$ eleman parametrelerini göstermektedir. Kuadratik B-spline fonksiyonlar kullanılarak integraller hesaplandığında i, j = m - 1, m, m + 1 olmak üzere $A^e_{ij}, B^e_{ij}, C^e_{ij}$ ve D^e_{ij} eleman matrisleri sırası ile

$$A_{ij}^{e} = \int_{0}^{1} Q_{i}Q_{j}d\xi = \frac{1}{30} \begin{bmatrix} 6 & 13 & 1 \\ 13 & 54 & 13 \\ 1 & 13 & 6 \end{bmatrix}, \qquad (2.1.5)$$

$$B_{ij}^{e} = \int_{0}^{1} Q_{i}'Q_{j}'d\xi = \frac{2}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \qquad (2.1.5)$$

$$C_{ij}^{e} = Q_{i}Q_{j}'|_{0}^{1} = 2 \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \qquad (2.1.5)$$

$$D_{ij}^{e} = \int_{0}^{1} Q_{i}Q_{j}'d\xi = \frac{1}{6} \begin{bmatrix} -3 & 2 & 1 \\ -8 & 0 & 8 \\ -1 & -2 & 3 \end{bmatrix}$$

şeklinde bulunur. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C ve Dmatrisleri (2.1.4) ifadesinde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_{N-1}, \delta_N)^T$ global eleman parametreler olmak üzere

$$[A + \beta(B - C)]\dot{\delta} + \lambda D\delta = 0 \qquad (2.1.6)$$

denklem sistemi elde edilir. Bu denklem sistemindek
i $A,\,B,\,C$ ve λD matrislerinin genelleştirilmiş satırları

$$A = \frac{1}{30}(1, 26, 66, 26, 1),$$

$$B = \frac{2}{3}(-1, -2, 6, -2, 1),$$

$$C = (0, 0, 0, 0, 0),$$

$$\lambda D = \frac{1}{6}(-\lambda_1, -2\lambda_1 - 8\lambda_2, 3\lambda_1 - 3\lambda_3, 8\lambda_2 + 2\lambda_3, \lambda_3)$$

(2.1.7)

şeklindedir. (2.1.6) denkleminde zamana bağlı $\dot{\delta}$ parametresi yerine

$$\dot{\delta} = \frac{\delta^{n+1} - \delta^n}{\Delta t} \tag{2.1.8}$$

ileri sonlu fark yaklaşımı ve δ parametresi yerine de

$$\delta = \left(\frac{\delta^n + \delta^{n+1}}{2}\right) \tag{2.1.9}$$

Crank-Nicolson sonlu fark yaklaşımı kullanılırsa $(N+2) \times (N+2)$ -boyutlu

$$[A+\beta(B-C)+\frac{\lambda\Delta t}{2}D]\delta^{n+1} = [A+\beta(B-C)-\frac{\lambda\Delta t}{2}D]\delta^n \qquad (2.1.10)$$

karesel cebirsel denklem sistemi elde edilir. Problem ile verilen sınır şartları kullanıılarak δ_{-1}, δ_N parametreleri (2.1.10) denklem sisteminden yok edilirse ($N \times N$)boyutlu denklem sistemi elde edilir. Bu sistemin çözümü Thomas algoritması ile kolayca elde edilebilir.

 δ_m^{n+1} parametresinin hesaplanabilmesi için δ^0 başlangıç vektörünün bilinmesi gereklidir. δ^0 başlangıç vektörü, problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanır. Bunun için δ_j^0 belirlenecek parametreler olmak üzere (2.1.1) denklemi

$$U_N(x,0) = \sum_{j=-1}^N Q_j \delta_j^0$$

şeklinde yeniden yazılabilir. Böylece başlangıç şartlarının \boldsymbol{x}_j düğüm noktalarındaki

$$U_N(x_i, 0) = U(x_i, 0),$$
 $j = 0, ..., N$

değerleri kullanılarak δ_j^0 parametreleri için

$$U(x_{0}, 0) = \delta_{-1} + \delta_{0},$$

$$U(x_{1}, 0) = \delta_{0} + \delta_{1},$$

$$U(x_{2}, 0) = \delta_{1} + \delta_{2},$$

$$\vdots$$

$$U(x_{N-1}, 0) = \delta_{N-2} + \delta_{N-1},$$

$$U(x_{N}, 0) = \delta_{N-1} + \delta_{N}$$

(N+2)-bilinmeyenli(N+1)- tane denklem
den oluşan cebirsel denklem sistemi elde edilir. Bu denklem sisteminde yardımcı şart olarak

$$U'(x_0, 0) = U'_0 = \frac{2}{h}(\delta_0 - \delta_{-1})$$

türevli sınır şartı kullanılırsa δ^0 başlangıç parametreleri

matris denkleminin çözülmesi ile elde edilebilir. (2.1.10) sisteminin lineer olmayan terimlerine her zaman adımında

$$\delta_m^* = \delta_m^n + \frac{1}{2}(\delta_m^{n+1} - \delta_m^n) \tag{2.1.12}$$

iterasyon formülü üç veya dört defa uygulanarak U_N yaklaşık çözümleri iyileştirilir.

Kararlılık Analizi

Galerkin yönteminin uygulanmasıyla elde edilen sonlu eleman yaklaşımının kararlılığı von Neumann yöntemi kullanılarak incelendi. Bu yöntemde *i* birim imajiner sayı, *k* mod numarası ve *h* eleman genişliği olmak üzere $\hat{\delta}^n$ genlikli bir Fourier mod

$$\delta_j^n = \hat{\delta}^n e^{ijkh} \tag{2.1.13}$$

şeklindedir. MEW denklemi lineer olmayan U^2U_x terimindeki U terimi sabit alınarak lineerleştirilebilir.

(2.1.10) denklem sisteminin *m*. genelleştirilmiş satırı

$$\gamma_1 \delta_{m-2}^{n+1} + \gamma_2 \delta_{m-1}^{n+1} + \gamma_3 \delta_m^{n+1} + \gamma_4 \delta_{m+1}^{n+1} + \gamma_5 \delta_{m+2}^{n+1} = \gamma_5 \delta_{m-2}^n + \gamma_4 \delta_{m-1}^n + \gamma_3 \delta_m^n + \gamma_2 \delta_{m+1}^n + \gamma_1 \delta_{m+2}^n$$
(2.1.14)

şeklinde olup burada

$$\gamma_{1} = \frac{1}{30} - \frac{2\beta}{3} - \frac{\lambda\Delta t}{12}, \qquad \gamma_{2} = \frac{26}{30} - \frac{4\beta}{3} - \frac{10\lambda\Delta t}{12},$$

$$\gamma_{3} = \frac{66}{30} + \frac{12\beta}{3}, \qquad \gamma_{4} = \frac{26}{30} - \frac{4\beta}{3} + \frac{10\lambda\Delta t}{12},$$

$$\gamma_{5} = \frac{1}{30} - \frac{2\beta}{3} + \frac{\lambda\Delta t}{12}$$

dir. (2.1.14) denkleminde (2.1.13) eşitliği yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1}[\gamma_1 e^{-2ikh} + \gamma_2 e^{-ikh} + \gamma_3 + \gamma_4 e^{ikh} + \gamma_5 e^{2ikh}] = \\\hat{\delta}^n[\gamma_5 e^{-2ikh} + \gamma_4 e^{-ikh} + \gamma_3 + \gamma_2 e^{ikh} + \gamma_1 e^{2ikh}]$$

bulunur. Bu denklemde

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2.1.15}$$

Euler formülü kullanılırsa

$$a = 66 + 120\beta + (52 - 80\beta)\cos(\theta)h + (2 - 40\beta)\cos(2\theta)h$$
$$b = 25\lambda\Delta t\sin(\theta)h + \frac{5\lambda\Delta t}{2}\sin(2\theta)h$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa

$$g = \frac{a - ib}{a + ib} \tag{2.1.16}$$

bulunur. (2.1.16) ifadesinin iki tarafının modülü alınırsa |g| = 1 elde edilir. Bu ise yöntemin şartsız kararlı olduğunu gösterir.

Lineerleştirme Uygulamaları

Bu kısımda (1.7.3) ile verilen MEW denklemindeki U^2U_x lineer olmayan terimi için dört farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[U_{m}^{n}\right]^{2} = \left[\delta_{m-1}^{n} + \delta_{m}^{n}\right]^{2}$$

alınırsa (2.1.10) denklem sistemindeki λ

$$\lambda = \frac{3U^2}{h} = \frac{3}{h} \left[\delta_{m-1}^n + \delta_m^n \right]^2$$
(2.1.17)

şeklinde bulunur. Böylece Problem 1 ve 2 için λ yerine (2.1.17) eşitliği yazılarak elde edilen sayısal değerler Tablo 2.1 ve 2.2'de verildi. Problem 1 için, $0 \le x \le 80$

aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.1'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.59190959 × 10⁻³, 12.29987865 × 10⁻³; h = 0.05 için sırasıyla 8.12952651 × 10⁻³, 6.02836218 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan hdeğerleri azaldıkça hata norm değerlerinin de azaldığı görülmektedir.

Tablo 2.1: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81897795	2.36603520
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79865327	5.20889395
	15.0	0.8137945	0.1765068	0.0058342	12.02653765	8.52309794
	20.0	0.8236523	0.1799408	0.0060628	16.59190959	12.29987865
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7900327	0.1682643	0.0053071	1.90231751	1.17781049
0.05	10.0	0.7947009	0.1698577	0.0054080	3.86436442	2.57742858
	15.0	0.7994161	0.1714733	0.0055113	5.92682870	4.19411853
	20.0	0.8041800	0.1731119	0.0056170	8.12952651	6.02836218

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 2.2'de gösterildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.59110184 × 10⁻³, 12.29883153 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.59175108 × 10⁻³, 12.29967156 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.59195964 × 10⁻³, 12.29994440 × 10⁻³ olduğu görülür. Bu sonuçlara göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olmaktadır.

Uygulama 1 için Problem 2'nin, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 ve Δt 'nin 0.025 ve 0.01 için uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 2\delta_{m-1}^{n} + 2\delta_{m}^{n} + \delta_{m+1}^{n}}{3}\right]^{2}$$

alınırsa (2.1.10) denklem sistemindeki λ

$$\lambda = 3U^2 = \frac{1}{3h} \left[\delta_{m-2}^n + 2\delta_{m-1}^n + 2\delta_{m+1}^n + \delta_{m+1}^n \right]^2$$
(2.1.18)

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946753	0.1699235	0.0054076	3.81886669	2.36580645
0.2	10.0	0.8041385	0.1731695	0.0056160	7.79837445	5.20841462
	15.0	0.8137939	0.1765066	0.0058341	12.02602826	8.52234753
	20.0	0.8236514	0.1799404	0.0060628	16.59110184	12.29883153
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1699236	0.0054076	3.81895636	2.36598986
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79859882	5.20879901
	15.0	0.8137944	0.1765068	0.0058342	12.02643789	8.52294942
	20.0	0.8236521	0.1799407	0.0060628	16.59175108	12.29967156
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81898473	2.36604962
0.01	10.0	0.8041390	0.1731697	0.0056160	7.79867040	5.20892413
	15.0	0.8137946	0.1765069	0.0058342	12.02656911	8.52314511
	20.0	0.8236523	0.1799408	0.0060628	16.59195964	12.29994440

Tablo 2.2: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

şeklinde bulunur. Böylece Problem 1 ve 2 için λ yerine (2.1.18) eşitliği yazılarak elde edilen sayısal değerler Tablo 2.3 ve 2.4'te verildi. Problem 1 için, $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.3'te verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $16.45288620 \times 10^{-3}$, $12.14768740 \times 10^{-3}$; h = 0.05 için sırasıyla $8.11238781 \times 10^{-3}$, $6.00330670 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 2.3: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1698964	0.0054058	3.79069277	2.32825699
0.1	10.0	0.8040112	0.1731135	0.0056124	7.73902064	5.12685513
	15.0	0.8135965	0.1764190	0.0058284	11.93062649	8.40569823
	20.0	0.8233779	0.1798179	0.0060545	16.45288620	12.14768740
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7900249	0.1682609	0.0053069	1.89877442	1.17026960
0.05	10.0	0.7946851	0.1698508	0.0054076	3.85692604	2.56297125
	15.0	0.7993919	0.1714626	0.0055106	5.91492672	4.17342249
	20.0	0.8041468	0.1730971	0.0056160	8.11238781	6.00330670

Tablo 2.4'te Problem 1 için, $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için 16.45209386 × 10⁻³, 12.14665020 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.45273071 × 10⁻³, 12.14748225 × 10⁻³
ve $\Delta t = 0.01$ için sırasıyla 16.45293529 × 10⁻³, 12.14775254 × 10⁻³ olduğu görülür. Elde edilen sonuçlara göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olmaktadır.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946131	0.1698963	0.0054058	3.79058450	2.32802974
0.2	10.0	0.8040108	0.1731133	0.0056123	7.73874799	5.12637963
	15.0	0.8135959	0.1764187	0.0058283	11.93012743	8.40495431
	20.0	0.8233770	0.1798175	0.0060545	16.45209386	12.14665020
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946132	0.1698964	0.0054058	3.79067172	2.32821195
0.1	10.0	0.8040111	0.1731135	0.0056124	7.73896740	5.12676094
	15.0	0.8135964	0.1764190	0.0058284	11.93052875	8.40555097
	20.0	0.8233777	0.1798178	0.0060545	16.45273071	12.14748225
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1698964	0.0054058	3.79069937	2.32827132
0.01	10.0	0.8040112	0.1731135	0.0056124	7.73903739	5.12688507
	15.0	0.8135965	0.1764190	0.0058284	11.93065731	8.40574501
	20.0	0.8233779	0.1798179	0.0060545	16.45293529	12.14775254

Tablo 2.4: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Uygulama 2 için Problem 2'nin, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 ve zaman adımı Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü.

Uygulama 3:

MEW denkleminde U^2U_x lineer olmayan terimi

$$U^2 U_x = U U U_x \tag{2.1.19}$$

şeklinde yazılırsa (1.7.3) ile verilen denklemin ağırlıklı integral ifadesi

$$\int_{a}^{b} W(U_t + 3UUU_x - \mu U_{xxt})dx = 0$$
(2.1.20)

şeklinde elde edilir. Bu ifadede (1.6.1.2) ile verilen dönüşümünün kullanılması ile (2.1.20) denklemi $[x_m, x_{m+1}]$ elemanı için

$$\int_{0}^{1} W(U_t + \frac{3}{h}UUU_{\xi} - \frac{\mu}{h^2}U_{\xi\xi t})d\xi = 0$$
(2.1.21)

şeklinde yazılır. (2.1.21) denkleminde $\alpha = \frac{3UU_{\xi}}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere $U_{\xi\xi t}$ terimine kısmi integrasyon uygulanır ve gerekli düzenlemeler yapılırsa

$$\int_{0}^{1} [(WU_{t} + \alpha WU) + \beta W_{\xi} U_{\xi t}] d\xi = \beta WU_{\xi t}|_{0}^{1}$$
(2.1.22)

bulunur. Ağırlık fonksiyonu olarak (1.6.2.2) ile verilen kuadratik B- spline fonksiyonlar alınır, (2.1.2) yaklaşımı (2.1.22) integral denkleminde kullanılır ve gerekli işlemler yapılırsa $[x_m, x_{m+1}]$ elemanı için

$$\sum_{j=m-1}^{m+1} \left[\int_0^1 (Q_i Q_j + \beta Q_i' Q_j') d\xi \right] \dot{\delta}_j^e + \sum_{j=m-1}^{m+1} \alpha \int_0^1 (Q_i Q_j d\xi) \delta_j^e = \sum_{j=m-1}^{m+1} \left[\beta (Q_i Q_j') \dot{\delta}_j^e \right]_0^1$$
(2.1.23)

denklem sistemi elde edilir.

$$A_{ij}^e = \int_0^1 Q_i Q_j d\xi,$$
$$B_{ij}^e = \int_0^1 Q_i' Q_j' d\xi,$$
$$C_{ij}^e = Q_i Q_j' |_0^1,$$

olmak üzere (2.1.23) ifadesinin matris gösterimi

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \alpha A^e \delta^e \tag{2.1.24}$$

şeklinde olup burada $\delta^e = (\delta_{m-1}, \delta_m, \delta_{m+1})^T$ eleman parametrelerini göstermektedir. Kuadratik B-spline fonksiyonlar kullanılarak integraller hesaplandığında A^e_{ij} , B^e_{ij} , C^e_{ij} eleman matrisleri (2.1.5)'deki gibi elde edilir. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C matrisleri (2.1.24) ifadesinde yerine yazılırsa $\delta = (\delta_{-1}, \delta_0 \dots \delta_{N-1}, \delta_N)^T$ global parametreler olmak üzere

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \alpha A^e \delta^e = 0 \qquad (2.1.25)$$

denklemi elde edilir. Bu denklemdeki A ve B matrislerinin genelleştirilmiş satırları

$$\begin{split} A &= \frac{1}{30} (1, 26, 66, 26, 1), \\ B &= \frac{2}{3} (-1, -2, 6, -2, 1), \\ \alpha A &= \frac{1}{30} (\alpha_1, 13\alpha_1 + 13\alpha_2, 6\alpha_1 + 54\alpha_2 + 6\alpha_3, 13\alpha_2 + 13\alpha_3, \alpha_3) \end{split}$$

şeklindedir. (2.1.25) denkleminde zamana bağlı $\dot{\delta}$ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine ise (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa $(N + 2) \times (N + 2)$ -boyutunda

$$[A + \beta(B - C) + \frac{\alpha \Delta t}{2}A]\delta^{n+1} = [A + \beta(B - C) - \frac{\alpha \Delta t}{2}A]\delta^n$$
(2.1.26)

matris sistemi elde edilir. Bu uygulamada (2.1.26) sistemindeki α teriminde UU_{ξ} yerine

$$(UU_{\xi})^{n+1} = U^{n+1}U_{\xi}^{n} + U^{n}U_{\xi}^{n+1} - U^{n}U_{\xi}^{n}$$
(2.1.27)

yaklaşımı kullanıldı [45].

Problem 1 ve 2 için (2.1.26) denklem sisteminde (2.1.27) eşitliği kullanılarak elde edilen sayısal değerler Tablo 2.5-2.8'de verildi. Tablo 2.5'te Problem 1 için, $0 \leq x \leq 80$ aralığında $\Delta t = 0.05$ ve h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 sırasıyla için 11.96919890 × 10⁻³, 10.71432428 × 10⁻³; h = 0.05 için sırasıyla 6.19733988 × 10⁻³, 5.55157617 × 10⁻³ olduğu görülür. Elde edilen sonuçlara göre hdeğerleri azaldıkça hata norm değerleri de küçüldüğü görülür.

Tablo 2.5: $\mu = 1, h = 0.1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251620	2.86821905
0.1	10.0	0.7765516	0.1608232	0.0048435	5.92858958	5.59620570
	15.0	0.7723783	0.1580699	0.0046784	8.90537171	8.20348726
	20.0	0.7683541	0.1554439	0.0045234	11.96919890	10.71432428
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831325	0.1651500	0.0051125	1.50496139	1.44746078
0.05	10.0	0.7809002	0.1636476	0.0050197	3.01801388	2.85725939
	15.0	0.7787112	0.1621832	0.0049301	4.57242117	4.22066928
	20.0	0.7765634	0.1607544	0.0048434	6.19733988	5.55157617

Problem 1 için, $0 \le x \le 80$ aralığında h = 0.1 ve Δt 'nin 0.2, 0.1 ve 0.01 için elde edilen değerler Tablo 2.6'da verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerleri $\Delta t = 0.2$ için sırasıyla 11.96935610 × 10⁻³, 10.71427598 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.96922845 × 10⁻³, 10.71431295 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.96918987 × 10⁻³, 10.71432828 × 10⁻³ olarak bulundu. Bu sonuçlara göre Δt değerleri azaldıkça L_2 hatasında oldukça az bir düşüş gözlenirken L_{∞} hatasında ise oldukça az bir artış görüldü.

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin 0.25 ve 0.01 değerleri için yapıldı ve elde edilen sonuçlar Tablo 2.7'de verildi. Hesaplamalar, ikinci olarak $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 ve Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808867	0.1637168	0.0050197	2.98250544	2.86819413
0.2	10.0	0.7765517	0.1608233	0.0048435	5.92860647	5.59618042
	15.0	0.7723784	0.1580700	0.0046784	8.90544708	8.20341411
	20.0	0.7683542	0.1554440	0.0045234	11.96935610	10.71427598
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808860	0.1637168	0.0050197	2.98251354	2.86821356
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859198	5.59619968
	15.0	0.7723784	0.1580699	0.0046784	8.90538535	8.20347131
	20.0	0.7683541	0.1554439	0.0045234	11.96922845	10.71431295
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251716	2.86822092
0.01	10.0	0.7765516	0.1608232	0.0048435	5.92858903	5.59620784
	15.0	0.7723783	0.1580699	0.0046784	8.90536767	8.20349266
	20.0	0.7683541	0.1554439	0.0045234	11.96918987	10.71432828

Tablo 2.6: $\mu = 1, h = 0.1, A = 0.25, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

edilen sonuçlar Tablo 2.8'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görüldü.

Tablo 2.7: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 3 ile elde edilen korunum sabitleri.

	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3352827	1.4166643	4.7123733	3.3352827	1.4166643
10	4.2631206	2.3178806	0.6203826	4.2631133	2.3178602	0.6203690
20	3.9959938	1.8198564	0.3582062	3.9959872	1.8198396	0.3581979
30	3.8078527	1.5132973	0.2363590	3.8078477	1.5132846	0.2363540
40	3.6654574	1.3039713	0.1694460	3.6654538	1.3039618	0.1694428
50	3.5542009	1.1532892	0.1290149	3.5541982	1.1532817	0.1290127
55	3.5078537	1.0939862	0.1148073	3.5078514	1.0939795	0.1148055
60	3.4665912	1.0431189	0.1033712	3.4665893	1.0431128	0.1033696
70	3.3955300	0.9594788	0.0860502	3.3955286	0.9594736	0.0860490
80	3.3351572	0.8913993	0.0732870	3.3351561	0.8913948	0.0732861

Uygulama 4:

Bu uygulamada (2.1.26) ile verilen denklem sisteminde α terimindeki UU_{ξ} yerine

$$(UU_{\xi})^{n+1} = \frac{1}{2} (U^{n+1}U_{\xi}^{n} + U^{n}U_{\xi}^{n+1})$$
(2.1.28)

yaklaşımı kullanıldı [46].

Problem 1 ve 2 için (2.1.10) ile verilen denklem sisteminde (2.1.28) eşitliği kullanılarak elde edilen sayısal değerler Tablo 2.9-2.12'de verildi. Problem 1 için,

Tablo 2.8: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 3 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3411111	22.6665313	-3.1415739	13.3411111	22.6665313	
5	-2.1650833	7.2795552	5.7316047	-2.1648824	7.2784680	5.7294486	
15	-1.6115846	4.0519186	1.5492127	-1.6115417	4.0515575	1.5488440	
25	-1.3665644	2.7561812	0.6689566	-1.3665996	2.7560653	0.6688694	
35	-1.2295242	2.0874681	0.3663489	-1.2296187	2.0874660	0.3663351	
45	-1.1361151	1.6782873	0.2280539	-1.1362620	1.6783484	0.2280649	
55	-1.0670199	1.4043915	0.1544956	-1.0672121	1.4044883	0.1545147	

 $0 \le x \le 80$ aralığında $\Delta t = 0.05$ ve h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.9'da verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $11.88248977 \times 10^{-3}$, $10.63804866 \times 10^{-3}$; h = 0.05 için sırasıyla $6.10397294 \times 10^{-3}$, $5.46860969 \times 10^{-3}$ olduğu görülür. Bu sonuçlara göre h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 2.9: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

3
0
1
3
15
66
0
7
7
7
9

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 ve Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 2.10'da verildi. Tablodan t = 20.0de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 11.62174121 × 10⁻³, 10.40840357 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.79568146 × 10⁻³, 10.56163417 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.95185828 × 10⁻³, 10.69908330 × 10⁻³ olduğu görülür. Elde edilen sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir artış gözlendi.

Problem 2 için hesaplamalar ilk olarak, $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5, h = 0.1$ ve Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7810225	0.1638079	0.0050253	2.89168680	2.78114175
0.2	10.0	0.7768113	0.1609955	0.0048539	5.75085933	5.42870285
	15.0	0.7727511	0.1583144	0.0046930	8.64260599	7.96592141
	20.0	0.7688304	0.1557531	0.0045416	11.62174121	10.40840357
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7809545	0.1637623	0.0050225	2.93713586	2.82472477
0.1	10.0	0.7766813	0.1609092	0.0048487	5.83980466	5.51254988
	15.0	0.7725644	0.1581919	0.0046857	8.77412732	8.08490274
	20.0	0.7685917	0.1555981	0.0045325	11.79568146	10.56163417
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808934	0.1637213	0.0050200	2.97798217	2.86387536
0.01	10.0	0.7765646	0.1608318	0.0048440	5.91971791	5.58785076
	15.0	0.7723969	0.1580820	0.0046792	8.89225625	8.19165161
	20.0	0.7683778	0.1554593	0.0045243	11.95185828	10.69908330

Tablo 2.10: $\mu = 1, h = 0.1, A = 0.25, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Tablo 2.11'de verildi. Hesaplamalar ikinci olarak, $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1, h = 0.1$ ve Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 2.12'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Tablo 2.11: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	Δ	t = 0.025		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123733	3.3352827	1.4166643	4.7123733	3.3352827	1.4166643	
10	4.2771485	2.3470489	0.6394135	4.2686385	2.3293086	0.6278013	
20	4.0113278	1.8470254	0.3714124	4.0020056	1.8304562	0.3633261	
30	3.8224469	1.5360941	0.2451946	3.8135701	1.5221812	0.2397798	
40	3.6790941	1.3231411	0.1756408	3.6707972	1.3114373	0.1718432	
50	3.5673223	1.1702216	0.1337253	3.5593311	1.1598703	0.1308341	
55	3.5209206	1.1103390	0.1190728	3.5129596	1.1003356	0.1164528	
60	3.4796171	1.0590081	0.1072874	3.4716819	1.0492907	0.1048820	
70	3.4082875	0.9741360	0.0893475	3.4005151	0.9651795	0.0873229	
80	3.3476835	0.9049001	0.0761200	3.3400375	0.8966348	0.0743761	

2.2 Kübik B-spline Fonksiyonlar ile Galerkin Yöntemi

Bu kısımda, (1.7.3) ile verilen MEW denklemine Galerkin sonlu eleman yöntemi uygulandı. Ağırlık fonksiyonları olarak Bölüm 1'de (1.6.3.2) ile verilen kübik Bspline fonksiyonlar alınırsa problemin U(x,t) tam çözümüne karşılık gelen $U_N(x,t)$

Tablo 2.12: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3411111	22.6665313	-3.1415739	13.3411111	22.6665313	
5	-2.2810617	7.7737039	6.7273718	-2.1648824	7.2784680	5.7294486	
15	-1.6633766	4.2394921	1.7377486	-1.6115417	4.0515575	1.5488440	
25	-1.3511655	2.7852701	0.6893034	-1.3665996	2.7560653	0.6688694	
35	-1.1332356	2.0080552	0.3333757	-1.2296187	2.0874660	0.3663351	
45	-0.9655105	1.5389486	0.1824481	-1.1362620	1.6783484	0.2280649	
55	-0.8350724	1.2374653	0.1098589	-1.0672121	1.4044883	0.1545147	

yaklaşımı

$$U_N(x,t) = \sum_{j=-1}^{N+1} \delta_j(t)\phi_j(x)$$
(2.2.1)

şeklinde yazılabilir [14]. Burada δ_j 'ler zamana bağlı bilinmeyen parametrelerdir. (2.2.1) yaklaşımı (1.6.3.2) ile verilen kübik B-spline baz fonksiyonları cinsinden

$$U_N(x,t) = \sum_{j=m-1}^{m+2} \delta_j(t)\phi_j(x)$$
(2.2.2)

şeklinde yazılır. (1.6.3.2) ile verilen kübik B-spline fonksiyonlar ve (2.2.2) yaklaşımı kullanılırsa x_m düğüm noktasında U_m 'in kendisinin ve x'e göre birinci mertebeden türevinin δ_m eleman parametrelerine göre noktasal değerleri Bölüm 1'de verilen (1.6.3.3)'deki gibi elde edilir. Burada m = 0(1)N olup üst indis x'e göre türevi göstermektedir. Ağırlık fonksiyonu olarak (1.6.3.2) ile verilen kübik B- spline fonksiyonlar alınır, (2.2.2) yaklaşımı (2.3) integral denkleminde yerine yazılır ve gerekli işlemler yapılırsa

$$\sum_{j=m-1}^{m+2} \left[\int_0^1 (\phi_i \phi_j + \beta \phi'_i \phi'_j) d\xi \right] \dot{\delta}^e_j + \sum_{j=m-1}^{m+2} \lambda \int_0^1 (\phi_i \phi'_j d\xi) \delta^e_j = \sum_{j=m-1}^{m+2} (\beta \phi_i \phi'_j) \dot{\delta}^e_j |_0^1 \quad (2.2.3)$$

denklem sistemi elde edilir.

$$A^{e}_{ij} = \int_{0}^{1} \phi_{i} \phi_{j} d\xi,$$
$$B^{e}_{ij} = \int_{0}^{1} \phi'_{i} \phi'_{j} d\xi,$$
$$C^{e}_{ij} = \phi_{i} \phi'_{j} |_{0}^{1},$$
$$D^{e}_{ij} = \int_{0}^{1} \phi_{i} \phi'_{j} d\xi$$

olmak üzere (2.2.3) denklem sisteminin matris formu (2.1.24) şeklinde elde edilir. Kübik B-spline fonksiyonlar kullanılarak integraller hesaplandığında i, j = m - 1,m, m + 1, m + 2 olmak üzere $A_{ij}^e, B_{ij}^e, C_{ij}^e$ ve D_{ij}^e eleman matrisleri

$$\begin{split} A_{ij}^{e} &= \int_{0}^{1} \phi_{i} \phi_{j} d\xi = \frac{1}{140} \begin{bmatrix} 20 & 129 & 60 & 1\\ 129 & 1188 & 933 & 60\\ 60 & 933 & 1188 & 129\\ 1 & 60 & 129 & 20 \end{bmatrix}, \quad (2.2.4) \\ B_{ij}^{e} &= \int_{0}^{1} \phi_{i}' \phi_{j}' d\xi = \frac{1}{10} \begin{bmatrix} 18 & 21 & -36 & -3\\ 21 & 102 & -87 & -36\\ -36 & -87 & 102 & 12\\ -3 & -36 & 21 & 18 \end{bmatrix}, \\ C_{ij}^{e} &= \phi_{i} \phi_{j}' \Big|_{0}^{1} = 3 \begin{bmatrix} 1 & 0 & -1 & 0\\ 4 & -1 & -4 & 1\\ 1 & -4 & -1 & 4\\ 0 & -1 & 0 & 1 \end{bmatrix}, \\ D_{ij}^{e} &= \int_{0}^{1} \phi_{i} \phi_{j}' d\xi = \frac{1}{20} \begin{bmatrix} -10 & -9 & 18 & 1\\ -71 & -150 & 183 & 38\\ -38 & -183 & 150 & 71\\ -1 & -18 & 9 & 10 \end{bmatrix} \end{split}$$

şeklinde elde edilir. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, Cve D matrisleri (2.1.24) ifadesinde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_{N-1}, \delta_N, \delta_{N+1})^T$ global parametreler olmak üzere (2.1.6) ile verilen matris denklemi bulunur. Bu matris denklemindeki A, B, C ve λD matrislerinin genelleştirilmiş satırları

$$A = \frac{1}{140} (1, 120, 1191, 2416, 1191, 120, 1),$$

$$B = \frac{1}{10} (-3, -72, 6, -45, 240, -45, -72, -3),$$

$$C = (0, 0, 0, 0, 0, 0, 0),$$

$$\lambda D = \frac{1}{20} (-\lambda_1, -18\lambda_1 - 38\lambda_2, 9\lambda_1 - 183\lambda_2, -71\lambda_3, 10\lambda_1 + 150\lambda_2 - 150\lambda_3 - 10\lambda_4,$$

$$71\lambda_2 + 183\lambda_3 - 9\lambda_4, 38\lambda_3 + 18\lambda_4, \lambda_4)$$

(2.2.5)

şeklindedir. (2.1.6) ile verilen denklemde zamana bağlı $\dot{\delta}$ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa (N + 3)- bilinmeyenli (N + 3)- tane denklemden oluşan (2.1.10) cebirsel denklem sistemi elde edilir. Problem ile verilen sınır şartları kullanılarak δ_{-1} , δ_{N+1} parametreleri (2.1.10) denklem sisteminden yok edilirse $(N + 1) \times (N + 1)$ - boyutlu cebirsel denklem sistemi elde edilir. Bu sistem Thomas algoritması ile kolayca çözülebilir.

 δ_m^{n+1} parametresinin hesaplanabilmesi için δ^0 başlangıç vektörünün bilinmesi gereklidir. δ^0 başlangıç vektörü, problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanır. Bunun için δ_j^0 belirlenecek parametreler olmak üzere (2.2.1) denklemi

$$U_N(x,0) = \sum_{j=-1}^{N+1} \phi_j \delta_j^0$$

şeklinde yeniden yazılır. Böylece başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x_j, 0) = U(x_j, 0)$$
 $j = 0, ..., N$

değerleri kullanılarak δ_i^0 parametreleri için

$$U(x_{0}, 0) = \delta_{-1} + 4\delta_{0} + \delta_{1},$$

$$U(x_{1}, 0) = \delta_{0} + 4\delta_{1} + \delta_{2},$$

$$U(x_{2}, 0) = \delta_{1} + 4\delta_{2} + \delta_{3},$$

$$\vdots$$

$$U(x_{N-1}, 0) = \delta_{N-2} + 4\delta_{N-1} + \delta_{N},$$

$$U(x_{N}, 0) = \delta_{N-1} + 4\delta_{N} + \delta_{N+1}$$

(N+3)- bilinmeyenli (N+1)- tane denklem
den oluşan denklem sistemi elde edilir. Bu denklem sisteminde yardımcı şart olarak

$$U'(x_0, 0) = U'(x_N, 0) = 0$$

türevli sınır şartı kullanılırsa δ^0 başlangıç vektörü

$$\begin{bmatrix} -3 & 0 & 3 & & & \\ 1 & 4 & 1 & & & \\ & & & \ddots & & \\ & & & 1 & 4 & 1 \\ & & & -3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \delta_{-1}^{0} \\ \delta_{0}^{0} \\ \vdots \\ \delta_{N+1}^{0} \end{bmatrix} = \begin{bmatrix} 0 \\ U(x_{0}) \\ \vdots \\ U(x_{N}) \\ 0 \end{bmatrix}$$
(2.2.6)

şeklinde matris denkleminden elde edilebilir. Bu sistemin çözülmesiyle başlangıç parametreleri elde edilir. (2.1.10) ile verilen denklem sisteminin lineer olmayan terimlerine her zaman adımında (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanarak U_N yaklaşık çözümleri iyileştirilir.

Kararlılık Analizi

Galerkin yönteminin uygulanması ile elde edilen sayısal yaklaşımın kararlılık analizi von Neumann yöntemi ile incelendi. (2.1.10) denklem sisteminin m. genelleştirilmiş satırı

$$\begin{split} \gamma_1 &= \frac{1}{30} - \frac{3\beta}{10} - \frac{\lambda\Delta t}{40}, & \gamma_2 &= \frac{120}{140} - \frac{72\beta}{10} - \frac{56\lambda\Delta t}{40}, \\ \gamma_3 &= \frac{1191}{140} - \frac{45\beta}{10} - \frac{245\lambda\Delta t}{40}, & \gamma_4 &= \frac{2416}{140} + \frac{240\beta}{10}, \\ \gamma_5 &= \frac{1191}{140} - \frac{45\beta}{10} + \frac{245\lambda\Delta t}{40}, & \gamma_6 &= \frac{120}{140} - \frac{72\beta}{10} + \frac{56\lambda\Delta t}{40}, \\ \gamma_7 &= \frac{1}{30} - \frac{3\beta}{10} + \frac{\lambda\Delta t}{40} \end{split}$$

olmak üzere

$$\gamma_{1}\delta_{m-3}^{n+1} + \gamma_{2}\delta_{m-2}^{n+1} + \gamma_{3}\delta_{m-1}^{n+1} + \gamma_{4}\delta_{m}^{n+1} + \gamma_{5}\delta_{m+1}^{n+1} + \gamma_{6}\delta_{m+2}^{n+1} + \gamma_{7}\delta_{m+3}^{n+1} = \gamma_{7}\delta_{m-3}^{n} + \gamma_{6}\delta_{m-2}^{n} + \gamma_{5}\delta_{m-1}^{n} + \gamma_{4}\delta_{m}^{n} + \gamma_{3}\delta_{m+1}^{n} + \gamma_{2}\delta_{m+2}^{n} + \gamma_{1}\delta_{m+3}^{n}$$

$$(2.2.7)$$

şeklinde yazılır. (2.2.7) denkleminde (2.1.13) ifadesi yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1}[\gamma_1 e^{-3ikh} + \gamma_2 e^{-2ikh} + \gamma_3 e^{-ikh} + \gamma_4 + \gamma_5 e^{ikh} + \gamma_6 e^{2ikh} + \gamma_7 e^{3ikh}] = \hat{\delta}^n[\gamma_7 e^{-3ikh} + \gamma_6 e^{-2ikh} + \gamma_5 e^{-ikh} + \gamma_4 + \gamma_3 e^{ikh} + \gamma_2 e^{2ikh} + \gamma_1 e^{3ikh}]$$

bulunur. Bu denklemde (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 2416 + 3360\beta + (2382 - 1260\beta)\cos(\theta)h + (240 - 2016\beta)\cos(2\theta)h + (2 - 84\beta)\cos(3\theta)h$$
$$b = 1715\lambda\Delta t\sin(\theta)h + 392\lambda\Delta t\sin(2\theta)h + 1\lambda\Delta t\sin(3\theta)h$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa

$$g = \frac{a - ib}{a + ib}$$

bulunur. Buradan |g| = 1 olup yöntem şartsız kararlıdır.

Lineerleştirme Uygulamaları

Bu kısımda (1.7.3) ile verilen MEW denklemindeki U^2U_x lineer olmayan terimi için beş farklı linerleştirme tekniği uygulandı.

Uygulama1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = \left[\delta_{m-1}^{n} + 4\delta_{m}^{n} + \delta_{m+1}^{n}\right]^{2}$$

alınırsa (2.1.10) denklem sistemindeki λ

$$\lambda = \frac{3U^2}{h} = \frac{3}{h} \left[\delta_{m-1}^n + 4\delta_m^n + \delta_{m+1}^n \right]^2$$
(2.2.8)

şeklinde elde edilir.

Problem 1 ve 2 için (2.1.10) ile verilen denklemde (2.2.8) eşitliği kullanıarak elde edilen sayısal değerler Tablo 2.13 ve 2.14'te verildi. Problem 1 için, $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.13'te gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.59187013 × 10⁻³, 12.29968481 × 10⁻³; h = 0.05 için sırasıyla 8.12952316 × 10⁻³, 6.02835037 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan hkonum adım değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 2.14'te verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.59106236 × 10⁻³, 12.29863769 × 10; $\Delta t = 0.1$ için sırasıyla 16.59171162 × 10⁻³, 12.29947772 × 10⁻³ ve

Tablo 2.13: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698259	0.0054076	3.81897215	2.36601937
0.1	10.0	0.8041389	0.1730721	0.0056160	7.79863582	5.20888226
	15.0	0.8137945	0.1764092	0.0058342	12.02650749	8.52299511
	20.0	0.8236523	0.1798429	0.0060628	16.59187013	12.29968481
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7900327	0.1682400	0.0053071	1.90231718	1.17781072
0.05	10.0	0.7947009	0.1698334	0.0054080	3.86436331	2.57742666
	15.0	0.7994161	0.1714489	0.0055113	5.92682653	4.19411354
	20.0	0.8041800	0.1730875	0.0056170	8.12952316	6.02835037

 $\Delta t = 0.01$ için sırasıyla 16.59192018 × 10⁻³, 12.29975056 × 10⁻³ olduğu görülür. Bu sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olduğu görülür.

Tablo 2.14: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946753	0.1698258	0.0054076	3.81886110	2.36579062
0.2	10.0	0.8041385	0.1730719	0.0056160	7.79835700	5.20840292
	15.0	0.8137939	0.1764089	0.0058341	12.02599810	8.52224470
	20.0	0.8236514	0.1798425	0.0060628	16.59106236	12.29863769
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1698258	0.0054076	3.81895056	2.36597403
0.1	10.0	0.8041389	0.1730720	0.0056160	7.79858137	5.20878731
	15.0	0.8137944	0.1764091	0.0058342	12.02640773	8.52284659
	20.0	0.8236521	0.1798428	0.0060628	16.59171162	12.29947772
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698259	0.0054076	3.81897892	2.36603378
0.01	10.0	0.8041390	0.1730721	0.0056160	7.79865295	5.20891243
	15.0	0.8137946	0.1764092	0.0058342	12.02653895	8.52304228
	20.0	0.8236524	0.1798429	0.0060628	16.59192018	12.29975056

Uygulama1 için Problem 2'nin $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 ve Δt 'nin 0.025 ve 0.01 değerleri için uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-1}^{n} + 5\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{2}\right]^{2}$$

alınırsa (2.1.10) ile verilen denklem sisteminde λ

$$\lambda = 3U^2 = \frac{3}{4h} \left[\delta_{m-1}^n + 5\delta_m^n + 5\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(2.2.9)

şeklinde elde edilir. Problem 1 ve 2 için (2.1.10) denkleminde (2.2.9) eşitliği kullanılarak elde edilen sayısal değerler Tablo 2.15-2.24'te verildi. Problem 1 için, $0 \le x \le 80$ aralığında $\Delta t = 0.05$ ve h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.15'te verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla 0.08009801 × 10⁻³ ve 0.04606181 × 10⁻³ ; h = 0.05 için sırasıyla 0.01932448 × 10⁻³ ve 0.01122974 × 10⁻³ olarak hesaplandı. Ayrıca Tablo 2.15'te korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi h = 0.1 için sırasıyla %0.019 × 10⁻³, %0.087 × 10⁻³, %0.148 × 10⁻³ ; h = 0.05 için sırasıyla %0.001 × 10⁻³, %0.006 × 10⁻³, %0.009 × 10⁻³ olarak hesaplandı. Elde edilen sonuçlardan h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 2.15: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

-						
h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.02048385	0.01154517
0.1	10.0	0.7853966	0.1666662	0.0052083	0.04077430	0.02315615
	15.0	0.7853967	0.1666662	0.0052083	0.06069751	0.03471693
	20.0	0.7853967	0.1666663	0.0052083	0.08009801	0.04606181
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.00494381	0.00281144
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00984101	0.00564088
	15.0	0.7854102	0.1666679	0.0052084	0.01464757	0.00846008
	20.0	0.7854102	0.1666679	0.0052084	0.01932448	0.01122974

Problemin 1 için, $0 \le x \le 80$ aralığında h = 0.1 ve Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 2.16'da verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.07833790 × 10⁻³, 0.04448503 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 0.07972878 × 10⁻³, 0.04573242 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 0.08021800 × 10⁻³, 0.04616710 × 10⁻³ olduğu görülür. Bu sonuçlardan Δt değerleri azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olduğu görülür. Ayrıca Tablo 2.16'da korunum sabitlerinin t = 0.0ve t = 20.0'deki değişimi $\Delta t = 0.2$ için sırasıyla %0.027 × 10⁻³, %0.101 × 10⁻³, %0.176 × 10⁻³; $\Delta t = 0.1$ için sırasıyla %0.020 × 10⁻³, %0.089 × 10⁻³, %0.151 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %0.018 × 10⁻³, %0.087 × 10⁻³, %0.147 × 10⁻³ olarak bulundu. Bu sonuçlara göre Δt konum adımı azaldıkça korunum sabitlerindeki değişiminde azaldığı görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666662	0.0052083	0.02005110	0.01108803
0.2	10.0	0.7853967	0.1666662	0.0052083	0.03990646	0.02225131
	15.0	0.7853967	0.1666662	0.0052083	0.05938862	0.03342043
	20.0	0.7853968	0.1666663	0.0052083	0.07833790	0.04448503
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.02039314	0.01145075
0.1	10.0	0.7853966	0.1666662	0.0052083	0.04059233	0.02297552
	15.0	0.7853967	0.1666662	0.0052083	0.06042299	0.03445807
	20.0	0.7853967	0.1666663	0.0052083	0.07972878	0.04573242
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.02051331	0.01157534
0.01	10.0	0.7853966	0.1666662	0.0052083	0.04083341	0.02321388
	15.0	0.7853967	0.1666662	0.0052083	0.06078671	0.03479967
	20.0	0.7853967	0.1666663	0.0052083	0.08021800	0.04616710

Tablo 2.16: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 2.17'de Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında sayısal çözümlerinin aldığı en büyük genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın bu zamanlardaki hızları verildi. Tabloda görüldüğü gibi dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6noktasında 0.249900'dür. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 9.9×10^{-5} olarak bulunur. t = 0.0 ve t = 20.0 için U_N 'in grafiği Şekil 2.1'de gösterildi. Şekilde görüldüğü gibi dalga t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genlik ile sağa doğru ilerlemektedir. t = 20.0'de dalganın hızı 0.03122 olup bu değer dalganın başlangıç yani t = 0.0'daki hızı olan 0.03125 değerine oldukça yakındır. Problem 1'in t = 20.0'deki hata dağılımının grafiği Şekil 2.2'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

Ayrıca Problem 1'in sayısal çözümleri t = 0.01 zamanında farklı A (Genlik) değerleri için elde edildi. Elde edilen korunum sabitleri ile hata norm değerleri Tablo 2.18'de verildi. Tablodan hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Şekil 2.3'de t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen

t	Konum	Genlik	Hız
0.0	30.0	0.250000	0.03125
5.0	30.2	0.249756	0.03118
10.0	30.3	0.249974	0.03124
15.0	30.5	0.249858	0.03121
20.0	30.6	0.249900	0.03122

Tablo 2.17: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

Şekil 2.1: Solitary dalganın $h=0.1,\,\Delta t=0.05,\,\mu=1,\,A=0.25$ için t=0ve t=20'deki hareketi.

grafikler verildi. Tablo 2.19'da ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tablodan dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Konum adımı h_m için yakınsama oranları (YO)

$$YO = \frac{\log_{10}(\left|U^{Tam} - U^{yak}_{h_m}\right| / \left|U^{Tam} - U^{yak}_{h_{m+1}}\right|)}{\log_{10}(h_m/h_{m+1})}$$
(2.2.10)

şeklinde hesaplanır [47]. Zaman adımı Δt_m sabit tutularak konum adımı h_m 'in farklı değerleri için elde edilen yakınsama oranları Tablo 2.20'de verildi. Tablodan Δt sabit alındığında h'nın azalan değerleri için yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1, A_1 = 1, A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 2.21'de verildi. Tabloda I_1 ,

Şekil 2.2: Solitary dalganın h = 0.1, $\Delta t = 0.05$, $\mu = 1$, A = 0.25 için t = 20'deki hata grafiği.

Şekil 2.3: Solitary dalganın $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.01$ için t = 20 zamanında farklı A değerleri için elde edilen grafikleri.

 I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %0.159 × 10⁻³, %0.613 × 10⁻³, %0.596 × 10⁻³; $\Delta t = 0.01$ için sırasıyla %0.144×10⁻³, %0.782×10⁻³, %0.582×10⁻³ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 ve I_3 'deki değişimin azaldığı I_2 'deki değişimin ise arttığı görülmektedir. Tablo 2.22'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü.

Farklı t değerleri için iki pozitif solitary dalganın etkileşiminin grafiği Şekil 2.4'te verildi. Şekilde görüldüğü gibi t = 5.0'de büyük dalganın genliği 0.999702 olup tepe noktası x = 17.5 konumundadır. Küçük dalganın genliği 0.499806 olup tepe

A	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5	0.7853966	0.1666662	0.0052083	0.02051331	0.01157534
0.25	10	0.7853966	0.1666662	0.0052083	0.04083341	0.02321388
	15	0.7853967	0.1666662	0.0052083	0.06078671	0.03479967
	20	0.7853967	0.1666663	0.0052083	0.08021800	0.04616710
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666646	0.0833330	0.00000000	0.00000000
	5	1.5707935	0.6666652	0.0833331	0.16028580	0.09220261
0.5	10	1.5707940	0.6666662	0.0833334	0.30100722	0.17502070
	15	1.5707945	0.6666669	0.0833335	0.41699450	0.25084987
	20	1.5707948	0.6666672	0.0833336	0.51685439	0.33042759
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999953	0.4218734	0.00000000	0.000000000
	5	2.3561913	1.4999995	0.4218754	0.49582951	0.28693374
0.75	10	2.3561923	1.5000014	0.4218763	0.84038681	0.54972252
	15	2.3561925	1.5000016	0.4218764	1.17627160	0.82343660
	20	2.3561926	1.5000017	0.4218764	1.56214479	1.09907471
	Tam	2.3561945	1.5000000	0.4218750	=	-
	0	3.1415863	2.6666583	1.3333283	0.00000000	0.000000000
	5	3.1415901	2.6666695	1.3333379	1.00754974	0.63531557
1.0	10	3.1415910	2.6666708	1.3333391	1.79163938	1.26137725
	15	3.1415916	2.6666716	1.3333399	2.74279969	1.90658398
	20	3.1415921	2.6666723	1.3333406	3.75999559	2.55396972
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 2.18: $h = 0.1, \Delta t = 0.01, 0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata normları.

Tablo 2.19: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249900	0.03122
0.50	32.5	0.499854	0.12492
0.75	35.6	0.749499	0.28087
1.00	40.0	0.999692	0.49969

noktasının konumu ise x = 30.6'dır. Grafiklerde görüldüğü gibi t = 5.0'de büyük genlikli dalga küçük genlikli dalganın solundadır. Büyük dalga küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça küçük dalgayı yakalamaktadır. t = 25.0'de iki dalganın etkileşiminin başladığı görülmektedir. İçiçe geçme süreci t = 25.0 ile t = 40.0 zamanları arasında görülür. t = 40.0'dan sonra büyük dalganın küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülmektedir. t = 80.0'de büyük dalganın tepe noktası x = 56.9 konumunda olup genliği 0.998911 iken küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498601'dir. t = 80.0'de büyük dalganın genlikleri arasındaki fark 1.08×10^{-3}

Tablo 2.20: $\Delta t = 0.05$, A = 0.25, t = 20, $0 \le x \le 80$ için hesaplanan hata normları ve yakınsama oranları.

h	$L_{\odot} \propto 103$	VO	$I \rightarrow 103$	VO
n_m	$L_2 \times 10^{-5}$	10	$L_{\infty} \times 10^{-5}$	10
0.8	4.16296467	-	2.78665608	-
0.4	1.21228931	1.77987727	0.68462204	2.02515531
0.2	0.31752640	1.93278558	0.18175645	1.91330117
0.1	0.08009801	1.98038240	0.04606181	1.98036355
0.05	0.01932448	2.05133680	0.01122974	2.03624657
0.025	0.00530959	1.86375722	0.00304044	1.88497250

iken küçük dalganın genlikleri arasındaki fark ise 1.39×10^{-3} 'dür. Şekil 2.4'te t = 80.0'deki grafikte solitary dalganın arkasında küçük genlikli bir salınım görülmektedir. Bu salınımı daha iyi görmek için t = 80.0'deki grafik büyütülerek Şekil 2.5'te verildi.

Tablo 2.21: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123732	3.3352827	1.4166643	4.7123732	3.3333253	1.4166643		
10	4.7123791	3.3352894	1.4166748	4.7123785	3.3333386	1.4166747		
20	4.7123893	3.3353224	1.4167045	4.7123886	3.3333684	1.4167044		
30	4.7126515	3.3359565	1.4176457	4.7126509	3.3342280	1.4176491		
40	4.7123976	3.3355895	1.4170671	4.7123968	3.3335235	1.4170691		
50	4.7121778	3.3351481	1.4166150	4.7121771	3.3329954	1.4166150		
55	4.7121794	3.3351391	1.4166133	4.7121788	3.3330069	1.4166132		
60	4.7122215	3.3351639	1.4166276	4.7122208	3.3330801	1.4166275		
70	4.7123232	3.3352261	1.4166579	4.7123225	3.3332280	1.4166577		
80	4.7123807	3.3352623	1.4166728	4.7123800	3.3332992	1.4166726		

Ayrıca bu problem için hesaplamalar, $\mu = 1$, $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 2.23'te verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55'deki değişimleri $\Delta t = 0.025$ için sırasıyla %10.548 × 10⁻³, %3.790 × 10⁻³, %10.934 × 10⁻³; $\Delta t = 0.01$ için sırasıyla %3.546 × 10⁻³, %0.839 × 10⁻³, %0.432 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 2.24'te Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde

	Gale	rkin Yöntemi		[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123732	3.3352827	1.4166643	4.7123884	3.3352890	1.4166697	
10	4.7123791	3.3352894	1.4166748	4.7123853	3.3352836	1.4166647	
20	4.7123893	3.3353224	1.4167045	4.7123748	3.3353041	1.4166926	
30	4.7126515	3.3359565	1.4176457	4.7126410	3.3359464	1.4176398	
40	4.7123976	3.3355895	1.4170671	4.7123946	3.3355951	1.4170695	
50	4.7121778	3.3351481	1.4166150	4.7121567	3.3351175	1.4165797	
55	4.7121794	3.3351391	1.4166133	4.7121400	3.3350847	1.4165527	
60	4.7122215	3.3351639	1.4166276	-	-	-	
70	4.7123232	3.3352261	1.4166579	-	-	-	
80	4.7123807	3.3352623	1.4166728	-	-	-	

Tablo 2.22: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

Şekil 2.4: $h = 0.1, A_1 = 1, A_2 = 0.5, \mu = 1, 0 \le x \le 80$ için pozitif genlikli iki solitary dalganın girişimi.

olduğu görülmektedir.

Farklı t değerleri için U_N 'nin grafiği Şekil 2.6'da gösterildi. Şekilde görüldüğü gibi t = 5.0'de büyük dalganın genliği -2.001106 olup tepe noktası x = 25.0 konumundadır. Küçük dalganın genliği 0.996250 olup tepe noktasının konumu ise x = 32.5'dir. Grafiklerde görüldüğü gibi t = 5.0'de büyük dalga küçük dalganın sol tarafında bulunmaktadır. Negatif genlikli büyük dalga pozitif genlikli küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça pozitif genlikli küçük dalgayı yakalamaktadır. İki dalganın etkileşiminin t = 10.0'da başladığı görülmektedir. İçiçe geçme süreci t = 10.0 ile t = 20.0 zamanları arasında görülür. t = 25.0'den

Şekil 2.5. t = 80 için Şekil 2.4'ün grafiğinin büyütülmüş şekli.

sonra negatif genlikli büyük dalganın pozitif genlikli küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülmektedir. t = 55.0'te büyük dalganın tepesi x = 122.8 noktasında olup genliği -2.000800 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.974026'dır. t = 55.0'te büyük dalganın genlikleri arasındaki fark 0.310×10^{-3} iken küçük dalganın genlikleri arasındaki fark 0.310×10^{-3} iken küçük dalganın genlikleri arasındaki fark ise 0.222×10^{-1} 'dir.

Tablo 2.23: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313		
5	-3.1415421	13.3332606	22.6663984	-3.1415261	13.3332140	22.6661968		
15	-3.1429646	13.3294688	22.6646324	-3.1428670	13.3291882	22.6634000		
25	-3.1416460	13.3334949	22.6679595	-3.1415177	13.3331297	22.6663933		
35	-3.1417175	13.3336164	22.6683285	-3.1415587	13.3331671	22.6664255		
45	-3.1418111	13.3337029	22.6686695	-3.1416217	13.3331697	22.6664298		
55	-3.1419051	13.3337870	22.6690097	-3.1416851	13.3331698	22.6664334		

Tablo 2.24: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Gale	erkin Vöntemi			[38]	
t	I ₁	I_2	I_3	I_1	I_2	I_3
0	-3.1415737	13.3332816	22.6665313	-3.1415915	13.3411364	22.6666177
5	-3.1415421	13.3332606	22.6663984	-3.1373341	13.3297086	22.6211074
15	-3.1429646	13.3294688	22.6646324	-3.1243642	13.2879992	22.4502917
25	-3.1416460	13.3334949	22.6679595	-3.1147243	13.2672538	22.3644947
35	-3.1417175	13.3336164	22.6683285	-3.1065564	13.2454531	22.2776978
45	-3.1418111	13.3337029	22.6686695	-3.0985577	13.2238575	22.1921206
55	-3.1419051	13.3337870	22.6690097	-3.0905294	13.2023061	22.1067310

Şekil 2.6. $h = 0.1, A_1 = -2, A_2 = 1, \mu = 1, 0 \le x \le 150$ için iki dalganın girişimi.

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 5\delta_{m-1}^{n} + 6\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{3}\right]^{2}$$

[48] alınırsa (2.1.10) sisteminde λ

$$\lambda = 3U^2 = \frac{1}{3h} \left[\delta^n_{m-2} + 5\delta^n_{m-1} + 6\delta^n_m + 5\delta^n_{m+1} + \delta^n_{m+2} \right]^2$$
(2.2.11)

şeklinde bulunur.

Problem 1 ve 2 için (2.1.10) ile verilen denklem sisteminde (2.2.11) eşitliği kullanılarak elde edilen sayısal değerler Tablo 2.25 ve 2.26'da verildi. Tablo 2.25'te Problem 1 için, $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için hesaplamalar yapıldı. t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla $16.45288620 \times 10^{-3}$, $12.14768740 \times 10^{-3}$; h = 0.05 için sırasıyla $8.11238781 \times 10^{-3}$, $6.00330670 \times 10^{-3}$ olarak bulundu. Bu sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 2.26'da Problem 1 için, $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.45204517 × 10⁻³, 12.14645840 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.59171162 × 10⁻³, 12.29947772 × 10⁻³

Tablo 2.25: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697987	0.0054058	3.79068542	2.32824229
0.1	10.0	0.8040112	0.1730159	0.0056124	7.73899960	5.12684472
	15.0	0.8135965	0.1763215	0.0058284	11.93059015	8.40559736
	20.0	0.8233779	0.1797202	0.0060545	16.45283752	12.14749561
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7900249	0.1682366	0.0053069	1.89877406	1.17026984
0.05	10.0	0.7946851	0.1698265	0.0054076	3.85692483	2.56296935
	15.0	0.7993919	0.1714382	0.0055106	5.91492440	4.17341414
	20.0	0.8041468	0.1730728	0.0056160	8.11238427	6.00329494

ve $\Delta t = 0.01$ için sırasıyla $16.45288661 \times 10^{-3}$, $12.14756074 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olduğu görülmektedir.

Tablo 2.26: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946131	0.1697986	0.0054058	3.79057715	2.32801504
0.2	10.0	0.8040108	0.1730158	0.0056123	7.73872694	5.12636921
	15.0	0.8135959	0.1763212	0.0058283	11.93009108	8.40485344
	20.0	0.8233770	0.1797198	0.0060545	16.45204517	12.14645840
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1698258	0.0054076	3.81895056	2.36597403
0.1	10.0	0.8041389	0.1730720	0.0056160	7.79858137	5.20878731
	15.0	0.8137944	0.1764091	0.0058342	12.02640773	8.52284659
	20.0	0.8236521	0.1798428	0.0060628	16.59171162	12.29947772
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697987	0.0054058	3.79069203	2.32825662
0.01	10.0	0.8040112	0.1730159	0.0056124	7.73901635	5.12687466
	15.0	0.8135965	0.1763215	0.0058284	11.93062096	8.40564414
	20.0	0.8233780	0.1797202	0.0060545	16.45288661	12.14756074

Uygulama 3 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü.

Uygulama 4:

MEW denkleminde $U^2 U_x$ lineer olmayan terim (2.1.19) şeklinde yazılırsa MEW denkleminin ağırlıklı integral ifadesi Bölüm 2'de verilen (2.1.20)'deki gibi bulunur. Bu denklemde Bölüm 1'de verilen (1.6.1.2) dönüşümünün kullanılması ile Bölüm 2'de (2.1.21) ile verilen denklem elde edilir. (2.1.21) denkleminde $\alpha = \frac{3UU_{\xi}}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere gerekli integraller alınırsa Bölüm 2'de verilen (2.1.22) denklemi elde edilir. Ağırlık fonksiyonu olarak Bölüm 1'de (1.6.3.2) ile verilen kübik B- spline fonksiyonlar alınır ve (2.2.2) yaklaşımı (2.1.22) integral denkleminde yazılır ve gerekli işlemler yapılırsa $[x_m, x_{m+1}]$ elemanı için (2.1.23) denklem sistemi elde edilir.

$$A_{ij}^{e} = \int_{0}^{1} Q_{i}Q_{j}d\xi, \quad B_{ij}^{e} = \int_{0}^{1} Q_{i}'Q_{j}'d\xi,$$
$$C_{ij}^{e} = Q_{i}Q_{j}'|_{0}^{1}$$

alınırsa (2.1.23) ifadesinin matris gösterimi (2.1.24) şeklinde elde edilir. Kübik Bspline fonksiyonlar kullanılarak integraller hesaplandığında A_{ij}^e , B_{ij}^e , C_{ij}^e eleman matrisleri sırası ile (2.2.4)'deki gibi elde edilir. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C matrisleri (2.1.24) ifadesinde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_N, \delta_{N+1})^T$ global parametreler olmak üzere (2.1.25) denklemi elde edilir. Bu denklemdeki A ve B matrislerinin genelleştirilmiş satırları

$$A = \frac{1}{140} (1, 120, 1191, 2416, 1191, 120, 1),$$

$$B = \frac{1}{10} (-3, -72, 6, -45, 240, -45, -72, -3),$$

$$\alpha A = \frac{1}{140} (\alpha_1, 60\alpha_1 + 60\alpha_2, 129\alpha_1 + 933\alpha_2 + 129\alpha_3, 20\alpha_1 + 1188\alpha_2 + 1188\alpha_3 + 20\alpha_4)$$

$$129\alpha_2 + 933\alpha_3 + 129\alpha_4, 60\alpha_3 + 60\alpha_4, \alpha_4)$$

şeklindedir. (2.1.25) ile verilen denklemde zamana bağlı $\dot{\delta}$ parametresi yerine (2.1.8) ile verilen ileri fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson formülü kullanılırsa $(N + 3) \times (N + 3)$ tipinde (2.1.26) sistemi elde edilir. Bu uygulama için α teriminde UU_{ξ} yerine (2.1.27) ile verilen yaklaşım alındı.

Problem 1 ve 2 için (2.1.26) denklem sisteminde (2.1.27) kullanılarak elde edilen sayısal değerler Tablo 2.27-2.30'da verildi. Tablo 2.27'de Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için hesaplamalar yapıldı. t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla 1.96919890 × 10⁻³, 10.71432428 × 10⁻³; h = 0.05 için sırasıyla 6.19733988 × 10⁻³, 5.55157617 × 10⁻³ olarak bulundu. Bu sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için elde edilen değerler Tablo 2.28'de verildi. Tablodan

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7808939	0.1636295	0.0050201	2.98287529	2.86697228
0.1	10.0	0.7765656	0.1607455	0.0048442	5.93759498	5.60410901
	15.0	0.7723987	0.1580009	0.0046794	8.92976252	8.20355782
	20.0	0.7683806	0.1553833	0.0045247	12.01419104	10.73102145
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7831334	0.1651270	0.0051125	1.50555969	1.44800281
0.05	10.0	0.7809020	0.1636259	0.0050198	3.02132163	2.85859023
	15.0	0.7787139	0.1621617	0.0049303	4.58027876	4.22616551
	20.0	0.7765671	0.1607352	0.0048436	6.21128074	5.55874544

Tablo 2.27: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

t = 20.0'de L_2 ve L_{∞} hata norm değerleri $\Delta t = 0.2$ için sırasıyla $12.01435985 \times 10^{-3}$, 10.73097471 × 10^{-3} ; $\Delta t = 0.1$ için sırasıyla $12.01422293 \times 10^{-3}$, 10.73101044 × 10^{-3} ve $\Delta t = 0.01$ için sırasıyla $12.01428126 \times 10^{-3}$, 10.73102534 × 10^{-3} olarak bulundu. Δt değerleri azaldıkça L_2 hatasında oldukça az bir düşüş görülürken L_{∞} hatasında ise oldukça az bir artış görüldü.

Tablo 2.28: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7808940	0.1636295	0.0050201	2.98286893	2.86694783
0.2	10.0	0.7765657	0.1607455	0.0048442	5.93761966	5.60408436
	15.0	0.7723988	0.1580010	0.0046794	8.92984805	8.20348624
	20.0	0.7683807	0.1553834	0.0045247	12.01435985	10.73097471
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7808940	0.1636295	0.0050201	2.98287352	2.86696689
0.1	10.0	0.7765657	0.1607455	0.0048442	5.93759894	5.60410312
	15.0	0.7723987	0.1580009	0.0046794	8.92977819	8.20354219
	20.0	0.7683806	0.1553833	0.0045247	12.01422293	10.73101044
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7808939	0.1636295	0.0050201	2.98287597	2.86697412
0.01	10.0	0.7765656	0.1607455	0.0048442	5.93759393	5.60411110
	15.0	0.7723987	0.1580009	0.0046794	8.92975782	8.20356311
	20.0	0.7683806	0.1553833	0.0045247	12.01428126	10.73102534

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 2.29'da verildi. İkinci olarak hesaplamalar $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1$ ve h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 2.30'da verildi. Tablolar incelendiğinde korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülür.

	Δ	t = 0.025		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123732	3.3333253	1.4166643	4.7123732	3.3333253	1.4166643	
10	4.2639380	2.3190554	0.6218439	4.2639307	2.3190353	0.6218305	
20	3.9971331	1.8218589	0.3595514	3.9971266	1.8218423	0.3595432	
30	3.8090859	1.5154835	0.2374338	3.8090809	1.5154710	0.2374288	
40	3.6666807	1.3061308	0.1702956	3.6666771	1.3061213	0.1702924	
50	3.5553366	1.1553223	0.1296842	3.5553340	1.1553149	0.1296820	
55	3.5089254	1.0959350	0.1154000	3.5089231	1.0959284	0.1153982	
60	3.4676009	1.0449850	0.1038994	3.4675990	1.0449789	0.1038978	
70	3.3964562	0.9612201	0.0864909	3.3964548	0.9612150	0.0864897	
80	3.3360407	0.8930601	0.0736724	3.3360397	0.8930556	0.0736714	

Tablo 2.29: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

Tablo 2.30: $\mu = 1$, h = 0.1, $A_1 = -2$, $A_2 = 1$, $0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313	
5	-2.1665416	7.2875716	5.7531366	-2.1663425	7.2864967	5.7509997	
15	-1.6126579	4.0606331	1.5591746	-1.6126141	4.0602737	1.5588066	
25	-1.3670281	2.7629267	0.6738076	-1.3670615	2.7628107	0.6737203	
35	-1.2290559	2.0920344	0.3688185	-1.2291481	2.0920320	0.3688048	
45	-1.1345814	1.6811277	0.2293366	-1.1347257	1.6811888	0.2293477	
55	-1.0643992	1.4059646	0.1551502	-1.0645889	1.4060617	0.1551696	

Uygulama 5:

(2.1.26) ile verilen denklem sistemindeki α teriminde UU_{ξ} yerine (2.1.28) ile verilen yaklaşım kullanıldığında Problem 1 ve 2 için elde edilen sayısal çözümler Tablo 2.31-2.34'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.31'de verildi. Tablodan t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla 11.92768934 × 10⁻³, 10.65504278 × 10⁻³; h = 0.05 için sırasıyla 6.11797655 × 10⁻³, 5.47586920 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 2.32'de Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $11.66757753 \times 10^{-3}$, $10.42629833 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $11.84109121 \times 10^{-3}$, $10.57892696 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $11.99689111 \times 10^{-3}$, $10.71583964 \times 10^{-3}$ olduğu görülmektedir. Bu sonuçlara göre

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.0000000	0.0000000
0.1	5.0	0.7809277	0.1636521	0.0050215	2.96023486	2.84533288
	10.0	0.7766302	0.1607882	0.0048468	5.89330630	5.56248550
	15.0	0.7724913	0.1580616	0.0046830	8.86431136	8.14454964
	20.0	0.7684989	0.1554599	0.0045292	11.92768934	10.65504278
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7831684	0.1651506	0.0051140	1.48230925	1.42566594
0.05	10.0	0.7809704	0.1636718	0.0050227	2.97508159	2.81505349
	15.0	0.7788141	0.1622296	0.0049343	4.51082043	4.16235681
	20.0	0.7766977	0.1608219	0.0048488	6.11797655	5.47586920

Tablo 2.31: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

 Δt değerleri azaldıkça L_2 ve L_∞ hatalarında oldukça az bir artış görülmektedir.

Tablo 2.32: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7810293	0.1637201	0.0050256	2.89221265	2.78027960
0.2	10.0	0.7768244	0.1609168	0.0048545	5.76020755	5.43732731
	15.0	0.7727702	0.1582443	0.0046939	8.66755903	7.96692746
	20.0	0.7688554	0.1556910	0.0045428	11.66757753	10.42629833
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7809616	0.1636747	0.0050229	2.93757710	2.82366979
0.1	10.0	0.7766949	0.1608310	0.0048493	5.84897912	5.52081260
	15.0	0.7725841	0.1581223	0.0046866	8.79879582	8.08543872
	20.0	0.7686175	0.1555367	0.0045337	11.84109121	10.57892696
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7809007	0.1636340	0.0050203	2.97834912	2.86264769
0.01	10.0	0.7765785	0.1607540	0.0048447	5.92873956	5.59578986
	15.0	0.7725172	0.1580130	0.0046801	8.91667394	8.19176840
	20.0	0.7684042	0.1553986	0.0045256	11.99689111	10.71583964

Problem 2 için hesaplamalar, ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 2.33'te verildi. Hesaplamalar ikinci olarak, $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 2.34'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3333253	1.4166643	4.7123732	3.3333253	1.4166643
10	4.2779451	2.3481622	0.6408708	4.2694480	2.3304604	0.6292618
20	4.0124638	1.8490211	0.3727877	4.0031440	1.8324570	0.3646834
30	3.8236880	1.5383009	0.2463028	3.8148067	1.5243761	0.2408677
40	3.6803281	1.3253288	0.1765179	3.6720250	1.3136083	0.1727036
50	3.5684628	1.1722766	0.1344127	3.5604690	1.1619126	0.1315106
55	3.5219957	1.1123063	0.1196800	3.5140328	1.1022921	0.1170512
60	3.4806336	1.0608937	0.1078295	3.4726942	1.0511646	0.1054156
70	3.4092333	0.9759077	0.0898038	3.4014488	0.9669327	0.0877696
80	3.3485967	0.9066009	0.0765212	3.3409324	0.8983111	0.0747676

Tablo 2.33: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

Tablo 2.34: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313	
5	-2.2824964	7.7813999	6.7507067	-2.2083987	7.4644428	6.1000597	
15	-1.6649062	4.2492290	1.7495978	-1.6319967	4.1303364	1.6279898	
25	-1.3518462	2.7915232	0.6941276	-1.3669342	2.7827330	0.6871634	
35	-1.1322374	2.0103451	0.3349242	-1.2067090	2.0794025	0.3642435	
45	-0.9625322	1.5383771	0.1825820	-1.0906009	1.6486861	0.2189655	
55	-0.8302225	1.2351554	0.1094360	-1.0013503	1.3625358	0.1435350	

Sonuç

Bu bölümde MEW denkleminin sayısalçözümleri, denklemdeki U^2U_x lineer olmayan terim için bazı lineerleştirme teknikleri uygulanarak kuadratik ve kübik Bspline Galerkin sonlu eleman yöntemi ile elde edildi. Problem 1 için Tablo 2.35, t = 20.0'de farklı lineerleştirme teknikleriyle elde edilen korunum sabitleri ile L_2 ve L_{∞} hata normlarının değerlerini ve literatürdeki farklı çalışmalarla karşılaştırılmasını göstermektedir.

t = 20) I_1		I_2		Ι	I_3		$L_2 \times 10^3$		$\times 10^{3}$	
	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik	
Uyg.1	0.8236523	0.8236523	0.1799408	0.1798429	0.0060628	0.0060628	16.5919095	16.5918701	12.2998786	12.2996848	
Uyg.2	-	0.7853967	-	0.1666663	=	0.0052083	-	0.0800980	-	0.0460618	
Uyg.3	0.8233779	0.8233779	0.1798179	0.1797202	0.0060545	0.0060545	16.4528862	16.4528375	12.1476874	12.1474956	
Uyg.4	0.7683541	0.7683806	0.1554439	0.1553833	0.0045234	0.0045247	11.9691989	12.0141910	10.7143242	10.7310214	
Uyg.5	0.7684728	0.7684989	0.1555209	0.1554599	0.0045279	0.0045292	11.8824897	11.9276893	10.6380486	10.6550427	
[32]	-			-	-		0.1958878		0.1744330		
[33]	0.784	9545	0.166	54765	0.005	1995	0.290)5166	0.249	8925	
[38]	0.7853898 0.1667614		57614	0.005	2082	0.0796940		0.0465523			
[42]	0.785	3977	0.166	54735	0.005	0.0052083		0.2692812		0.2569972	

Tablo 2.35: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\mu = 1$, A = 0.25, $\Delta t = 0.05$, için t = 20'de farklı uygulama ve çalışmalardan elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 2.35 incelendiğinde, kuadratik B-spline Galerkin yöntemi için Uygulama 1, 3, 4 ve 5 ile elde edilen L_2 ve L_{∞} hata norm değerlerinin karşılaştırma yapılan diğer çalışmalara göre daha büyük olduğu görülür. Fakat kübik B-spline Galerkin yöntemi için Uygulama 2 kullanıldığında elde edilen L_2 ve L_{∞} hata normlarının referans [38]'de elde edilen sonuçlarla uyum içerisinde olduğu ve korunum sabitlerinin bilgisayar çalışması boyunca hemen hemen sabit kaldığı görülmektedir. Ayrıca Tablo 2.35'de Uygulama 2 ile elde edilen L_2 ve L_{∞} hata normlarının referans [32, 33, 42]'de elde edilen L_2 ve L_{∞} hata normlarından daha küçük olduğu görülmektedir. Problem 2 için kuadratik B-spline Galerkin yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde korunum sabitlerinin değerlerinde oldukça hızlı düşüşlerin olduğu görülürken kübik B-spline Galerkin yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde ise Uygulama 2 ile elde edilen Tablo 2.21 ve 2.23'deki sonuçların birbirleri ile ve referans [38] ile uyum içinde olduğu görülmektedir.

BÖLÜM 3 MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN PETROV-GALERKIN SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ

Bu bölümde, (1.7.3) ile verilen MEW denkleminin sayısal çözümleri lineer, kuadratik ve kübik B-spline baz fonksiyonlar kullanılarak Petrov-Galerkin sonlu eleman yöntemi ile elde edildi. MEW denkleminin Bölüm 2'de (2.3) ile verilen zayıf formundaki U_N yaklaşımında ilk olarak Q_i yaklaşım fonksiyonlar yerine kuadratik, W ağırlık fonksiyonlar yerine ise lineer B-spline fonksiyonlar alındı. Daha sonra ϕ_i yaklaşım fonksiyonlar yerine kübik, W ağırlık fonksiyonlar yerine ise kuadratik Bspline fonksiyonlar alındı. Petrov-Galerkin yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılık analizi *Mathematica* programı kullanılarak von Neumann yöntemi ile incelendi. Solitary dalga çözümleri ve iki dalganın girişimi problemleri ele alındı. Lineer-kuadratik ve kuadratik-kübik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümler için grafikler hemen hemen aynı olduğundan sadece lineerkuadratik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümleri grafikleri verildi. Petrov-Galerkin yönteminin uygulanması ile oluşan denklem sistemleri Thomas algoritması kullanılarak çözüldü.

3.1 Kuadratik B-spline Fonksiyonlar ile Petrov-Galerkin Yöntemi

Bu kısımda, MEW denkleminin (2.3) ile verilen zayıf formundaki U_N yaklaşımında Q_i yaklaşım fonksiyonları yerine kuadratik B-spline fonksiyonlar, W ağırlık fonksiyonları yerine ise lineer B-spline fonksiyonlar alındı. Bölüm 1'de (1.6.1.3) ile verilen lineer B-spline ağırlık fonksiyonlar ile Bölüm 2'de (2.1.2) ile verilen yaklaşım (2.3) denkleminde yerine yazılırsa $\lambda = \frac{3U^2}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere

$$\sum_{j=m-1}^{m+1} \left[\int_0^1 (L_i Q_j + \beta L'_i Q'_j) d\xi \right] \dot{\delta}^e_j + \sum_{j=m-1}^{m+1} \left[\lambda \int_0^1 (L_i Q'_j d\xi) \right] \delta^e_j = \sum_{j=m-1}^{m+1} \left[\beta (L_i Q'_j) \dot{\delta}^e_j \right]_0^1$$
(3.1.1)

denklem sistemi elde edilir.

$$A_{ij}^{e} = \int_{0}^{1} L_{i}Q_{j}d\xi,$$

$$B_{ij}^{e} = \int_{0}^{1} L_{i}'Q_{j}'d\xi,$$

$$C_{ij}^{e} = L_{i}Q_{j}'|_{0}^{1},$$

$$D_{ij}^{e} = \int_{0}^{1} L_{i}Q_{j}'d\xi$$

olmak üzere (3.1.1) denklemi matris formunda

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \lambda D^e \delta^e \tag{3.1.2}$$

şeklinde yazılabilir. Burada $\delta^e = (\delta_{m-1}, \delta_m, \delta_{m+1})^T$ eleman parametrelerini göstermektedir. Lineer ve kuadratik B-spline fonksiyonlar kullanılarak integraller hesaplanırsa A^e_{ij} , B^e_{ij} , C^e_{ij} ve D^e_{ij} eleman matrisleri sırası ile

$$A_{ij}^{e} = \int_{0}^{1} L_{i}Q_{j}d\xi = \frac{1}{12} \begin{bmatrix} 3 & 8 & 1 \\ 1 & 8 & 3 \end{bmatrix}, \qquad (3.1.3)$$
$$B_{ij}^{e} = \int_{0}^{1} L_{i}'Q_{j}'d\xi = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix},$$
$$C_{ij}^{e} = L_{i}Q_{j}'|_{0}^{1} = \begin{bmatrix} 2 & -2 & 0 \\ 0 & -2 & 2 \end{bmatrix}, \qquad D_{ij}^{e} = \int_{0}^{1} L_{i}Q_{j}'d\xi = \frac{1}{3} \begin{bmatrix} -2 & 1 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

şeklinde elde edilir. Bu gösterimde i = m - 1, m ve j = m - 1, m, m + 1 değerlerini almaktadır. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C ve Dmatrisleri (3.1.2) de yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_{N-1}, \delta_N)^T$ global parametreler olmak üzere

$$[A + \beta(B - C)]\dot{\delta} + \lambda D\delta = 0 \tag{3.1.4}$$

denklemi elde edilir. Bu matris denklemindeki A, B, C ve λD matrislerinin genelleştirilmiş satırları

$$A = \frac{1}{12}(1, 11, 11, 1),$$

$$B = \frac{1}{3}(-1, 1, 1, -1),$$

$$C = (0, 0, 0, 0),$$

$$\lambda D = \frac{1}{3}(-\lambda_1, -\lambda_1 - 2\lambda_2, 2\lambda_1 + \lambda_2, \lambda_2)$$

(3.1.5)

şeklindedir. (3.1.4) denkleminde zamana bağlı $\dot{\delta}$ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa

$$[A+\beta(B-C)+\frac{\lambda\Delta t}{2}D]\delta^{n+1} = [A+\beta(B-C)-\frac{\lambda\Delta t}{2}D]\delta^n$$
(3.1.6)

şeklinde (N+2)-bilinmeyenli (N+1)- tane denklemden oluşan cebirsel bir denklem sistemi elde edilir. Problem ile verilen sınır şartları kullanılarak δ_{-1} , δ_N parametreleri (3.1.6) ile verilen denklem sisteminden yok edilirse $(N \times N)$ -boyutlu denklem sistemi elde edilir. Bu sistemin çözümü Thomas algoritması ile kolayca elde edilebilir.

 δ_m^{n+1} parametrelerinin bulunabilmesi için δ^0 başlangıç vektörü bilinmelidir. δ^0 vektörü Bölüm 2'de (2.1.11) ile verilen denklem sisteminin çözülmesiyle bulunur. Böylece (3.1.6) denklem sistemi kullanılarak istenilen t zamanındaki değerler elde edilir. (3.1.6) denklem sistemindeki lineer olmayan terimlere her zaman adımında Bölüm 2'de (2.1.12) ile verilen iterasyon formülü 3-4 defa uygulanarak U_N yaklaşık çözümü iyileştirilebilir.

Kararlılık Analizi

Petrov-Galerkin yönteminin uygulanması ile elde edilen sonlu eleman yaklaşımının kararlılık analizi Galerkin yönteminde olduğu gibi von Neumann yöntemi ile incelendi. (3.1.6) denklem sisteminin *m.* genelleştirilmiş satırı

$$\gamma_1 = \frac{1}{12} - \frac{\beta}{3} - \frac{\lambda \Delta t}{6}, \qquad \gamma_2 = \frac{11}{12} + \frac{\beta}{3} - \frac{3\lambda \Delta t}{6} \\ \gamma_3 = \frac{11}{12} + \frac{\beta}{3} + \frac{3\lambda \Delta t}{6}, \qquad \gamma_4 = \frac{1}{12} - \frac{\beta}{3} + \frac{\lambda \Delta t}{6}$$

olmak üzere

$$\gamma_1 \delta_{m-1}^{n+1} + \gamma_2 \delta_m^{n+1} + \gamma_3 \delta_{m+1}^{n+1} + \gamma_4 \delta_{m+2}^{n+1} = \gamma_4 \delta_{m-1}^n + \gamma_3 \delta_m^n + \gamma_2 \delta_{m+1}^n + \gamma_1 \delta_{m+2}^n \quad (3.1.7)$$

şeklinde yazılabilir. Bölüm 2'de (2.1.13) ile verilen eşitlik (3.1.7) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}[\gamma_1 e^{-ikh} + \gamma_2 + \gamma_3 e^{ikh} + \gamma_4 e^{2ikh}] = [\gamma_4 e^{-ikh} + \gamma_3 + \gamma_2 e^{ikh} + \gamma_1 e^{2ikh}]$$

bulunur. Bu denklemde Bölüm 2'de (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = (11 + 4\beta)\cos(\frac{\theta}{2})h + (1 - 4\beta)\cos(\frac{3\theta}{2})h,$$

$$b = 2\lambda\Delta t[3\sin(\frac{\theta}{2})h + \sin(\frac{3\theta}{2})h]$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa

$$g = \frac{a - ib}{a + ib}$$

bulunur. Bu ifadenin iki tarafının modülü alınırsa |g| = 1 olur ki bu ise yöntemin şartsız kararlı olduğunu gösterir.

Lineerleştirme Uygulamaları

Bu kısımda MEW denkleminde U^2U_x lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^2 \cong \left[U_m^n\right]^2 = \left[\delta_{m-1}^n + \delta_m^n\right]^2$$

alınırsa (3.1.6) ile verilen denklem sisteminde λ

$$\lambda = \frac{3U^2}{h} = \frac{3}{h} \left[\delta_{m-1}^n + \delta_m^n \right]^2$$
(3.1.8)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) denklem sisteminde (3.1.8) kullanılarak elde edilen sayısal değerler Tablo 3.1 ve 3.2'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 3.1'de gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hatalarının sırasıyla h = 0.1 için sırasıyla $16.5920172 \times 10^{-3}$, $12.30004421 \times 10^{-3}$; h = 0.05 için sırasıyla $8.12953195 \times 10^{-3}$, $6.02837276 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin de azaldığı görülmektedir.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81898314	2.36610628
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79867601	5.20904915
	15.0	0.8137946	0.1765068	0.0058342	12.02659369	8.52326099
	20.0	0.8236523	0.1799408	0.0060628	16.5920172	12.30004421
	0.0	0.7854102	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7900327	0.1682643	0.0053071	1.90231780	1.17781559
0.05	10.0	0.7947009	0.1698577	0.0054080	3.86436565	2.57743754
	15.0	0.7994161	0.1714733	0.0055113	5.92683163	4.19412997
	20.0	0.8041800	0.1731119	0.0056170	8.12953195	6.02837276

Tablo 3.1: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 3.2'de gösterildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.59120945 × 10⁻³, 12.29899706 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.59185874 × 10⁻³, 12.29983711 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.59206730 × 10⁻³, 12.30010996 × 10⁻³ olduğu görülür. Bu sonuçlara göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olmaktadır.

elde edi.	len sa	en sayisal degerleri.									
	Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$				
		0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000				
		5.0	0.7946753	0.1699235	0.0054076	3.81887209	2.36587753				

Tablo 3.2: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

	0	-1	- 2	+3	12/11/10	100 11 10
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946753	0.1699235	0.0054076	3.81887209	2.36587753
0.2	10.0	0.8041385	0.1731695	0.0056160	7.79839716	5.20856980
	15.0	0.8137939	0.1765066	0.0058341	12.02608426	8.52251057
	20.0	0.8236514	0.1799404	0.0060628	16.59120945	12.29899706
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81896155	2.36606094
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79862155	5.20895421
	15.0	0.8137944	0.1765068	0.0058342	12.02649391	8.52311247
	20.0	0.8236521	0.1799407	0.0060628	16.59185874	12.29983711
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81898991	2.36612070
0.01	10.0	0.8041390	0.1731697	0.0056160	7.79869314	5.20907933
	15.0	0.8137946	0.1765069	0.0058342	12.02662514	8.52330817
	20.0	0.8236524	0.1799408	0.0060628	16.59206730	12.30010996

Uygulama 1 için Problem 2'nin $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 ve Δt 'nin 0.025 ve 0.01 için uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-1}^{n} + 2\delta_{m}^{n} + \delta_{m+1}^{n}}{2}\right]^{2}$$

alınırsa (3.1.6) ile verilen denklem sisteminde λ

$$\lambda = 3U^2 = \frac{3}{4h} \left[\delta_{m-1}^n + 2\delta_m^n + \delta_{m+1}^n \right]^2$$
(3.1.9)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) ile verilen denklem sisteminde (3.1.9) kullanılarak elde edilen sayısal değerler Tablo 3.3-3.12'de verildi. Tablo 3.3'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar gösterildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.08036373 \times 10^{-3}$, $0.04630654 \times 10^{-3}$; h = 0.05 için sırasıyla $0.01944247 \times 10^{-3}$, $0.01132797 \times 10^{-3}$ olduğu görülür. Ayrıca Tablo 3.3'te verilen korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi h = 0.1 için sırasıyla $\% 0.019 \times 10^{-3}$, $\% 0.032 \times 10^{-3}$, $\% 0.148 \times 10^{-3}$; h = 0.05 için sırasıyla $\% 0.001 \times 10^{-3}$, $\% 0.002 \times 10^{-3}$, $\% 0.009 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo

Tablo 3.3: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.0000000	0.000000000
0.1	5.0	0.7853966	0.1667640	0.0052083	0.02055159	0.01161174
	10.0	0.7853966	0.1667640	0.0052083	0.04090912	0.02328497
	15.0	0.7853967	0.1667640	0.0052083	0.06089835	0.03490475
	20.0	0.7853967	0.1667641	0.0052083	0.08025689	0.04621690
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666923	0.0052084	0.00497301	0.00283954
0.05	10.0	0.7854101	0.1666923	0.0052084	0.00989950	0.00569486
	15.0	0.7854102	0.1666923	0.0052084	0.01473559	0.00853783
	20.0	0.7854102	0.1666923	0.0052084	0.01944247	0.01132797

3.4'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞}

hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $0.08007294 \times 10^{-3}$, $0.04601027 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $0.08030505 \times 10^{-3}$, $0.04624678 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.08038251 \times 10^{-3}$, $0.04632577 \times 10^{-3}$ olduğu görülür. Ayrıca Tablo 3.4'te verilen korunum sabitlerinin t = 0.0 ve t = 20.0 zamanlarındaki değişimi sırasıyla $\Delta t = 0.2$ için sırasıyla $\% 0.010 \times 10^{-3}$, $\% 0.020 \times 10^{-3}$, $\% 0.122 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $\% 0.018 \times 10^{-3}$, $\% 0.031 \times 10^{-3}$, $\% 0.145 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\% 0.019 \times 10^{-3}$, $\% 0.033 \times 10^{-3}$, $\% 0.148 \times 10^{-3}$ olarak bulundu. Bu sonuçlara göre Δt zaman adımı azaldıkça korunum sabitlerinde oldukça az bir artış olduğu görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0.2	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1667640	0.0052083	0.02048292	0.01152391
	10.0	0.7853966	0.1667640	0.0052083	0.04076998	0.02311881
	15.0	0.7853966	0.1666640	0.0052083	0.06068563	0.03466932
	20.0	0.7853967	0.1666640	0.0052083	0.08007294	0.04601027
0.1	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1667640	0.0052083	0.02053764	0.01159398
	10.0	0.7853966	0.1666640	0.0052083	0.04088092	0.02325140
	15.0	0.7853967	0.1666640	0.0052083	0.06085533	0.03485723
	20.0	0.7853967	0.1666641	0.0052083	0.08030505	0.04624678
0.01	0.0	0.7853966	0.1666640	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666640	0.0052083	0.02055607	0.01161747
	10.0	0.7853966	0.1666640	0.0052083	0.04091817	0.02329579
	15.0	0.7853967	0.1666640	0.0052083	0.06091213	0.03492006
	20.0	0.7853966	0.1666641	0.0052083	0.08038251	0.04632577

Tablo 3.4: $\mu=1,\,A=0.25,\,h=0.1,\,0\leq x\leq 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 3.5'te Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen U_N çözümlerinin aldığı en büyük genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın bu zamanlardaki hızları verildi. Tabloda görüldüğü gibi solitary dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6 noktasında 0.249900'dür. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 9.9×10^{-5} olarak bulundu. t = 0.0 ve t = 20.0 için U_N 'in grafiği Şekil 3.1'de gösterildi. Şekilde görüldüğü gibi dalga t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genlik ile sağa doğru ilerlemektedir. t = 20.0'de dalganın hızı 0.03122 olup bu değer dalganın başlangıç yani t = 0.0'daki hızı olan 0.03125 değerine oldukça yakındır. Problem 1'in t = 20.0'daki hata dağılımının grafiği Şekil 3.2'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin
en yüksek olduğu x konumu civarında oluşmaktadır.

Tablo 3.5: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

t	Konum	Genlik	H_{1Z}
0.0	30.0	0.250000	0.03125
5.0	30.2	0.249756	0.03118
10.0	30.3	0.249974	0.03124
15.0	30.5	0.249859	0.03121
20.0	30.6	0.249900	0.03122

Şekil 3.1: Solitary dalganın $h=0.1,\,\Delta t=0.05,\,\mu=1,\,A=0.25$ için t=0ve 20'deki hareketi.

Şekil 3.2: Solitary dalganın $h = 0.1, \Delta t = 0.05, \mu = 1, A = 0.25$ için t = 20'deki hata grafiği.

Ayrıca Problem 1'in sayısal değerleri t = 0.01 zamanında farklı A değerleri için elde edildi. Elde edilen korunum sabitleri ve hata norm değerleri Tablo 3.6'da verildi. Tabloda hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Şekil 3.3'de t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen grafikler verildi. Tablo 3.7'de ise tek dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum,

genlik ve hız değerleri verildi. Tabloda solitary dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Α	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1667640	0.0052083	0.0000000	0.0000000
	5	0.7853966	0.1667640	0.0052083	0.0205560	0.0116174
0.25	10	0.7853966	0.1667640	0.0052083	0.0409181	0.0232849
	15	0.7853967	0.1667640	0.0052083	0.0608983	0.0349047
	20	0.7853967	0.1667641	0.0052083	0.0803637	0.0463065
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6670561	0.0833330	0.0000000	0.0000000
	5	1.5707935	0.6670563	0.0833331	0.16074164	0.09262739
0.5	10	1.5707941	0.6670567	0.0833334	0.30190446	0.17556540
	15	1.5707946	0.6670570	0.0833335	0.41845713	0.25264696
	20	1.5707949	0.6670572	0.0833336	0.51914443	0.33282971
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.5008761	0.4218734	0.0000000	0.0000000
	5	2.3561913	1.5008777	0.4218754	0.49933681	0.28890787
0.75	10	2.3561926	1.5008788	0.4218763	0.4218763	0.84983335
	15	2.3561933	1.5008799	0.4218763	1.19429106	0.83705155
	20	2.3561939	1.5008816	0.4218764	1.58897951	1.11713951
	Tam	2.3561945	1.5000000	0.4218750	-	-
	0	3.1415863	2.6682242	1.3333283	0.0000000	0.0000000
	5	3.1415899	2.6682287	1.3333371	1.03309465	0.66028799
1.0	10	3.1415915	2.6682325	1.3333376	1.86560447	1.31287615
	15	3.1415928	2.6682406	1.3333376	2.86472884	1.98539118
	20	3.1415941	2.6682539	1.3333376	3.92669488	2.65820073
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 3.6: h = 0.1, $\Delta t = 0.01$, $0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 3.7: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249900	0.03122
0.50	32.5	0.249854	0.03121
0.75	35.6	0.749499	0.28087
1.00	40.0	0.999690	0.49969

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) eşitliği ile hesaplandı. Elde edilen sonuçlar Tablo 3.8'de verildi. Tablo incelendiğinde zaman adımı Δt_m sabit olarak alındığında elde edilen yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $\mu = 1, A_1 = 1, A_2 = 0.5$ veh = 0.1alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki pozitif

Şekil 3.3: Solitary dalganın $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.01$ için t = 20 zamanında farklı A değerleri için elde edilen grafikleri.

Tablo 3.8: $\Delta t = 0.05$, A = 0.25, t = 20, $0 \le x \le 80$, için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	22.18128651	-	24.15075371	-
0.4	1.26187551	4.13570155	0.71572309	5.07652288
0.2	0.32010622	1.97894697	0.18431148	1.95725559
0.1	0.08036373	1.99393428	0.04630654	1.99285806
0.05	0.01944247	2.04733301	0.01132797	2.03132661
0.025	0.00542406	1.84176647	0.00312909	1.85607429

dalganın etkileşiminin tam olarak görülebilmesi için program t = 0.0'dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 3.9'da verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %4.678 × 10⁻³, %1.810 × 10⁻³, %0.594 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %4.677 × 10⁻³, %1.956 × 10⁻³, % 0.584 × 10⁻³ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 ve I_3 'deki değişimin azaldığı I_2 'deki değişimin ise arttığı görülmektedir. Tablo 3.10'da Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü.

Farklı t değerleri için iki pozitif solitary dalganın etkileşiminin grafiği Şekil 3.4'te gösterildi. Şekilde görüldüğü gibi t = 5.0'te solitary dalgalardan büyük dalganın

genliği 0.999705 olup tepe noktasının konumu x = 17.5 ve küçük dalganın genliği 0.499806 olup tepe noktasının konumu x = 30.6'dır. Şekilde görüldüğü gibi t = 5'de büyük genlikli dalga küçük genlikli dalganın solundadır. Büyük dalga küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça küçük dalgayı yakalamaktadır. t = 25.0'de iki dalganın etkileşiminin başladığı görülmektedir. İçiçe geçme süreci t = 25.0 ile t = 40.0 zamanları arasında görülür. t = 40.0'dan sonra büyük dalganın küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülmektedir. t = 80.0'de büyük dalganın tepe noktası x = 56.9konumunda olup genliği 0.998912 iken küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498607'dir. t = 80.0'de büyük dalganın genlikleri arasındaki fark 7.93×10^{-4} ve küçük dalganın genlikleri arasındaki fark ise 1.19×10^{-3} 'dür. Yine Şekil 3.4'te t = 80.0'deki grafikte solitary dalganın arkasında küçük genlikli bir salınım(*titreşim*) görülmektedir. Bu salınımı görmek için t = 80.0'de grafik büyütülerek Şekil 3.5'te verildi.

Tablo 3.9: h = 0.1, $A_1 = 1$, $A_2 = 0.5$, $\mu = 1$, $0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	Δ	4 0.005			A+ 0.01	
	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3352827	1.4166643	4.7123732	3.3352827	1.4166643
10	4.7123782	3.3352899	1.4166748	4.7123782	3.3352899	1.4166747
20	4.7123886	3.3353227	1.4167044	4.7123886	3.3353227	1.4167045
30	4.7126675	3.3362387	1.4176463	4.7126675	3.3362388	1.4176506
40	4.7124438	3.3360536	1.4170673	4.7124436	3.3360537	1.4170693
50	4.7122476	3.3359959	1.4166149	4.7122476	3.3359959	1.4166148
55	4.7122639	3.3350073	1.4166132	4.7122638	3.3350073	1.4166130
60	4.7123232	3.3350805	1.4166275	4.7123232	3.3350807	1.4166274
70	4.7124708	3.3352284	1.4166579	4.7124707	3.3352288	1.4166577
80	4.7125937	3.3352996	1.4166727	4.7125936	3.3352997	1.4166726

Hesaplamalar ikinci olarak $\mu = 1$, $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın etkileşiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 3.11'de verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\%5.782 \times 10^{-3}$, $\%4.146 \times 10^{-3}$, $\%1.533 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla

	Pet rov-G	alerkin Yönt	[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3352827	1.4166643	4.7123884	3.3352890	1.4166697
10	4.7123782	3.3352899	1.4166748	4.7123853	3.3352836	1.4166647
20	4.7123886	3.3353227	1.4167044	4.7123748	3.3353041	1.4166926
30	4.7126675	3.3362387	1.4176463	4.7126410	3.3359464	1.4176398
40	4.7124438	3.3380536	1.4170673	4.7123946	3.3355951	1.4170695
50	4.7122476	3.3409257	1.4166149	4.7121567	3.3351175	1.4165797
55	4.7122639	3.3436858	1.4166132	4.7121400	3.3350847	1.4165527
60	4.7123232	3.3477452	1.4166275	-	-	-
70	4.7124708	3.3624568	1.4166579	-	-	-
80	4.7125937	3.3936820	1.4166727	_	_	_

Tablo 3.10: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

Şekil 3.4: $h=0.1,\,A_1=1,\,A_2=0.5,\,\mu=1,\,0\leq x\leq 80$ için pozitif genlikli iki dalganın girişimi.

 $\%5.648 \times 10^{-3}, \%1.672 \times 10^{-3}, \%0.165 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 3.12'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü.

Farklı t değerleri için pozitif ve negatif genliğe sahip iki dalganın etkileşiminin grafiği Şekil 3.6'da gösterildi. Şekilde görüldüğü gibi t = 5.0'te büyük dalganın

Şekil 3.5. t = 80 için Şekil 3.4'ün grafiğinin büyütülmüş şekli.

genliği -2.001102 olup tepe noktasının konumu x = 25.0 ve küçük dalganın genliği 0.996248 olup tepe noktasının konumu x = 32.5'dir. Şekilde görüldüğü gibi t = 5.0'te büyük dalga küçük dalganın sol tarafında bulunmaktadır. Negatif genlikli büyük dalga pozitif genlikli küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça pozitif genlikli küçük dalgayı yakalamaktadır. t = 10.0'da iki dalganın etkileşiminin başladığı görülmektedir. Içiçe geçme süreci 10.0 t = ile t = 20.0 zamanları arasında görülür. t = 25.0'den sonra negatif genlikli büyük dalganın pozitif genlikli küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülmektedir. t = 55.0'de büyük dalganın tepesi x = 122.8 noktasında olup genliği -1.988055 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.974490 dir. t = 55.0'de zamanında büyük dalganın genlikleri arasındaki far
k 0.119×10^{-1} ve küçük dalganın genlikleri arasındaki fark ise 0.255×10^{-1} 'dir.

Tablo 3.11: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415737	13.3411111	22.6665313	-3.1415737	13.3411111	22.6665313
5	-3.1415161	13.3410160	22.6663980	-3.1414654	13.3408512	22.6661963
15	-3.1405589	13.3312771	22.6646184	-3.1404327	13.3319112	22.6633860
25	-3.1414298	13.3415939	22.6679589	-3.1413890	13.3411345	22.6663926
35	-3.1421816	13.3421586	22.6683287	-3.1420231	13.3419807	22.6664257
45	-3.1426996	13.3420243	22.6686792	-3.1424978	13.3420064	22.6664395
55	-3.1428461	13.3439375	22.6691455	-3.1426034	13.3431896	22.6665687

Tablo 3.12: Problem 2'nin 0 $\leq x \leq 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Petrov-	Galerkin Yönte		[38]		
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415737	13.3411111	22.6665313	-3.1415915	13.3411364	22.6666177
5	-3.1415161	13.3416560	22.6663980	-3.1373341	13.3297086	22.6211074
15	-3.1426774	13.4312771	22.6646184	-3.1243642	13.2879992	22.4502917
25	-3.1404298	15.2015939	22.6679589	-3.1147243	13.2672538	22.3644947
35	-3.1376816	34.8581586	22.6683287	-3.1065564	13.2454531	22.2776978
45	-3.1321996	136.3670243	22.6686792	-3.0985577	13.2238575	22.1921206
55	-3.1228461	494.6489375	22.6691455	-3.0905294	13.2023061	22.1067310

Şekil 3.6. $h=0.1,\,A_1=-2,\,A_2=1,\,\mu=1,\,0\leq x\leq 150$ için iki dalganın girişimi.

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 2\delta_{m-1}^{n} + 2\delta_{m}^{n} + \delta_{m+1}^{n}}{3}\right]^{2}$$

alınırsa (3.1.6) ile verilen denklem sisteminde λ

$$\lambda = 3U^2 = \frac{1}{3h} \left[\delta^n_{m-2} + 2\delta^n_{m-1} + 2\delta^n_{m+1} + \delta^n_{m+1} \right]^2$$
(3.1.10)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) ile verilen denklem sisteminde (3.1.10) kullanılarak elde edilen sayısal değerler Tablo 3.13 ve 3.14'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 3.13'te verildi. Tablodan t = 20.0 de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.45298273 × 10⁻³, 12.14784906 × 10⁻³; h = 0.05 için sırasıyla 8.11239312 × 10^{-3} , 6.00331709 × 10^{-3} olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1698964	0.0054058	3.79069603	2.32832761
0.1	10.0	0.8040112	0.1731135	0.0056124	7.73903893	5.12700853
	15.0	0.8135965	0.1764190	0.0058284	11.93067498	8.40585855
	20.0	0.8233779	0.1798179	0.0060545	16.45298273	12.14784906
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7900249	0.1682609	0.0053069	1.89877467	1.17027503
0.05	10.0	0.7946851	0.1698508	0.0054076	3.85692719	2.56298008
	15.0	0.7993919	0.1714626	0.0055106	5.91492953	4.17343103
	20.0	0.8041468	0.1730971	0.0056160	8.11239312	6.00331709

Tablo 3.13: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

Tablo 3.14'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.45209386 × 10⁻³, 12.14665020 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.45273071 × 10⁻³, 12.14748225 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.45293529 × 10⁻³, 12.14775254 × 10⁻³olduğu görülür. Elde edilen sonuçlara göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olmaktadır.

Tablo 3.14: $\mu=1,\,A=0.25,\,h=0.1,\,0\leq x\leq 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946753	0.1699235	0.0054076	3.81887209	2.36587753
0.2	10.0	0.8041385	0.1731695	0.0056160	7.79839716	5.20856980
	15.0	0.8137939	0.1765066	0.0058341	12.02608426	8.52251057
	20.0	0.8236514	0.1799404	0.0060628	16.59120945	12.29899706
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81896155	2.36606094
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79862155	5.20895421
	15.0	0.8137944	0.1765068	0.0058342	12.02649391	8.52311247
	20.0	0.8236521	0.1799407	0.0060628	16.59185874	12.29983711
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81898991	2.36612070
0.01	10.0	0.8041390	0.1731697	0.0056160	7.79869314	5.20907933
	15.0	0.8137946	0.1765069	0.0058342	12.02662514	8.52330817
	20.0	0.8236524	0.1799408	0.0060628	16.59206730	12.30010996

Uygulama 3 için Problem 2'nin, $0\leq x\leq 80$ ve $0\leq x\leq 150$ aralıklarında konum adımıh=0.1ve zaman adımı Δt 'nin 0.025 ve 0.01 değerleri alındığında programın

uygun değerler üretmediği görüldü.

Uygulama 4:

MEW denkleminde U^2U_x lineer olmayan terimi (2.1.19) şeklinde yazılırsa denklemin ağırlıklı integral ifadesi (2.1.20) şeklinde elde edilir. (2.1.20) denkleminde Bölüm 1'de verilen (1.6.1.2) dönüşümü kullanılırsa Bölüm 2'de verilen (2.1.21) denklemi elde edilir. (2.1.21) denkleminde $\alpha = \frac{3UU_{\xi}}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere gerekli integraller alınırsa Bölüm 2'de verilen (2.1.22) denklemi bulunur. Petrov-Galerkin yönteminde $W = L_i$ seçilir ve (2.1.2) yaklaşımı (2.1.22) integral denkleminde yazılır ve gerekli işlemler yapılırsa

$$\sum_{j=m-1}^{m+1} \left[\int_0^1 (L_i Q_j + \beta L'_i Q'_j) d\xi \right] \dot{\delta}^e + \sum_{j=m-1}^{m+1} \alpha \int_0^1 (L_i Q_j d\xi) \delta^e = \sum_{j=m-1}^{m+1} \left[\beta (L_i Q'_j) \dot{\delta}^e_j \right]_0^1$$
(3.1.11)

denklem sistemi elde edilir.

$$A_{ij}^{e} = \int_{0}^{1} L_{i}Q_{j}d\xi, \quad B_{ij}^{e} = \int_{0}^{1} L_{i}'Q_{j}'d\xi,$$
$$C_{ij}^{e} = L_{i}Q_{j}'|_{0}^{1},$$

olmak üzere (3.1.11) ifadesinin matris gösterimi

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \alpha A^e \delta^e \tag{3.1.12}$$

şeklinde olup burada $\delta^e = (\delta_{m-1}, \delta_m, \delta_{m+1})^T$ eleman parametrelerini göstermektedir. Lineer ve Kuadratik B-spline fonksiyonlar kullanılarak integraller hesaplandığında $A^e_{ij}, B^e_{ij}, C^e_{ij}$ eleman matrisleri (3.1.3)'deki gibi elde edilir. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C matrisleri (3.1.11) ifadesinde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_N, \delta_{N+1})^T$ global parametreler olmak üzere

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \alpha A^e \delta^e = 0 \qquad (3.1.13)$$

elde edilir. Bu denklemdek
iA ve $B,\,(N+1)\times(N+2)$ - boyutlu matrisler olup her birinin genelleştirilmiş satırı

$$A = \frac{1}{12}(1, 11, 11, 1),$$

$$B = \frac{1}{3}(-1, 1, 1, -1),$$

$$C = (0, 0, 0, 0),$$

$$\alpha A = \frac{1}{12}(\alpha_1, 8\alpha_1 + 3\alpha_2, 3\alpha_1 + 8\alpha_2, \alpha_2)$$

şeklindedir. (3.1.4) ile verilen denklemde zamana bağlı δ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa

$$[A+\beta(B-C)+\frac{\alpha\Delta t}{2}A]\delta^{n+1} = [A+\beta(B-C)-\frac{\alpha\Delta t}{2}A]\delta^n$$
(3.1.14)

(N + 2)-bilinmeyenli (N + 1)- tane denklemden oluşan cebirsel bir denklem sistemi elde edilir. α teriminde UU_{ξ} yerine Bölüm 2'de verilen (2.1.27) yaklaşımı alınırsa (3.1.14) ile verilen denklem sisteminde α

$$\alpha = \frac{3UU_{\xi}}{h} = \frac{3}{h} \left[U^{n+1}U_{\xi}^{n} + U^{n}U_{\xi}^{n+1} - U^{n}U_{\xi}^{n} \right]$$
(3.1.15)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.14) denklem sisteminde (3.1.15) kullanılarak elde edilen sayısal değerler Tablo 3.15-3.18'de verildi. Tablo 3.15'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. t = 20.0'de L_2 ve L_{∞} norm değerleri h = 0.1için sırasıyla 11.96921827 × 10⁻³, 10.71423105 × 10⁻³ ; h = 0.05 için sırasıyla 6.19734135 × 10⁻³, 5.55156990 × 10⁻³ olduğu görülür. Elde edilen sonuçlara göre hdeğerleri azaldıkça hata norm değerlerinin de azaldığı görülmektedir.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için elde edilen değerler Tablo 3.16'da verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerleri $\Delta t = 0.2$ için sırasıyla 11.96937546 × 10⁻³, 10.71418275 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.96924782 × 10⁻³, 10.71421971 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.96920923×10⁻³, 10.71423505×10⁻³. Δt değerleri azaldıkça L_2 hatasında oldukça az bir düşüş gözlenirken L_{∞} hatasında ise oldukça az bir artış görüldü.

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin 0.25 ve 0.01 değerleri için yapıldı ve elde edilen sonuçlar

Tablo 3.15: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251656	2.86820242
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859372	5.59615129
	15.0	0.7723783	0.1580699	0.0046784	8.90538245	8.20341442
	20.0	0.7683541	0.1554439	0.0045234	11.96921827	10.71423105
	0.0	0.7854102	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831325	0.1651500	0.0051125	1.50496146	1.44745967
0.05	10.0	0.7809002	0.1636476	0.0050197	3.01801425	2.85725641
	15.0	0.7787112	0.1621832	0.0049301	4.57242202	4.22066403
	20.0	0.7765634	0.1607544	0.0048434	6.19734135	5.55156990

Tablo 3.16: $\mu = 1, h = 0.1, A = 0.25, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808867	0.1637168	0.0050197	2.98250581	2.86817749
0.2	10.0	0.7765517	0.1608233	0.0048435	5.92861062	5.59612601
	15.0	0.7723785	0.1580700	0.0046784	8.90545781	8.20334127
	20.0	0.7683542	0.1554440	0.0045234	11.96937546	10.71418275
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251391	2.86819692
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859612	5.59614527
	15.0	0.7723784	0.1580699	0.0046784	8.90539608	8.20339846
	20.0	0.7683541	0.1554439	0.0045234	11.96924782	10.71421971
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251753	2.86820428
	10.0	0.7765517	0.1608232	0.0048435	5.92859318	5.59615343
	15.0	0.7723783	0.1580699	0.0046784	8.90537841	8.20341982
0.01	20.0	0.7683541	0.1554439	0.0045234	11.96920923	10.71423505

Tablo 3.17'de verildi. Hesaplamalar ikinci olarak $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 3.18'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Uygulama 5:

(3.1.14) ile verilen denklem sistemindek
i α teriminde UU_{ξ} yerine Bölüm 2'de verilen
(2.1.28) ile verilen

$$(UU_{\xi})^{n+1} = \frac{1}{2}(U^{n+1}U_{\xi}^{n} + U^{n}U_{\xi}^{n+1})$$

yaklaşımı alınırsa α terimi

$$\alpha = \frac{3UU_{\xi}}{2h} = \frac{3}{2h} \left[U^{n+1}U_{\xi}^{n} + U^{n}U_{\xi}^{n+1} \right]$$
(3.1.16)

	Δ	4 0.005		A.t. 0.01			
	Δ	t = 0.025			$\Delta t \equiv 0.01$		
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123732	3.3352827	1.4166643	4.7123732	3.3352827	1.4166643	
10	4.2631207	2.3178809	0.6203828	4.2631133	2.3178605	0.6203693	
20	3.9959937	1.8198569	0.3582065	3.9959872	1.8198401	0.3581982	
30	3.8078526	1.5132978	0.2363593	3.8078476	1.5132852	0.2363542	
40	3.6654572	1.3039719	0.1694462	3.6654536	1.3039623	0.1694430	
50	3.5542006	1.1532896	0.1290150	3.5541979	1.1532822	0.1290128	
55	3.5078533	1.0939866	0.1148075	3.5078511	1.0939799	0.1148056	
60	3.4665908	1.0431194	0.1033713	3.4665889	1.0431132	0.1033697	
70	3.3955296	0.9594791	0.0860503	3.3955282	0.9594740	0.0860491	
80	3.3351567	0.8913996	0.0732871	3.3351557	0.8913952	0.0732861	

Tablo 3.17: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen sayısal değerleri.

Tablo 3.18: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	Ĺ	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415737	13.3411111	22.6665313	-3.1415737	13.3411111	22.6665313	
5	-2.1650833	7.2795574	5.7316092	-2.1648825	7.2784702	5.7294531	
15	-1.6115842	4.0519211	1.5492151	-1.6115413	4.0515599	1.5488465	
25	-1.3665634	2.7561828	0.6689577	-1.3665986	2.7560670	0.6688705	
35	-1.2295226	2.0874690	0.3663493	-1.2296171	2.0874668	0.3663356	
45	-1.1361129	1.6782876	0.2280541	-1.1362598	1.6783487	0.2280650	
55	-1.0670172	1.4043914	0.1544956	-1.0672093	1.4044882	0.1545148	

şeklinde elde edilir. Problem 1 ve 2 için (3.1.14) ile verilen denklem sisteminde (3.1.16) kullanılarak elde edilen sayısal çözümler Tablo 3.19-3.22'de verildi. Problem 1 için $0 \le x \le 80$ aralğında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 3.19'da verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 11.88250919 × 10⁻³, 10.63795535 × 10⁻³ ; h = 0.05 için sırasıyla 6.10397429 × 10⁻³, 5.46860356 × 10⁻³ olduğu görülür. Bu sonuçlara göre h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 3.20'de Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 sabit alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 11.62176071 × 10⁻³, 10.40831011 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.79570089 × 10⁻³, 10.56154082 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.95187765 × 10⁻³, 10.69899005 × 10⁻³ olduğu görülür. Elde edilen sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir artış görülmektedir.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0.1	0.0	0.7853966	0.1667640	0.0052083	0.0000000	0.0000000
	5.0	0.7809205	0.1637395	0.0050211	2.95983547	2.84646722
	10.0	0.7766164	0.1608662	0.0048461	5.88422130	5.55434834
	15.0	0.7724713	0.1581308	0.0046821	8.83979356	8.14417409
	20.0	0.7684728	0.1555209	0.0045279	11.88250919	10.63795535
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831675	0.1651736	0.0051139	1.48170009	1.42509728
0.05	10.0	0.7809686	0.1636935	0.0050226	2.97175058	2.81367123
	15.0	0.7788115	0.1622501	0.0049342	4.50292325	4.15678402
	20.0	0.7766941	0.1608412	0.0048486	6.10397429	5.46860356

Tablo 3.19: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Tablo 3.20: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

A /		T	7	T	T 103	T 103
Δt	t	I_1	I_2	I_3	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7810225	0.1638079	0.0050253	2.89168718	2.78112498
0.2	10.0	0.7768113	0.1609955	0.0048539	5.75086351	5.42864826
	15.0	0.7727511	0.1583144	0.0046930	8.64261680	7.96584831
	20.0	0.7688304	0.1557531	0.0045416	11.62176071	10.40831011
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7809545	0.1637623	0.0050225	2.93713623	2.82470806
0.1	10.0	0.7766813	0.1609092	0.0048487	5.83980882	5.51249537
	15.0	0.7725644	0.1581919	0.0046857	8.77413809	8.08482977
	20.0	0.7685917	0.1555981	0.0045325	11.79570089	10.56154082
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808934	0.1637213	0.0050200	2.97798253	2.86385871
0.01	10.0	0.7765646	0.1608318	0.0048440	5.91972206	5.58779633
	15.0	0.7723969	0.1580820	0.0046792	8.89226699	8.19157875
	20.0	0.7683778	0.1554593	0.0045243	11.95187765	10.69899005

Problem 2 için hesaplamalar ilk olarak, $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5,$ h = 0.1 ve Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 3.21'de verildi. Hesaplamalar ikinci olarak, $0 \le x \le 150$ aralığında $A_1 = -2,$ $A_2 = 1, h = 0.1$ ve Δt nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 3.22'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

3.2 Kübik B-spline Fonksiyonlar ile Petrov-Galerkin Yöntemi

Bu kısımda, MEW denkleminin (2.3) ile verilen zayıf formundaki U_N yaklaşımında ϕ_i yaklaşım fonksiyonları yerine kübik B-spline, W ağırlık fonksiyonları

	Δ	+ 0.005			A + 0.01	
	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3352827	1.4166643	4.7123732	3.3352827	1.4166643
10	4.2771486	2.3470492	0.6394137	4.2686385	2.3293089	0.6278015
20	4.0113278	1.8470259	0.3714127	4.0020056	1.8304567	0.3633264
30	3.8224468	1.5360946	0.2451949	3.8135700	1.5221818	0.2397800
40	3.6790939	1.3231417	0.1756410	3.6707970	1.3114378	0.1718434
50	3.5673220	1.1702221	0.1337254	3.5593308	1.1598708	0.1308342
55	3.5209203	1.1103395	0.1190729	3.5129593	1.1003361	0.1164529
60	3.4796168	1.0590085	0.1072875	3.4716815	1.0492911	0.1048821
70	3.4082872	0.9741364	0.0893476	3.4005148	0.9651799	0.0873230
80	3.3476831	0.9049005	0.0761201	3.3400370	0.8966352	0.0743762

Tablo 3.21: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

Tablo 3.22: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

		$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3411111	22.6665313	-3.1415739	13.3411111	22.6665313	
5	-2.2069333	7.4564675	6.0777353	-2.2810619	7.7737060	6.7273767	
15	-1.6307587	4.1212271	1.6173314	-1.6633762	4.2394948	1.7377514	
25	-1.3664081	2.7760403	0.6822612	-1.3511641	2.7852713	0.6893043	
35	-1.2073571	2.0754137	0.3620133	-1.1332327	2.0080550	0.3333757	
45	-1.0926552	1.6468390	0.2180408	-0.9655063	1.5389475	0.1824478	
55	-1.0048504	1.3622256	0.1432651	-0.8350672	1.2374638	0.1098585	

yerine ise kuadratik B-spline fonksiyonlar alındı. (1.6.2.2) ile verilen kuadratik Bspline fonksiyonlar ile Bölüm 2'de (2.1.2) ile verilen yaklaşım (2.3) denkleminde yerine yazılırsa $\lambda = \frac{3U^2}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere

$$\sum_{j=m-1}^{m+2} \left[\int_0^1 (\Psi_i \phi_j + \beta \Psi'_i \phi'_j) d\xi \right] \dot{\delta}^e + \sum_{j=m-1}^{m+2} \lambda \int_0^1 (\Psi_i \phi'_j d\xi) \delta^e = \sum_{j=m-1}^{m+2} \beta (\Psi_i \phi'_j) \dot{\delta}^e_j |_0^1 \quad (3.2.1)$$

denklem sistemi elde edilir.

$$A_{ij}^e = \int_0^1 \Psi_i Q_j d\xi,$$

$$B_{ij}^e = \int_0^1 \Psi_i' Q_j' d\xi,$$

$$C_{ij}^e = \Psi_i Q_j' |_0^1,$$

$$D_{ij}^e = \int_0^1 \Psi_i Q_j' d\xi,$$

olmak üzere (3.2.1) eşitliği matris formunda (3.1.2) şeklinde yazılabilir. Burada $\delta^e = (\delta_{m-1}, \delta_m, \delta_{m+1}, \delta_{m+2})^T$ eleman parametrelerini göstermektedir. Kuadratik ve

kübik ve B-spline fonksiyonlar kullanılarak integraller hesaplanırsa $A^e_{ij}, B^e_{ij}, C^e_{ij}$ ve D^e_{ij} eleman matrisleri

$$A_{ij}^{e} = \int_{0}^{1} \Psi_{i} Q_{j} d\xi = \frac{1}{60} \begin{bmatrix} 10 & 71 & 38 & 1\\ 19 & 221 & 221 & 19\\ 1 & 38 & 71 & 10 \end{bmatrix}, \quad (3.2.2)$$

$$B_{ij}^{e} = \int_{0}^{1} \Psi_{i}' Q_{j}' d\xi = \frac{1}{2} \begin{bmatrix} 3 & 5 & -7 & -1\\ -2 & 2 & 2 & -2\\ -1 & -7 & 5 & 3 \end{bmatrix},$$

$$C_{ij}^{e} = \Psi_{i} Q_{j}' |_{0}^{1} = 3 \begin{bmatrix} 1 & 0 & -1 & 0\\ 1 & -1 & -1 & 1\\ 0 & -1 & 0 & 1 \end{bmatrix},$$

$$D_{ij}^{e} = \int_{0}^{1} \Psi_{i} Q_{j}' d\xi = \frac{1}{10} \begin{bmatrix} -6 & -7 & 12 & 1\\ -13 & -41 & 41 & 13\\ -1 & -12 & 7 & 6 \end{bmatrix}$$

şeklinde elde edilir. Bu gösterimde i = m - 1, m, m + 1 ve j = m - 1, m, m + 1, m + 2 değerlerini almaktadır. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C ve D matrisleri (3.1.2) ile verilen denklemde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_{N-1}, \delta_N, \delta_{N+1})^T$ global parametreler olmak üzere

$$[A^e + \beta (B^e - C^e)]\dot{\delta}^e + \lambda D^e \delta^e = 0 \tag{3.2.3}$$

denklemi elde edilir. Bu denklemindeki $A,\,B,\,C$ ve λD matrislerinin genelleştirilmiş satırları

$$A = \frac{1}{60}(1, 57, 302, 302, 57, 1),$$

$$B = \frac{1}{2}(-1, -9, 10, 10, -9, -1),$$

$$C = (0, 0, 0, 0, 0, 0),$$

$$\lambda D = \frac{1}{10}(-\lambda_1, -12\lambda_1 - 13\lambda_2, 7\lambda_1 - 41\lambda_2 - 6\lambda_3, 6\lambda_1 + 41\lambda_2 - 7\lambda_3, 13\lambda_2 + 12\lambda_3, \lambda_3)$$

(3.2.4)

şeklindedir. (3.2.3) ile verilen denklemde zamana bağlı δ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa (N + 3)- bilinmeyenli (N + 2)- tane denklemden oluşan (3.1.6) cebirsel denklem sistemi elde edilir. Problem ile verilen sınır şartları kullanılarak $\delta_{-1}, \delta_{N+1}$ parametreleri (3.1.6) denklem sisteminden yok edilirse $(N \times N)$ -boyutlu denklem sistemi elde edilir. Bu sistemin çözümü Thomas algoritması ile kolayca elde edilebilir.

 δ_m^{n+1} parametrelerinin bulunabilmesi için δ^0 başlangıç vektörü bilinmelidir. δ^0 vektörü Bölüm 2'de (2.2.6) ile verilen denklem sisteminin çözülmesiyle bulunur. Böylece (3.1.6) ile verilen denklem sistemi kullanılarak istenilen t zamanındaki değerler elde edilir. (3.1.6) ile verilen denklem sistemindeki lineer olmayan terimler her zaman adımında (2.1.12) ile verilen iterasyon formülü kullanılarak iyileştirilebilir. (3.1.6) denklem sistemi kullanılarak elde edilen δ_m^{n+1} parametrelerine yeni yaklaşım (2.1.12) ile verilen iç iterasyon yardımıyla bulunur. Bir sonraki zaman adımına geçmeden önce δ_m^{n+1} değerini iyileştirmek için iç iterasyon üç veya dört defa tekrarlanır.

Kararlılık Analizi

Sayısal yöntemin kararlılığı bundan önceki bölümlerde olduğu gibi Von Neumann yöntemi ile incelendi. (3.1.6) sisteminin m. genelleştirilmiş satırı

$$\begin{aligned} \gamma_1 &= \frac{1}{60} - \frac{\beta}{2} - \frac{\lambda \Delta t}{20}, & \gamma_2 &= \frac{57}{60} - \frac{9\beta}{2} - \frac{25\lambda \Delta t}{20}, \\ \gamma_3 &= \frac{302}{60} + \frac{10\beta}{2} - \frac{40\lambda \Delta t}{20}, & \gamma_4 &= \frac{302}{60} + \frac{10\beta}{2} + \frac{40\lambda \Delta t}{20}, \\ \gamma_5 &= \frac{57}{60} - \frac{9\beta}{2} + \frac{25\lambda \Delta t}{20}, & \gamma_6 &= \frac{1}{60} - \frac{\beta}{2} + \frac{\lambda \Delta t}{20} \end{aligned}$$

olmak üzere

$$\gamma_{1}\delta_{m-2}^{n+1} + \gamma_{2}\delta_{m-1}^{n+1} + \gamma_{3}\delta_{m}^{n+1} + \gamma_{4}\delta_{m+1} + \gamma_{5}\delta_{m+2}^{n+1} + \gamma_{6}\delta_{m+3}^{n+1} = \gamma_{6}\delta_{m-2}^{n} + \gamma_{5}\delta_{m-1}^{n} + \gamma_{4}\delta_{m}^{n} + \gamma_{3}\delta_{m41}^{n} + \gamma_{2}\delta_{m+2}^{n} + \gamma_{1}\delta_{m+3}^{n}$$
(3.2.5)

şeklinde yazılabilir. Bölüm 2'de verilen (2.1.13) eşitliği (3.2.5) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1} [\gamma_1 e^{-2ikh} + \gamma_2 e^{-ikh} + \gamma_3 + \gamma_4 e^{ikh} + \gamma_5 e^{2ikh} + \gamma_6 e^{3ikh}]$$

= $\hat{\delta}^n [\gamma_6 e^{-2ikh} + \gamma_5 e^{-ikh} + \gamma_4 + \gamma_3 e^{ikh} + \gamma_2 e^{2ikh} + \gamma_1 e^{3ikh}]$

bulunur. Bu denklemde Bölüm 2'de (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = (302 + 300\beta)\cos(\frac{\theta}{2})h + (57 - 270\beta)\cos(\frac{3\theta}{2})h + (1 - 30\beta)\cos(\frac{5\theta}{2})h,$$

$$b = 120\lambda\Delta t\sin(\frac{\theta}{2})h + 75\lambda\Delta t\sin(\frac{3\theta}{2})h + 3\lambda\Delta t\sin(\frac{5\theta}{2})h$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1} = g \hat{\delta}^n$ şeklinde yazılırsa buradan

$$g = \frac{a - ib}{a + ib}$$

elde edilir. Her iki tarafın modülü alındığında |g| = 1 olur ki bu ise yöntemin şartsız kararlı olduğunu gösterir.

Lineerleştirme Uygulamaları

Bu kısımda (1.7.3) ile verilen MEW denklemindeki U^2U_x lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = \left[\delta_{m-1}^{n} + 4\delta_{m}^{n} + \delta_{m+1}^{n}\right]^{2}$$

alınırsa (3.1.6) denklem sistemindeki λ

$$\lambda = \frac{3U^2}{h} = \frac{3}{h} \left[\delta_{m-1}^n + 4\delta_m^n + \delta_{m+1}^n \right]^2$$
(3.2.6)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) ile verilen denklem sisteminde (3.2.6) kullanılarak elde edilen sayısal değerler Tablo 3.23 ve 3.24'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 2.13'te gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.59187322 × 10⁻³, 12.29966619 × 10⁻³; h = 0.05için sırasıyla 8.12952319 × 10⁻³, 6.02834926 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698259	0.0054076	3.81897213	2.36601778
0.1	10.0	0.8041389	0.1730721	0.0056160	7.79863596	5.20888211
	15.0	0.8137945	0.1764092	0.0058342	12.02650851	8.52298513
	20.0	0.8236523	0.1798429	0.0060628	16.59187322	12.29966619
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7900327	0.1682400	0.0053071	1.90231718	1.17781079
0.05	10.0	0.7947009	0.1698334	0.0054080	3.86436330	2.57742653
	15.0	0.7994161	0.1714489	0.0055113	5.92682653	4.19411312
	20.0	0.8041800	0.1730875	0.0056170	8.12952319	6.02834926

Tablo 3.23: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 3.24'te verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 116.59106545 × 10⁻³, 12.29861906 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.59171470 × 10⁻³, 12.29945910 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.59192326 × 10⁻³, 12.29973194 × 10⁻³ olduğu görülür. Bu sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olduğu görülür.

Tablo 3.24: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946753	0.1698258	0.0054076	3.81886108	2.36578903
0.2	10.0	0.8041385	0.1730719	0.0056160	7.79835714	5.20840278
	15.0	0.8137939	0.1764089	0.0058341	12.02599911	8.52223472
	20.0	0.8236514	0.1798425	0.0060628	16.59106545	12.29861906
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1698258	0.0054076	3.81895053	2.36597244
0.1	10.0	0.8041389	0.1730720	0.0056160	7.79858151	5.20878717
	15.0	0.8137944	0.1764091	0.0058342	12.02640874	8.52283661
	20.0	0.8236521	0.1798428	0.0060628	16.59171470	12.29945910
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698259	0.0054076	3.81897890	2.36603219
0.01	10.0	0.8041390	0.1730721	0.0056160	7.79865309	5.20891229
	15.0	0.8137946	0.1764092	0.0058342	12.02653996	8.52303230
	20.0	0.8236524	0.1798429	0.0060628	16.59192326	12.29973194

Uygulama1 için Problem 2'nin, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 alınarak zaman adımı Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-1}^{n} + 5\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{2}\right]^{2}$$

alınırsa (3.1.6) denklem sistemindeki λ

$$\lambda = 3U^2 = \frac{3}{4h} \left[\delta_{m-1}^n + 5\delta_m^n + 5\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(3.2.7)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) denkleminde (3.2.7) kullanılarak elde edilen sayısal çözümler Tablo 3.25-3.34'te verildi. Tablo 3.25'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ ve h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1için 0.08014854 × 10⁻³, 0.04612186 × 10⁻³ ; h = 0.05 için 0.01942857 × 10⁻³, 0.01131649 × 10⁻³ olduğu görülür. Ayrıca Tablo 3.25'te verilen korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi h = 0.1 için sırasıyla %0.018 × 10⁻³, %0.087 × 10⁻³, %0.146 × 10⁻³ ; h = 0.05 için sırasıyla %0.001 × 10⁻³, %0.005 × 10⁻³, %0.009 × 10⁻³ olarak hesaplandı. Elde edilen sonuçlardan h konum adımı azaldıkça korunum sabitlerindeki değişimi azaldığı görülmektedir.

Tablo 3.25: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666662	0.0052083	0.02049402	0.01156544
0.1	10.0	0.7853966	0.1666662	0.0052083	0.04079545	0.02319316
	15.0	0.7853967	0.1666662	0.0052083	0.06073123	0.03476807
	20.0	0.7853967	0.1666663	0.0052083	0.08014854	0.04612186
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.00496933	0.00283663
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00989223	0.00568913
	15.0	0.7854102	0.1666679	0.0052084	0.01472489	0.00852926
	20.0	0.7854102	0.1666679	0.0052084	0.01942857	0.01131649

Tablo 3.26'da Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 ve Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $0.07986051 \times 10^{-3}$, $0.04582559 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $0.08008880 \times 10^{-3}$, $0.04606209 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.08016502 \times 10^{-3}$, $0.04614109 \times 10^{-3}$ olduğu görülür. Bu sonuçlardan Δt değerleri azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olduğu görülmektedir. Ayrıca Tablo 3.26'de verilen korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi $\Delta t = 0.2$ için sırasıyla $\% 0.010 \times 10^{-3}$, $\% 0.074 \times 10^{-3}$, $\% 0.121 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $\% 0.017 \times 10^{-3}$, $\% 0.085 \times 10^{-3}$, $\% 0.144 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\% 0.018 \times 10^{-3}$, $\% 0.087 \times 10^{-3}$, $\% 0.147 \times 10^{-3}$ olarak bulundu. Bu sonuçlara göre hkonum adımı azaldıkça korunum sabitlerinde oldukça az bir artış olduğu görülmektedir.

Tablo 3.26: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666661	0.0052083	0.02042652	0.01147762
0.2	10.0	0.7853966	0.1666662	0.0052083	0.04065864	0.02302700
	15.0	0.7853966	0.1666662	0.0052083	0.06052203	0.03453265
	20.0	0.7853967	0.1666663	0.0052083	0.07986051	0.04582559
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.02048031	0.01154768
0.1	10.0	0.7853966	0.1666662	0.0052083	0.04076771	0.02315959
	15.0	0.7853967	0.1666662	0.0052083	0.06068891	0.03472055
	20.0	0.7853967	0.1666663	0.0052083	0.08008880	0.04606209
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666662	0.0052083	0.02049843	0.01157117
0.01	10.0	0.7853966	0.1666662	0.0052083	0.04080435	0.02320398
	15.0	0.7853967	0.1666662	0.0052083	0.06074479	0.03478338
	20.0	0.7853967	0.1666663	0.0052083	0.08016502	0.04614109

Tablo 3.27'de Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen sayısal çözümlerinin aldığı en büyük genlik değerleri, bu değerleri aldığı xkonum değişkeninin değerleri ve dalganın bu zamanlardaki hızları verildi. Tabloda görüldüğü gibi solitary dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6 noktasında 0.249900'dür. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 1×10^{-4} olarak bulundu. Tablodan ayrıca solitary dalganın t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genliğe sahip olduğu görüllmektedir. Problem 1'in t = 20.0'deki hata dağılımının grafiği Şekil 3.7'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

Problem 1'in sayısal çözümleri aynı zamanda t = 0.01 için farklı A değerleri için elde edildi ve elde edilen korunum sabitleri ve hata normları Tablo 3.28'de verildi.

t	Konum	Genlik	Hız
0.0	30.0	0.250000	0.03125
5.0	30.2	0.249756	0.03118
10.0	30.3	0.249974	0.03124
15.0	30.5	0.249859	0.03121
20.0	30.6	0.249900	0.03122

Tablo 3.27: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

Şekil 3.7: Solitary dalganın $h=0.1,\,\Delta t=0.05,\,\mu=1,\,A=0.25$ için t=20'deki hata grafiği.

Tablo 3.28'den hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Tablo 3.29'da ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tablodan dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile hesaplandı. Elde edilen sonuçlar Tablo 3.30'da verildi. Tablodan Δt sabit alındığında h'nın azalan değerleri için yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1$, $A_1 = 1$, $A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0 dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 3.31'de verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %0.043 × 10⁻³, %0.770 × 10⁻³, %0.591 × 10⁻³; $\Delta t = 0.01$ için sırasıyla

Α	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5	0.7853966	0.1666662	0.0052083	0.02049843	0.01157117
0.25	10	0.7853966	0.1666662	0.0052083	0.04080435	0.02320398
	15	0.7853967	0.1666662	0.0052083	0.06074479	0.03478338
	20	0.7853967	0.1666663	0.0052083	0.08016502	0.04614109
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666646	0.0833330	0.00000000	0.00000000
	5	1.5707934	0.6666652	0.0833331	0.16030695	0.09225812
0.5	10	1.5707940	0.6666662	0.0833334	0.30112530	0.17506250
	15	1.5707945	0.6666669	0.0833335	0.41730416	0.25129742
	20	1.5707947	0.6666672	0.0833336	0.51743493	0.33104315
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999953	0.4218734	0.00000000	0.000000000
	5	2.3561912	1.4999994	0.4218753	0.49804232	0.28805318
0.75	10	2.3561920	1.5000012	0.4218762	0.84671346	0.55538950
	15	2.3561921	1.5000013	0.4218763	1.18819534	0.83225426
	20	2.3561921	1.5000013	0.4218763	1.57977664	1.11083306
	Tam	2.3561945	1.5000000	0.4218750	=	-
	0	3.1415863	2.6666583	1.3333283	0.00000000	0.000000000
	5	3.1415889	2.6666680	1.3333364	1.02952615	0.65646283
1.0	10	3.1415886	2.6666679	1.3333362	1.85434304	1.30475701
	15	3.1415881	2.6666672	1.3333355	2.84527647	1.97244683
	20	3.1415876	2.6666665	1.3333348	3.89904929	2.64053901
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 3.28: $h = 0.1, \Delta t = 0.01, 0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata normları.

Tablo 3.29: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249900	0.03125
0.50	32.5	0.499855	0.12492
0.75	35.6	0.749499	0.28087
1.00	40.0	0.999690	0.49969

 $\%0.042 \times 10^{-3}$, $\%0.773 \times 10^{-3}$, $\%0.581 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 ve I_3 'deki değişimin azaldığı I_2 'deki değişimin ise arttığı açıkça görülmektedir. Tablo 3.32'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da solitary dalgalardan büyük dalganın genliği 1.000000 olup tepe noktasının konumu x = 15.0iken küçük dalganın genliği 0.500001 olup tepe noktasının konumu x = 30.0'dur. t = 80.0'de büyük dalganın tepe noktası x = 56.9 konumunda olup genliği 0.998917

Tablo 3.30: $\Delta t = 0.05, 0 \le x \le 80, A = 0.25, t = 20$ için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	55.25579280	-	20.73190012	-
0.4	1.18988053	5.53723708	0.66333732	4.96596584
0.2	0.31651483	1.91047172	0.18136337	1.87736182
0.1	0.08014654	1.98156095	0.04612186	1.97536050
0.05	0.01944857	2.04446052	0.01131649	2.02702414
0.025	0.00542320	1.84244780	0.00312864	1.80853182

iken küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498602'dir. t = 80.0' de büyük dalganın genlikleri arasındaki fark 1.08×10^{-3} ve küçük dalganın genlikleri arasındaki fark ise 1.39×10^{-3} olarak bulundu.

Tablo 3.31: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3333253	1.4166643	4.7123732	3.3333253	1.4166643
10	4.7123784	3.3333387	1.4166747	4.7123784	3.3333386	1.4166747
20	4.7123874	3.3333684	1.4167043	4.7123874	3.3333684	1.4167044
30	4.7126472	3.3342279	1.4176446	4.7126473	3.3342281	1.4176490
40	4.7123922	3.3335242	1.4170670	4.7123921	3.3335238	1.4170691
50	4.7121724	3.3329959	1.4166151	4.7121723	3.3329958	1.4166150
55	4.7121740	3.3330073	1.4166133	4.7121740	3.3330072	1.4166132
60	4.7122160	3.3330805	1.4166276	4.7122160	3.3330805	1.4166275
70	4.7123177	3.3332284	1.4166579	4.7123177	3.3332283	1.4166577
80	4.7123752	3.3332996	1.4166727	4.7123752	3.3332995	1.4166726

Hesaplamalar ikinci olarak $\mu = 1$, $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın etkileşiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 3.33'te verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %10.891 × 10⁻³, %3.801×10⁻³, %10.935×10⁻³; $\Delta t = 0.01$ için sırasıyla %3.888×10⁻³, %0.827×10⁻³, %0.431 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin de azaldığı görülmektedir. Tablo 3.34'te Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görülür. t = 0.0'da büyük dalganın genliği –1.999999 olup tepe noktasının konumu x = 15.0 iken küçük

	Pet rov-G	alerkin Yönt	[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123732	3.3333253	1.4166643	4.7123884	3.3352890	1.4166697
10	4.7123784	3.3333387	1.4166747	4.7123853	3.3352836	1.4166647
20	4.7123874	3.3333684	1.4167043	4.7123748	3.3353041	1.4166926
30	4.7126472	3.3342279	1.4176446	4.7126410	3.3359464	1.4176398
40	4.7123922	3.3335242	1.4170670	4.7123946	3.3355951	1.4170695
50	4.7121724	3.3329959	1.4166151	4.7121567	3.3351175	1.4165797
55	4.7121740	3.3330073	1.4166133	4.7121400	3.3350847	1.4165527
60	4.7122160	3.3330805	1.4166276	-	-	-
70	4.7123177	3.3332284	1.4166579	-	-	-
80	4.7123752	3.3332996	1.4166727	-	-	-

Tablo 3.32: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

dalganın genliği 0.9999
9999 olup tepe noktasının konumux = 30.0'dur
.t = 55.0'de büyük dalganın tepesix = 123.6 noktasında olup genliği
 -2.000801iken küçük dalganın tepe noktası
 x = 52.5 noktasında olup genliği 0.974027 dir
.t = 55.0'te büyük dalganın genlikleri arasındaki far
k 8×10^{-4} ve küçük dalganın genlikleri arasındaki fark
 8×10^{-4} ve küçük dalganın genlikleri arasındaki fark
 10^{-4} ve küçük dalganın genlikleri arasındaki fark ise 0.259×10^{-1} olarak bulundu.

Tablo 3.33: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313
5	-3.1415444	13.3332606	22.6663984	-3.1415285	13.3332140	22.6661967
15	-3.1429737	13.3294715	22.6646333	-3.1428761	13.3291909	22.6634009
25	-3.1416556	13.3334961	22.6679597	-3.1415273	13.3331309	22.6663934
35	-3.1417274	13.3336177	22.6683287	-3.1415686	13.3331684	22.6664257
45	-3.1418214	13.3337043	22.6686696	-3.1416320	13.3331711	22.6664300
55	-3.1419159	13.3337885	22.6690099	-3.1416959	13.3331714	22.6664335

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 5\delta_{m-1}^{n} + 6\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{3}\right]^{2}$$

[48] alınırsa (3.1.6) ile verilen denklem sisteminde λ

$$\lambda = 3U^2 = \frac{1}{3h} \left[\delta_{m-2}^n + 5\delta_{m-1}^n + 6\delta_m^n + 5\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(3.2.8)

şeklinde elde edilir. Problem 1 ve 2 için (3.1.6) denklem sisteminde (3.2.8) kullanılarak elde edilen sayısal değerler Tablo 3.35 ve 3.36'da verildi. Tablo 3.35'te

	Petrov-0	Galerkin Yönte	emi	[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415737	13.3332816	22.6665313	-3.1415915	13.3411364	22.6666177	
5	-3.1415444	13.3332606	22.6663984	-3.1373341	13.3297086	22.6211074	
15	-3.1429737	13.3294715	22.6646333	-3.1243642	13.2879992	22.4502917	
25	-3.1416556	13.3334961	22.6679597	-3.1147243	13.2672538	22.3644947	
35	-3.1417274	13.3336177	22.6683287	-3.1065564	13.2454531	22.2776978	
45	-3.1418214	13.3337043	22.6686696	-3.0985577	13.2238575	22.1921206	
55	-3.1419159	13.3337885	22.6690099	-3.0905294	13.2023061	22.1067310	

Tablo 3.34: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için hesaplamalar yapıldı. t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla $16.45283942 \times 10^{-3}$, $12.14747733 \times 10^{-3}$; h = 0.05 için sırasıyla $8.11236088 \times 10^{-3}$, $6.00328637 \times 10^{-3}$ olarak bulundu. Bu sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 3.35: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697987	0.0054058	3.79068521	2.32824093
0.1	10.0	0.8040112	0.1730159	0.0056124	7.73899928	5.12684487
	15.0	0.8135965	0.1763215	0.0058284	11.93059037	8.40558776
	20.0	0.8233779	0.1797202	0.0060545	16.45283942	12.14747733
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7899708	0.1682366	0.0053069	1.89884646	1.17026705
0.05	10.0	0.7946212	0.1698265	0.0054076	3.85695157	2.56296538
	15.0	0.7993164	0.1714382	0.0055106	5.91492602	4.17340778
	20.0	0.8040574	0.1730728	0.0056160	8.11236088	6.00328637

Tablo 3.36'da Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar gösterildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için 16.45204517×10⁻³, 12.14645840×10⁻³; $\Delta t = 0.1$ için 16.59171162 × 10⁻³, 12.29947772 × 10⁻³ ve $\Delta t = 0.01$ için 16.45288661 × 10⁻³, 12.14756074 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir artış olduğu görülmektedir.

Uygulama 3 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler

					0	
Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946131	0.1697986	0.0054058	3.79057694	2.32801368
0.2	10.0	0.8040108	0.1730158	0.0056123	7.73872663	5.12636936
	15.0	0.8135959	0.1763212	0.0058283	11.93009131	8.40484384
	20.0	0.8233770	0.1797198	0.0060545	16.45204706	12.14644012
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946132	0.1697987	0.0054058	3.79066416	2.32819588
0.1	10.0	0.8040111	0.1730159	0.0056124	7.73894604	5.12675067
	15.0	0.8135964	0.1763214	0.0058284	11.93049263	8.40544051
	20.0	0.8233777	0.1797201	0.0060545	16.45268393	12.14727217
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697987	0.0054058	3.79069181	2.32825525
0.01	10.0	0.8040112	0.1730159	0.0056124	7.73901603	5.12687480
	15.0	0.8135965	0.1763215	0.0058284	11.93062119	8.40563454
	20.0	0.8233780	0.1797202	0.0060545	16.45288851	12.14754246

Tablo 3.36: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

üretmediği görüldü.

Uygulama 4:

MEW denkleminde U^2U_x lineer olmayan terimi (2.1.19) şeklinde yazılırsa MEW denkleminin ağırlıklı integral ifadesi (2.1.20)'deki gibi elde edilir. Bu ifadede (1.6.1.2) dönüşümünün kullanılırsa (2.1.21) ile verilen denklem elde edilir. (2.1.21) denkleminde $\alpha = \frac{3UU_{\xi}}{h}$ ve $\beta = \frac{\mu}{h^2}$ olmak üzere gerekli integraller alınırsa Bölüm 2'de verilen (2.1.22) denklemi bulunur. Ağırlık fonksiyonu olarak Bölüm 1'de (1.6.2.2) ile verilen kuadratik B- spline fonksiyonlar alınır ve yine Bölüm 2'de (2.2.2) ile verilen yaklaşım (2.1.22) integral denkleminde yazılır ve gerekli işlemler yapılırsa $[x_m, x_{m+1}]$ elemanı için (3.2.1) denklem sistemi elde edilir.

$$A_{ij}^e = \int_0^1 \Psi_i Q_j d\xi,$$
$$B_{ij}^e = \int_0^1 \Psi_i' Q_j' d\xi,$$
$$C_{ij}^e = \Psi_i Q_j' |_0^1,$$

olmak üzere (3.2.1) denklem sisteminin matris gösterimi (3.1.2) şeklinde elde edilir. Kübik ve kuadratik B-spline fonksiyonlar kullanılarak integraller hesaplandığında $A_{ij}^e, B_{ij}^e, C_{ij}^e$ eleman matrisleri sırası ile (3.2.2)'deki gibi elde edilir. Eleman denklemlerinin birleştirilmesi ile elde edilen A, B, C matrisleri (3.1.2) ifadesinde yerine yazılırsa, $\delta = (\delta_{-1}, \delta_0 \dots \delta_N, \delta_{N+1})^T$ global parametreler olmak üzere (3.1.4) matris denklemi elde edilir. Bu matris denklemindeki A ve B $(N+3) \times (N+1)$ - boyutlu matrisler olup her birinin genelleştirilmiş satırı

$$A = \frac{1}{60}(1, 57, 302, 302, 57, 1,),$$

$$B = \frac{1}{2}(-1, -9, 10, 10, -9, -1),$$

$$\alpha A = \frac{1}{60}(\alpha_1, 38\alpha_1 + 19\alpha_2, 71\alpha_1 + 221\alpha_2 + 10\alpha_3, 10\alpha_1 + 221\alpha_2 + 71\alpha_3, 10\alpha_2 + 38\alpha_3, \alpha_3)$$

şeklindedir. (3.1.4) ile verilen denklemde zamana bağlı δ parametresi yerine (2.1.8) ile verilen ileri fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı kullanılırsa $(N+1) \times (N+1)$ - boyutlu (3.1.14) matris sistemi elde edilir. α teriminde UU_{ξ} yerine Bölüm 2'de verilen (2.1.27) yaklaşımı alınırsa (3.1.14) denklemindeki α ifadesi, (3.1.15) şeklinde elde edilir.

Problem 1 ve 2 için (3.1.14) denklem sisteminde (3.1.15) kullanılarak elde edilen sayısal çözümler Tablo 3.37-3.40'da verildi. Tablo 3.37'de Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak *h*'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. t = 20.0'de hata norm değerleri h = 0.1 için sırasıyla 11.96921827 × 10⁻³, 10.71423105 × 10⁻³ ; h = 0.05 için sırasıyla 6.19734135 × 10⁻³, 5.55156990 × 10⁻³ olarak bulundu. Bu sonuçlardan *h* değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 3.37: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251656	2.86820242
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859372	5.59615129
	15.0	0.7723783	0.1580699	0.0046784	8.90538245	8.20341442
	20.0	0.7683541	0.1554439	0.0045234	11.96921827	10.71423105
	0.0	0.7854102	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831325	0.1651500	0.0051125	1.50496146	1.44745967
0.05	10.0	0.7809002	0.1636476	0.0050197	3.01801425	2.85725641
	15.0	0.7787112	0.1621832	0.0049301	4.57242202	4.22066403
	20.0	0.7765634	0.1607544	0.0048434	6.19734135	5.55156990

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için elde edilen değerler Tablo 3.38'de verildi. Tablodan t = 20.0'de hata

norm değerleri $\Delta t = 0.2$ için sırasıyla 11.96937546 × 10⁻³, 10.71418275 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.96924782 × 10⁻³, 10.71421971 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.96920923 × 10⁻³, 10.71423505 × 10⁻³ olarak bulundu. Δt değerleri azaldıkça L_2 hatasında oldukça az bir düşüş görülürken L_{∞} hatasında ise oldukça az bir artış görülmektedir.

Tablo 3.38: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808867	0.1637168	0.0050197	2.98250581	2.86817749
0.2	10.0	0.7765517	0.1608233	0.0048435	5.92861062	5.59612601
	15.0	0.7723785	0.1580700	0.0046784	8.90545781	8.20334127
	20.0	0.7683542	0.1554440	0.0045234	11.96937546	10.71418275
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251391	2.86819692
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859612	5.59614527
	15.0	0.7723784	0.1580699	0.0046784	8.90539608	8.20339846
	20.0	0.7683541	0.1554439	0.0045234	11.96924782	10.71421971
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251753	2.86820428
0.01	10.0	0.7765517	0.1608232	0.0048435	5.92859318	5.59615343
	15.0	0.7723783	0.1580699	0.0046784	8.90537841	8.20341982
	20.0	0.7683541	0.1554439	0.0045234	11.96920923	10.71423505

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ için h = 0.1alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 3.39'de verildi. Hesaplamalar ikinci olarak $A_1 = -2, A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 3.40'da verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Tablo 3.39: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5 \ 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	Δ	t = 0.025			$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123732	3.3333253	1.4166643	4.7123732	3.3333253	1.4166643		
10	4.2426995	2.3037441	0.6131046	4.2426919	2.3037237	0.6130912		
20	3.9648706	1.8035090	0.3521070	3.9648639	1.8034924	0.3520989		
30	3.7697618	1.4968511	0.2316222	3.7697567	1.4968387	0.2316173		
40	3.6223257	1.2879395	0.1657072	3.6223220	1.2879301	0.1657042		
50	3.5071475	1.1376750	0.1259477	3.5071449	1.1376677	0.1259456		
55	3.4591161	1.0784915	0.1119735	3.4591139	1.0784849	0.1119718		
60	3.4163160	1.0276737	0.1007196	3.4163141	1.0276678	0.1007180		
70	3.3425665	0.9440522	0.0836798	3.3425651	0.9440472	0.0836786		
80	3.2799077	0.8760103	0.0711391	3.2799068	0.8760060	0.0711382		

Tablo 3.40: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1 \ 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$			$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313		
5	-2.1241296	7.2141561	5.6339783	-2.1239245	7.2130819	5.6318723		
15	-1.5560491	3.9955720	1.5129639	-1.5560068	3.9952176	1.5126087		
25	-1.3081637	2.7144168	0.6534659	-1.3081998	2.7143007	0.6533812		
35	-1.1700854	2.0538265	0.3579735	-1.1701800	2.0538200	0.3579591		
45	-1.0761676	1.6497966	0.2228891	-1.0763135	1.6498508	0.2228984		
55	-1.0067508	1.3793691	0.1510028	-1.0069410	1.3794575	0.1510201		

Uygulama 5:

(3.1.14) ile verilen denklem sistemindeki α teriminde UU_{ξ} yerine Bölüm 2'de verilen (2.1.28) yaklaşımı alınırsa (3.1.14) denklem sistemindeki α , (3.1.16) şeklinde elde edilir. Problem 1 ve 2 için (3.1.14) denklem sisteminde (3.1.16) kullanılarak elde edilen sayısal değerler Tablo 3.41-3.44'te verildi. Problem 1 için $0 \leq x \leq 80$ aralığında $\Delta t = 0.05$ alınarak h'nin 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 3.41'de verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için 11.69736941 × 10⁻³, 10.62053008 × 10⁻³; h = 0.05 için 6.07740238 × 10⁻³, 5.70645830 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 3.41: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0.1	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7807055	0.1635967	0.0050181	2.99213771	2.85103645
	10.0	0.7761946	0.1606806	0.0048403	5.89141268	5.58217591
	15.0	0.7718506	0.1579047	0.0046738	8.77164624	8.16969030
	20.0	0.7676607	0.1552565	0.0045175	11.69736941	10.62053008
0.05	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7829305	0.1650912	0.0051103	1.67503075	1.53981814
	10.0	0.7804995	0.1635547	0.0050155	3.22295191	3.00732130
	15.0	0.7788148	0.1620565	0.0049239	4.67844523	4.40137685
	20.0	0.7757744	0.1605943	0.0048352	6.07740238	5.70645830

Tablo 3.42'de Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $11.62176071 \times 10^{-3}$, $10.40831011 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $11.79570089 \times 10^{-3}$, $10.56154082 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla

11.95187765 × 10⁻³, 10.69899005 × 10⁻³ olduğu görülmektedir. Bu sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir artış görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0.2	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7808094	0.1636664	0.0050224	2.92398661	2.78657346
	10.0	0.7763931	0.1608122	0.0048483	5.75801536	5.45706962
	15.0	0.7721353	0.1580916	0.0046850	8.57421136	7.98827772
	20.0	0.7680242	0.1554926	0.0045313	11.43586839	10.38706575
0.1	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7807401	0.1636199	0.0050195	2.96943760	2.82958021
	10.0	0.7762606	0.1607244	0.0048430	5.84698694	5.54053934
	15.0	0.7719453	0.1579669	0.0046775	8.70590447	8.10932080
	20.0	0.7677816	0.1553350	0.0045221	11.61031007	10.54284799
0.01	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7806778	0.1635782	0.0050169	3.01028542	2.86817855
	10.0	0.7761418	0.1606456	0.0048382	5.92692411	5.61543754
	15.0	0.7717749	0.1578551	0.0046709	8.82418888	8.21791238
	20.0	0.7675642	0.1551938	0.0045138	11.76693880	10.68257489

Tablo 3.42: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ için h = 0.1 alınarak Δt 'nin0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 3.43'de verildi. Hesaplamalar ikinci olarak $A_1 = -2, A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 3.44'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Tablo 3.43: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123732	3.3333253	1.4166643	4.7123732	3.3333253	1.4166643		
10	4.2566240	2.3330681	0.6321194	4.2481754	2.3152308	0.6205152		
20	3.9797847	1.8306179	0.3651627	3.9707168	1.8140836	0.3571676		
30	3.7837084	1.5194895	0.2403022	3.7752251	1.5056722	0.2349823		
40	3.6351561	1.3069082	0.1717661	3.6273497	1.2953265	0.1680517		
50	3.5193445	1.1543646	0.1305337	3.5119159	1.1441616	0.1277189		
55	3.4712109	1.0945715	0.1161153	3.4638415	1.0847350	0.1135714		
60	3.4283306	1.0432632	0.1045136	3.4210107	1.0337290	0.1021833		
70	3.3542502	0.9583844	0.0868627	3.3471312	0.9496264	0.0849084		
80	3.2913034	0.8891670	0.0738617	3.2843453	0.8811123	0.0721860		

Tablo 3.44: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$			$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3			
0	-3.1415737	13.3332816	22.6665313	-3.1415737	13.3332816	22.6665313			
5	-2.2363908	7.7077441	6.6196473	-2.1645757	7.3907201	5.9762640			
15	-1.5991657	4.1816118	1.6974964	-1.5721452	4.0642801	1.5796535			
25	-1.2822051	2.7437438	0.6736072	-1.3043808	2.7342760	0.6665857			
35	-1.0619589	1.9766805	0.3262280	-1.1439715	2.0423514	0.3539243			
45	-0.8927743	1.5141838	0.1788352	-1.0285154	1.6193493	0.2133048			
55	-0.7613389	1.2170820	0.1078684	-0.9402011	1.3384759	0.1402204			

Sonuç

Bu bölümde MEW denkleminin sayısal çözümleri, denklemdeki U^2U_x lineer olmayan terim yerine farklı lineerleştirme teknikleri uygulanarak lineer-kuadratik ve kuadratik-kübik B-spline Petrov-Galerkin sonlu eleman yöntemi ile elde edildi. Problem 1 için Tablo 3.45, t = 20.0'de farklı lineerleştirme teknikleriyle elde edilen korunum sabitleri ile L_2 ve L_∞ hata normlarının değerlerini ve literatürdeki farklı çalışmalarla karşılaştırılmasını göstermektedir.

t = 20	I_1		I_2		I_3		$L_2 \times 10^3$		$L_{\infty} \times 10^3$	
	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik	Kuadratik	Kübik
Uyg.1	0.8236523	0.8236523	0.1799408	0.1798429	0.0060628	0.0060628	16.5919095	16.59187322	12.2998786	12.29966619
Uyg.2	0.7853967	0.7853967	0.1667641	0.1667641	0.0052083	0.0052083	0.0807928	0.08014854	0.04648027	0.04612186
Uyg.3	0.8233779	0.8233779	0.1798179	0.1797202	0.0060545	0.0060545	16.4528862	16.45283942	12.1476874	12.14747733
Uyg.4	0.7683541	0.7683541	0.1554439	0.1554439	0.0045234	0.0045234	11.9691989	11.96921827	10.7143242	10.71423105
Uyg.5	0.7684728	0.7676607	0.1555209	0.1552565	0.0045279	0.0045175	11.8824897	11.69736941	10.6380486	10.62053008
[32]	32] -		-		-		0.1958878		0.1744330	
[33]	0.7849545		0.166	4765	0.0051995		0.2905166		0.2498925	
[38]	0.7853898		0.1667614		0.0052082		0.0796940		0.0465523	
[42]	0.7853977		0.166	4735	0.0052083		0.2692812		0.2569972	

Tablo 3.45: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\mu = 1$, A = 0.25, $\Delta t = 0.05$, için t = 20' de farklı uygulama ve çalışmalardan elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 3.45 incelendiğinde Uygulama 2 kullanıldığında elde edilen L_2 ve L_{∞} hata normlarınının referans [38]'de elde edilen sonuçlarla uyum içerisinde olduğu ve korunum sabitlerinin bilgisayar çalışması boyunca hemen hemen sabit kaldığı görülmektedir. Ayrıca Tablo 3.45'de Uygulama 2 ile elde edilen L_2 ve L_{∞} hata norm değerlerinin referans [32, 33, 42]'de elde edilen L_2 ve L_{∞} hata norm değerlerinden daha küçük olduğu görülmektedir. Problem 2 için lineer-kuadratik ve kuadratik-kübik B-spline Petrov-Galerkin yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde Uygulama 2 ile elde edilen Tablo 3.9, 3.11, 3.31 ve 3.33'deki sonuçların birbirleri ile ve referans [38] ile uyum içinde olduğu görülmektedir.

BÖLÜM 4 MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN SUBDOMAIN SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ

Bu bölümde, (1.7.3) ile verilen MEW denkleminin sayısal çözümleri kuartik ve sektik B-spline fonksiyonlar kullanılarak subdomain yöntemi ile elde edildi. Denklemdeki U^2U_x lineer olmayan terimi için farklı lineerleştirme teknikleri uygulandı. Subdomain yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılık analizi *Mathematica* programı kullanılarak von Neumann yöntemi ile incelendi. Solitary dalga çözümleri ve iki dalganın girişimi problemleri ele alındı. Kuartik ve sektik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümler için grafikler hemen hemen aynı olduğundan sadece kuartik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümlerin grafikleri verildi. Subdomain yönteminin uygulanması ile oluşan denklem sistemleri Thomas algoritması kullanılarak çözüldü.

4.1 Kuartik B-spline Fonksiyonlar ile Subdomain Yöntemi

Bu kısımda, (1.7.3) ile verilen MEW denkleminin kuartik B-spline subdomain yöntemi ile sayısal çözümleri elde edildi. Bu yöntemde W_m ağırlık fonksiyonları, m = 0(1)N olmak üzere

$$W_m = \begin{cases} 1, & x_m \le x \le x_{m+1} \\ 0, & \text{diğer durumlar} \end{cases}$$
(4.1.1)

şeklindedir. MEW denklemindeki U(x,t) fonksiyonunun yaklaşık çözümü $U_N(x,t)$ olarak alınırsa bu yaklaşık çözüm kuartik B-spline fonksiyonlar cinsinden,

$$U_N(x,t) = \sum_{j=-2}^{N+1} \delta_j(t)\phi_j(x)$$
(4.1.2)

şeklinde yazılır [14]. (4.1.1) ile verilen ağırlık fonksiyonu Bölüm 2'de verilen (2.1) denkleminde yerine yazılırsa her $[x_m, x_{m+1}]$ aralığında

$$\int_{x_m}^{x_{m+1}} 1.(U_t + 3U^2 U_x - \mu U_{xxt}) dx = 0$$
(4.1.3)

denklemi elde edilir. Bu denklemde Bölüm 1'de (1.6.1.2) ile verilen dönüşüm kullanılırsa

$$\int_0^1 h(U_t + \frac{3}{h}U^2 U_{\xi} - \frac{\mu}{h^2} U_{\xi\xi t}) d\xi = 0$$
(4.1.4)

bulunur. (4.1.4) denklemindeki integralleri hesaplamak için yaklaşım fonksiyonlar yerine Bölüm 1'de (1.6.4.2) ile verilen kuartik B-spline fonksiyonlar yazılır ve her bir terim hesaplanırsa,

$$\begin{split} h \int_0^1 U_t d\xi = &h \int_0^1 [\dot{\delta}_{m-2}(1 - 4\xi + 6\xi^2 - 4\xi^3 + \xi^4) + \\ &\dot{\delta}_{m-1}(11 - 12\xi - 6\xi^2 + 12\xi^3 - 4\xi^4) + \\ &\dot{\delta}_m(11 + 12\xi - 6\xi^2 - 12\xi^3 + 6\xi^4) + \\ &\dot{\delta}_{m+1}(1 + 4\xi + 6\xi^2 + 4\xi^3 - 4\xi^4) + \dot{\delta}_{m+2}(\xi^4)] d\xi \end{split}$$

şeklinde elde edilir. Bu ifadede gerekli integraller alınır ve düzenlemeler yapılırsa

$$\int_{x_m}^{x_{m+1}} U_t dx = h \int_0^1 U_t d\xi = \frac{h}{5} (\dot{\delta}_{m-2} + 26\dot{\delta}_{m-1} + 66\dot{\delta}_m + 26\dot{\delta}_{m+1} + \dot{\delta}_{m+2})$$

bulunur. Burada $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı kullanılırsa

$$\int_{0}^{1} U_{t} d\xi = \frac{h}{5\Delta t} [(\delta_{m-2}^{n+1} - \delta_{m-2}^{n}) + 26(\delta_{m-1}^{n+1} - \delta_{m-1}^{n}) + 66(\delta_{m}^{n+1} - \delta_{m}^{n}) + (4.1.5)$$
$$26(\delta_{m+1}^{n+1} - \delta_{m+1}^{n}) + (\delta_{m+2}^{n+1} - \delta_{m+2}^{n})]$$

bulunur. İkinci olarak $\int_0^1 3U^2 U_\xi d\xi$ integrali

$$Z_m \int_0^1 U_{\xi} d\xi = Z_m [U]_0^1$$

= $Z_m [(\delta_{m-1} + 11\delta_m + 11\delta_{m+1} + \delta_{m+2}) - (\delta_{m-2} + 11\delta_{m-1} + 11\delta_m + \delta_{m+1})]$
= $Z_m [-\delta_{m-2} - 10\delta_{m-1} + 10\delta_{m+1} + \delta_{m+2}]$

şeklinde bulunur. Burada

$$Z_m = 3U^2 = 3(\delta_{m-2} + 11\delta_{m-1} + 11\delta_m + \delta_{m+1})^2$$

olup δ yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı yazılırsa

$$\int_0^1 3U^2 U_{\xi} d\xi = \frac{Z_m}{2} \left[-(\delta_{m-2}^{n+1} + \delta_{m-2}^n) - 10(\delta_{m-1}^{n+1} + \delta_{m-1}^n) + 10(\delta_{m+1}^{n+1} + \delta_{m+1}^n) + (\delta_{m+2}^{n+1} + \delta_{m+2}^n) \right]$$

elde edilir. Son olarak $\int_0^1 \frac{\mu}{h} U_{\xi\xi t} d\xi$ integrali

$$\frac{\mu}{h} \int_0^1 U_{\xi\xi t} d\xi = \frac{\mu}{h} [U_{\xi t}]_0^1 = \frac{4\mu}{h} [\dot{\delta}_{m-2} + 2\dot{\delta}_{m-1} - 6\dot{\delta}_m + 2\dot{\delta}_{m+1} + \dot{\delta}_{m+2}]$$

şeklinde hesaplanır. Bu denklemde
 $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı kullanılırsa

$$\frac{\mu}{h} \int_0^1 U_{\xi\xi t} d\xi = \frac{4\mu}{h\Delta t} [(\delta_{m-2}^{n+1} - \delta_{m-2}^n) + 2(\delta_{m-1}^{n+1} - \delta_{m-1}^n) - 6(\delta_m^{n+1} - \delta_m^n) + 2(\delta_{m+1}^{n+1} - \delta_{m+1}^n) + (\delta_{m+2}^{n+1} - \delta_{m+2}^n)]$$
(4.1.6)

bulunur. Hesaplanan integraller (4.1.4) ile verilen denklemde yerine yazılır ve gerekli düzenlemeler yapılırsa

$$(1 - EZ_m - M)\delta_{m-2}^{n+1} + (26 - 10EZ_m - 2M)\delta_{m-1}^{n+1} + (66 + 6M)\delta_m^{n+1} + (26 + 10EZ_m - 2M)\delta_{m+1}^{n+1} + (1 + EZ_m - M)\delta_{m+2}^{n+1} = (1 + EZ_m - M)\delta_{m-2}^n + (26 + 10EZ_m - 2M)\delta_{m-1}^n + (66 + 6M)\delta_m^n + (26 - 10EZ_m - 2M)\delta_{m+1}^n + (1 - EZ_m - M)\delta_{m+2}^n \quad m = 0, 1, \dots, N$$

$$(4.1.7)$$
şeklinde (N + 1)- tane denklem ve (N + 5)- tane bilinmeyenden oluşan cebirsel denklem sistemi elde edilir. Burada

$$E = \frac{5\Delta t}{2h} \text{ ve } M = \frac{20\mu}{h^2}$$
(4.1.8)

dir. Bu denklem sisteminin çözülebilmesi için denklem sayısı ile bilinmeyen sayısı eşit olmalıdır. Bölüm 1'de (1.6.4.3) ile verilen yaklaşımlarda U_m ve U'_m 'nin sınırlardaki değerleri kullanılarak δ_{-2}, δ_{-1} ve $\delta_{N+1}, \delta_{N+2}$ parametreleri sistemden yok edilerek $(N+1) \times (N+1)$ - boyutlu karesel cebirsel denklem sistemi elde edilir.

 δ_m^{n+1} parametrelerini (4.1.7) denklem sisteminden elde edebilmek için δ^0 başlangıç değerlerinin hesaplanması gerekir. δ^0 vektörü problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanacaktır. t = 0.0'da, δ_j^0 belirlenecek parametreler olmak üzere (4.1.2) denklemi

$$U_N(x,0) = \sum_{j=-2}^{N+1} \delta_i^0(t) \phi_i(x)$$

şeklinde yeniden yazılabilir. Başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x_i, 0) = U(x_i, 0)$$
 $j = 0, 1, ..., N$

değerleri kullanılarak δ_j^0 parametreleri için (N+4)- tane bilinmeyen ve (N+1)- tane denklem elde edilir. Bölüm 1'de (1.6.4.3) ile verilen yaklaşımlarda U'_m ve U''_m 'nin sınırlardaki değerleri kullanılarak δ_{-2}^0 , δ_{-1}^0 ve δ_{N+1}^0 ifadeleri yok edilirse $(N+1) \times (N+1)$ - boyutlu cebirsel denklem sistemi elde edilir. Bu denklem sistemi

18	6						δ_0		U_0
11.5	11.5	1					δ_1		U_1
	1	11	11	1			δ_2	_	U_2
		•••					:	_	÷
			1	11	11	1	δ_{N-1}		U_{N-1}
				2	14	8	δ_N		U_N

şeklinde matris formunda yazılabilir. Bu sistemin çözülmesiyle başlangıç parametrelerine ulaşılır. Böylece (4.1.7) denklem sisteminde başlangıç vektörleri kullanılarak istenilen t zamanındaki yaklaşık çözümler iterasyon yardımıyla elde edilir. (4.1.7) sisteminin lineer olmayan terimlerine her zaman adımında (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanırsa U_N yaklaşık çözümleri iyileştirilebilir.

Kararlılık Analizi

Subdomain yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılığı önceki bölümlerde olduğu gibi von Neumann yöntemi ile incelendi. Böylece (4.1.7)sisteminin *m*. genelleştirilmiş satırı

$$\gamma_1 = 1 - E\lambda - M,$$
 $\gamma_2 = 26 - 10E\lambda - 2M,$
 $\gamma_3 = 66 + 6M,$ $\gamma_4 = 26 + 10E\lambda - 2M,$
 $\gamma_5 = 1 + E\lambda - M,$

olmak üzere

$$\gamma_1 \delta_{m-2}^{n+1} + \gamma_2 \delta_{m-1}^{n+1} + \gamma_3 + \gamma_4 \delta_{m+1}^{n+1} + \gamma_5 \delta_{m+2}^{n+1} =$$

$$\gamma_5 \delta_{m-2}^n + \gamma_4 \delta_{m-1}^n + \gamma_3 + \gamma_2 \delta_{m+1}^n + \gamma_1 \delta_{m+2}^n$$
(4.1.9)

şeklinde yazılabilir. Bölüm 2'de verilen (2.1.13) eşitliği (4.1.9) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1}[\gamma_1 e^{-2ikh} + \gamma_2 e^{-ikh} + \gamma_3 + \gamma_4 e^{ikh} + \gamma_5 e^{2ikh}] = \\\hat{\delta}^n[\gamma_5 e^{-2ikh} + \gamma_4 e^{-ikh} + \gamma_3 + \gamma_2 e^{ikh} + \gamma_1 e^{2ikh}]$$

bulunur. Bu denklemde Bölüm 2'de (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 33 + 3M + (26 - 2M)\cos(kh) + (1 - M)\cos(2kh),$$

$$b = 10E\lambda\sin(kh) + E\lambda\sin(2kh)$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa

$$\hat{\delta} = \frac{a - ib}{a + ib}$$

elde edilir. Her iki tarafın modülü alındığında $|\hat{\delta}| = 1$ olur ki bu ise yöntemin şartsız kararlı olduğunu gösterir.

Lineerleştirme Uygulamaları

Bu kısımda MEW denkleminde U^2U_x lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = \left[\delta_{m-2} + 11\delta_{m-1} + 11\delta_{m} + \delta_{m+1}\right]^{2}$$

alınırsa (4.1.7) ile verilen denklem sisteminde Z_m

$$Z_m = 3 \left[U_m^n \right]^2 = 3 \left[\delta_{m-2} + 11 \delta_{m-1} + 11 \delta_m + \delta_{m+1} \right]^2$$
(4.1.10)

şeklinde elde edilir. Problem 1 ve 2 için (4.1.7) ile verilen denklem sisteminde (4.1.10) kullanılarak elde edilen sayısal değerler Tablo 4.1 ve 4.2'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 4.1'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.5920172 × 10⁻³, 12.30004421 × 10⁻³; h = 0.05 için sırasıyla 8.12953195 × 10⁻³, 6.02837276 × 10⁻³ olduğu görülür.

Tablo 4.1: $\mu = 1$, A = 0.25, $\Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1699236	0.0054076	3.81898314	2.36610628
0.1	10.0	0.8041389	0.1731697	0.0056160	7.79867601	5.20904915
	15.0	0.8137946	0.1765068	0.0058342	12.02659369	8.52326099
	20.0	0.8236523	0.1799408	0.0060628	16.5920172	12.30004421
	0.0	0.7854102	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7900327	0.1682643	0.0053071	1.90231780	1.17781559
0.05	10.0	0.7947009	0.1698577	0.0054080	3.86436565	2.57743754
	15.0	0.7994161	0.1714733	0.0055113	5.92683163	4.19412997
	20.0	0.8041800	0.1731119	0.0056170	8.12953195	6.02083727

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 4.2'de verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.56312189 × 10⁻³, 12.27516698 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.56376747 × 10⁻³, 12.29967156 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.56397481 × 10⁻³, 12.27627748 × 10⁻³ olduğu görülür. Elde edilen

sonuçlardan h konum adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinin azaldığı, Δt zaman adımı azaldıkça hata norm değerlerinin arttığı görülmektedir.

		-	-	-		
Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1698268	0.0054076	3.81708179	2.36583319
0.2	10.0	0.8041392	0.1730741	0.0056161	7.79090237	5.20343965
	15.0	0.8137961	0.1764128	0.0058344	12.00957589	8.50664559
	20.0	0.8236565	0.1798492	0.0060632	16.56312189	12.27516698
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698269	0.0054076	3.81717027	2.36601724
0.1	10.0	0.8041395	0.1730742	0.0056161	7.79112478	5.20382371
	15.0	0.8137966	0.1764130	0.0058344	12.00998264	8.50724695
	20.0	0.8236573	0.1798495	0.0060632	16.56376747	12.27600520
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946756	0.1698269	0.0054076	3.81719832	2.36607721
0.01	10.0	0.8041396	0.1730742	0.0056161	7.79119572	5.20394871
	15.0	0.8137968	0.1764131	0.0058344	12.01011290	8.50744247
	20.0	0.8236575	0.1798496	0.0060632	16.56397481	12.27627748

Tablo 4.2: $\mu = 1, A = 0.25, h = 0.1$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Uygulama 1 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1için Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 12\delta_{m-1}^{n} + 22\delta_{m} + 12\delta_{m+1}^{n} + \delta_{m+2}^{n}}{2}\right]^{2}$$

alınırsa (4.1.7) denklem sistemindeki Z_m

$$Z_m = 3U^2 = \frac{3}{4} \left[\delta_{m-2}^n + 12\delta_{m-1}^n + 22\delta_m + 12\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(4.1.11)

şeklinde elde edilir. Problem 1 ve 2 için (4.1.7) ile verilen denklem sisteminde (4.1.11) kullanılarak elde edilen sayısal değerler Tablo 4.3-4.12'de verildi. Tablo 4.3'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.05187334 \times 10^{-3}$, $0.03211392 \times 10^{-3}$ ve h = 0.05 için sırasıyla $0.01324813 \times 10^{-3}$, $0.00810657 \times 10^{-3}$ olduğu görülür. Ayrıca Tablo 4.3'te korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi h = 0.1 için sırasıyla % 0.002×10^{-3} ,

 $\%0.003 \times 10^{-3}$, $\%0.007 \times 10^{-3}$ ve h = 0.05 için sırasıyla $\%0.000 \times 10^{-3}$, $\% 0.000 \times 10^{-3}$, $\%0.001 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlardan h konum adımı azaldıkça korunum sabitlerindeki değişimin de azaldığı görülmektedir.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.01295095	0.00779178
0.1	10.0	0.7853966	0.1666664	0.0052083	0.02591206	0.01577247
	15.0	0.7853967	0.1666664	0.0052083	0.03888490	0.02392953
	20.0	0.7853967	0.1666664	0.0052083	0.05187334	0.03211392
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854101	0.1666679	0.0052084	0.00331281	0.00195041
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00662518	0.00396005
	15.0	0.7854102	0.1666679	0.0052084	0.00993687	0.00601616
	20.0	0.7854102	0.1666679	0.0052084	0.01324813	0.00810657

Tablo 4.3: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 4.4'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.05285906 × 10⁻³, 0.03272619 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 0.05206957 × 10⁻³, 0.03223469 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 0.05181074 × 10⁻³, 0.03207565 × 10⁻³ olduğu görülür. Ayrıca Tablo 4.4'te korunum sabitlerinin t = 0.0 - 20.0'deki değişimi sırasıyla $\Delta t = 0.2$ için sırasıyla %0.010 × 10⁻³, %0.016 × 10⁻³, %0.032 × 10⁻³, $\Delta t = 0.1$ için sırasıyla %0.003 × 10⁻³, %0.005 × 10⁻³, %0.010 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %0.002 × 10⁻³, %0.003 × 10⁻³, %0.006 × 10⁻³ olarak bulundu. Bu sonuçlara göre Δt zaman adımı azaldıkça korunum sabitlerindeki değişimininde azaldığı açıkça görülmektedir.

Tablo 4.5'te Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen sayısal çözümlerinin aldığı maksimum genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın verilen zamanlardaki hızları verildi. Tabloda görüldüğü gibi dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6 noktasında 0.249926'dir. t = 0.0 ve t = 20.0'de solitary dalganın genlikleri arasındaki mutlak fark 7.4×10^{-5} olarak bulundu. t = 0.0 ve t = 20.0 değerleri için U_N 'nin grafiği Şekil 4.1'de verildi. Şekilde görüldüğü gibi solitary dalga t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genlik ile sağa doğru ilerlemektedir. t = 20.0'de dalganın hızı 0.03122 olup bu değer dalganın başlangıç yani t = 0.0

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
0.2	5.0	0.7853966	0.1666664	0.0052083	0.01319532	0.00794351
	10.0	0.7853965	0.1666664	0.0052083	0.02640207	0.01606513
	15.0	0.7853965	0.1666664	0.0052083	0.03962199	0.02437950
	20.0	0.7853965	0.1666664	0.0052083	0.05285906	0.03272619
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.01299975	0.00782180
0.1	10.0	0.7853966	0.1666664	0.0052083	0.02600980	0.01583030
	15.0	0.7853966	0.1666664	0.0052083	0.03903178	0.02401837
	20.0	0.7853966	0.1666664	0.0052083	0.05206957	0.03223469
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.01293535	0.00778225
0.01	10.0	0.7853966	0.1666664	0.0052083	0.02588083	0.01575412
	15.0	0.7853966	0.1666664	0.0052083	0.03883800	0.02390136
	20.0	0.7853966	0.1666664	0.0052083	0.05181074	0.03207565

Tablo 4.4: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

anındaki hızı olan 0.03125 değerine oldukça yakındır. Problem 1'in t = 20'deki hata dağılımının grafiği Şekil 4.2'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

Tablo 4.5: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

t	Konum	Genlik	Hız
0.0	30.0	0.250000	0.03125
5.0	30.2	0.249760	0.03119
10.0	30.3	0.249982	0.03124
15.0	30.5	0.249878	0.03122
20.0	30.6	0.249926	0.03123

Ayrıca Problem 1'in t = 0.01'de farklı A değerleri için sayısal değerleri elde edildi. Elde edilen hata normları ve korunum sabitleri Tablo 4.6'da verildi. Tablo 4.6'da hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Şekil 4.3'te t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için grafikler verildi. Tablo 4.7'de ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tabloda solitary dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile

Şekil 4.1: Solitary dalganın $h=0.1,\,\Delta t=0.05,\,\mu=1,\,A=0.25$ için t=0ve 20'deki hareketi.

Şekil 4.2: Solitary dalganın $h = 0.1, \Delta t = 0.05, \mu = 1, A = 0.25$ için t = 20'deki hata grafiği.

hesaplandı. Elde edilen sonuçlar Tablo 4.8'de verildi. Tablo incelendiğinde, zaman adımı Δt_m sabit olarak alındığında elde edilen yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1$, $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 4.9'da verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\% 0.024 \times 10^{-3}$, $\% 0.414 \times 10^{-3}$, $\% 0.206 \times 10^{-3}$; $\Delta t = 0.01$ için sırasıyla $\% 0.024 \times 10^{-3}$, $\% 0.415 \times 10^{-3}$, $\% 0.198 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 'deki değişimin aynı olduğu I_2 'deki değişimin arttığı ve I_3 'deki değişimin ise azaldığı açıkça görülmektedir. Tablo 4.10'da Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü.

Farklı t değerleri için pozitif iki solitary dalganın etkileşiminin grafiği Şekil 4.4'te

A	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5	0.7853966	0.1666664	0.0052083	0.01293535	0.00778225
0.25	10	0.7853966	0.1666664	0.0052083	0.02588083	0.01575412
	15	0.7853966	0.1666664	0.0052083	0.03883800	0.02390136
	20	0.7853967	0.1666664	0.0052083	0.05181074	0.03207565
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666656	0.0833330	0.00000000	0.00000000
	5	1.5707931	0.6666656	0.0833330	0.10369969	0.06419907
0.5	10	1.5707931	0.6666656	0.0833330	0.20815359	0.13200661
	15	1.5707930	0.6666655	0.0833330	0.31403732	0.20146183
	20	1.5707930	0.6666655	0.0833330	0.42152038	0.27116941
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999976	0.4218734	0.00000000	0.00000000
	5	2.3561896	1.4999974	0.4218733	0.35288363	0.22475795
0.75	10	2.3561894	1.4999973	0.4218732	0.71649499	0.46039574
	15	2.3561894	1.4999973	0.4218732	1.09545644	0.69823927
	20	2.3561893	1.4999973	0.4218732	1.48146014	0.93623867
	Tam	2.3561945	1.5000000	0.4218750	-	-
	0	3.1415863	2.6666625	1.3333283	0.00000000	0.00000000
	5	3.1415855	2.6666614	1.3333272	085338184	0.54858471
1.0	10	3.1415849	2.6666607	1.3333265	1.76140620	1.11763314
	15	3.1415844	2.6666600	1.3333258	2.68898487	1.68748485
	20	3.1415838	2.6666592	1.3333251	3.61948800	2.25768299
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 4.6: $h = 0.1, \Delta t = 0.01, 0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 4.7: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249926	0.03123
0.50	32.5	0.500015	0.12500
0.75	35.6	0.749833	0.28112
1.00	40.0	1.000021	0.50002

gösterildi. Şekilde görüldüğü gibi t = 0.0'da solitary dalgalardan büyük dalganın genliği 1.000000 olup tepe noktası x = 15.0 konumundadır. Küçük dalganın genliği ise 0.500001 olup tepe noktası x = 30.0 konumundadır. t = 0.0'da büyük genlikli dalga küçük genlikli dalganın solundadır. Büyük dalga küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça küçük dalgayı yakalamaktadır. t = 25.0'de iki dalganın etkileşiminin başladığı görülmektedir. İçiçe geçme süreci t = 25.0 ile t = 40.0 zamanları arasında görülür. t = 40.0'dan sonra büyük dalganın küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görüldü. t = 80.0'de büyük dalganın tepe noktası x = 56.9 konumunda

Şekil 4.3: Solitary dalganın $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.01$ için t = 20 zamanında farklı A değerleri için elde edilen grafikleri.

Tablo 4.8: $\Delta t = 0.05, A = 0.25, t = 20, 0 \le x \le 80$, için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_{2} \times 10^{3}$	order	$L_{\infty} \times 10^3$	order
0.8	4.71902836	-	4.41397880	-
0.4	0.83089313	2.50575500	0.49959156	3.14325869
0.2	0.20634992	2.00957005	0.12731249	1.97237514
0.1	0.05187319	1.99203188	0.03211361	1.98711720
0.05	0.01324799	1.96921560	0.00810628	1.98607293
0.025	0.00325160	2.02655179	0.00204980	1.98355685

olup genliği 1.000331'dir. Küçük dalganın tepe noktası ise x = 37.7 noktasında olup genliği 0.498729'dur. t = 80.0'de büyük dalganın genlikleri arasındaki fark 3.31×10^{-4} ve küçük dalganın genlikleri arasındaki fark ise 1×10^{-6} 'dır. Yine Şekil 4.4'te t = 80.0'deki grafikte tek dalganın arkasında küçük genlikli bir salınım görülmektedir. Bu salınımı görmek için t = 80.0'deki grafik büyütülerek Şekil 4.5'te verildi.

Hesaplamalar ikinci olarak, $0 \le x \le 150$ aralığında $\mu = 1$, $A_1 = -2$, $A_2 = 1$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 4.11'de verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimi $\Delta t = 0.025$ için sırasıyla sırasıyla %10.498 × 10⁻³, %4.243 × 10⁻³, %10.299 × 10⁻³ ve $\Delta t = 0.01$ için

	Δ	t = 0.025		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123733	3.3333305	1.4166643	4.7123733	3.3333305	1.4166643	
10	4.7123741	3.3333303	1.4166642	4.7123740	3.3333303	1.4166642	
20	4.7123835	3.3333399	1.4166762	4.7123835	3.3333399	1.4166763	
30	4.7126442	3.3336245	1.4170020	4.7126442	3.3336245	1.4170061	
40	4.7123933	3.3333936	1.4168064	4.7123932	3.3333935	1.4168087	
50	4.7121712	3.3332154	1.4166420	4.7121711	3.3332153	1.4166419	
55	4.7121725	3.3332189	1.4166412	4.7121724	3.3332189	1.4166411	
60	4.7122144	3.3332433	1.4166475	4.7122144	3.3332432	1.4166474	
70	4.7123166	3.3332928	1.4166608	4.7123165	3.3332927	1.4166607	
80	4.7123744	3.3333167	1.4166672	4.7123744	3.3333166	1.4166671	

Tablo 4.9: h = 0.1, $\mu = 1$, $A_1 = 1$, $A_2 = 0.5$, $0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 4.10: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Subdo		[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333305	1.4166643	4.7123884	3.3352890	1.4166697
10	4.7123741	3.3333303	1.4166642	4.7123853	3.3352836	1.4166647
20	4.7123835	3.3333399	1.4166762	4.7123748	3.3353041	1.4166926
30	4.7126442	3.3336245	1.4170020	4.7126410	3.3359464	1.4176398
40	4.7123933	3.3333936	1.4168064	4.7123946	3.3355951	1.4170695
50	4.7121712	3.3332154	1.4166420	4.7121567	3.3351175	1.4165797
55	4.7121725	3.3332189	1.4166412	4.7121400	3.3350847	1.4165527
60	4.7122144	3.3332433	1.4166475	-	-	-
70	4.7123166	3.3332928	1.4166608	-	-	-
80	4.7123744	3.3333167	1.4166672	-	-	-

sırasıyla $\%3.449 \times 10^{-3}$, $\%0.399 \times 10^{-3}$, $\%1.133 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 4.12'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görülmektedir.

Farklı t değerleri için pozitif ve negatif genliğe sahip iki dalganın etkileşiminin grafiği Şekil 4.6'da verildi. Şekilde görüldüğü gibi t = 0.0'da büyük dalganın genliği -1.999999 olup tepe noktasının konumu x = 15.0 iken küçük dalganın genliği 0.999999 olup tepe noktasının konumu x = 30'dur. t = 0.0'da büyük dalga küçük dalganın sol tarafında bulunmaktadır. Negatif genlikli büyük dalga pozitif genlikli küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça pozitif genlikli küçük dalgayı yakalamaktadır. t = 10.0 zamanında iki dalganın etkileşiminin

Şekil 4.4: $h = 0.1, A_1 = 1, A_2 = 0.5, \mu = 1, 0 \le x \le 80$ için pozitif genlikli iki dalganın etkileşimi.

Şekil 4.5. t = 80 için Şekil 4.4'ün grafiğinin büyütülmüş şekli.

başladığı görülmektedir. İçiçe geçme süreci t = 10.0 ile t = 20.0 zamanları arasında görülür. t = 25.0'den sonra negatif genlikli büyük dalganın pozitif genlikli küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülmektedir. t = 55.0'te büyük dalganın tepesi x = 123.5 noktasında olup genliği -2.002144 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.973753'dür. t = 55.0'de büyük dalganın genlikleri arasındaki fark 2.14×10^{-3} ve küçük dalganın genlikleri arasındaki fark ise 2.62×10^{-2} 'dir.

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-3}^{n} + 12\delta_{m-2}^{n} + 23\delta_{m-1}^{n} + 23\delta_{m}^{n} + 12\delta_{m+1}^{n} + \delta_{m+2}^{n}}{3}\right]^{2}$$

Tablo 4.11: $\mu = 1$, h = 0.1, $A_1 = -2$, $A_2 = 1$, $0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3333023	22.6665313	-3.1415739	13.3333023	22.6665313	
5	-3.1415386	13.3333028	22.6665164	-3.1415226	13.3332598	22.6663224	
15	-3.1429719	13.3321947	22.6660670	-3.1428733	13.3319134	22.6648264	
25	-3.1416446	13.3335997	22.6678271	-3.1415152	13.3332339	22.6662511	
35	-3.1417159	13.3336973	22.6681813	-3.1415559	13.3332471	22.6662670	
45	-3.1418096	13.3337830	22.6685236	-3.1416188	13.3332485	22.6662709	
55	-3.1419037	13.3338680	22.6688656	-3.1416822	13.3332491	22.6662744	

Tablo 4.12: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Subde	omain Yöntem	i	[38]				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3333023	22.6665313	-3.1415915	13.3411364	22.6666177		
5	-3.1415386	13.3333028	22.6665164	-3.1373341	13.3297086	22.6211074		
15	-3.1429719	13.3321947	22.6660670	-3.1243642	13.2879992	22.4502917		
25	-3.1416446	13.3335997	22.6678271	-3.1147243	13.2672538	22.3644947		
35	-3.1417159	13.3336973	22.6681813	-3.1065564	13.2454531	22.2776978		
45	-3.1418096	13.3337830	22.6685236	-3.0985577	13.2238575	22.1921206		
55	-3.1419037	13.3338680	22.6688656	-3.0905294	13.2023061	22.1067310		

[48] alınırsa (4.1.7) ile verilen denklem sisteminde Z_m

$$Z_m = 3U^2 = \frac{1}{3} \left[\delta_{m-3}^n + 12\delta_{m-2}^n + 23\delta_{m-1}^n + 23\delta_m^n + 12\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(4.1.12)

şeklinde elde edilir. Problem 1 ve 2 için (4.1.7) ile verilen denklem sisteminde (4.1.12) kullanılarak elde edilen sayısal değerler Tablo 4.13 ve 4.14'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 4.13'te verildi. Tabloda t = 20'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $16.45298273 \times 10^{-3}$, $12.14784906 \times 10^{-3}$ ve h = 0.05 için sırasıyla $8.11239312 \times 10^{-3}$, $6.00331709 \times 10^{-3}$ olduğu görülür. Bu sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 4.14'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak $\Delta t'$ nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.42345978 × 10⁻³, 12.11681072 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.42409298 × 10⁻³, 12.11764212 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 16.42429635 × 10⁻³, 12.11791219 × 10⁻³olduğu görülür. Elde edilen sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde

Şekil 4.6. $h=0.1,\,A_1=-2,\,A_2=1,\,\mu=1,\,0\leq x\leq 150$ için iki dalganın girişimi.

Tablo 4.13: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1698964	0.0054058	3.79069603	2.32832761
0.1	10.0	0.8040112	0.1731135	0.0056124	7.73903893	5.12700853
	15.0	0.8135965	0.1764190	0.0058284	11.93067498	8.40585855
	20.0	0.8233779	0.1798179	0.0060545	16.45298273	12.14784906
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7900249	0.1682609	0.0053069	1.89877467	1.17027503
0.05	10.0	0.7946851	0.1698508	0.0054076	3.85692719	2.56298008
	15.0	0.7993919	0.1714626	0.0055106	5.91492953	4.17343103
	20.0	0.8041468	0.1730971	0.0056160	8.11239312	6.00331709

oldukça az bir artış olduğu görülmektedir.

Uygulama 3 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 alınarak Δt nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü.

Uygulama 4:

MEW denkleminde $U^2 U_x$ lineer olmayan terimi (2.1.19) şeklinde yazılırsa (4.1.3) denklemi

$$\int_{x_m}^{x_{m+1}} W(U_t + 3UUU_x - \mu U_{xxt})dx = 0$$
(4.1.13)

		-	-	-		
Δt	t	I_1	I_2	I_3	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946131	0.1697996	0.0054059	3.78865695	2.32479944
0.2	10.0	0.8040112	0.1730177	0.0056125	7.73098248	5.12158878
	15.0	0.8135976	0.1763246	0.0058286	11.91321292	8.38953712
	20.0	0.8233812	0.1797256	0.0060549	16.42345978	12.11681072
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697996	0.0054059	3.78874320	2.32498142
0.1	10.0	0.8040116	0.1730178	0.0056125	7.73119994	5.12196978
	15.0	0.8135981	0.1763248	0.0058286	11.91361138	8.39013329
	20.0	0.8233819	0.1797259	0.0060549	16.42409298	12.11764212
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697997	0.0054059	3.78877054	2.32504071
0.01	10.0	0.8040117	0.1730179	0.0056125	7.73126929	5.12209381
	15.0	0.8135982	0.1763249	0.0058286	11.91373898	8.39032715
	20.0	0.8233821	0.1797260	0.0060549	16.42429635	12.11791219

Tablo 4.14: $\mu = 1$, A = 0.25, h = 0.1, $0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

şeklinde yazılabilir. Bu denklemde Bölüm 1'de verilen (1.6.1.2) dönüşümü kullanılır ve ilk olarak $\int_0^1 U_t d\xi$ integrali hesaplanırsa (4.1.5) eşitliği elde edilir. İkinci olarak $\int_0^1 3UUU_{\xi}d\xi$ integralinde UU_{ξ} yerine (2.1.27) yaklaşımı kullanılırsa

$$Z_m = 3UU_{\xi} = 3\left[U^{n+1}U_{\xi}^n + U^n U_{\xi}^{n+1} - U^n U_{\xi}^n\right]$$
(4.1.14)

olmak üzere

$$Z_m \int_0^1 U_\xi d\xi = Z_m \left[\frac{U^2}{2}\right]_0^1 = \frac{Z_m}{2} \left[(\delta_{m-1} + 11\delta_m + 11\delta_{m+1} + \delta_{m+2})^2 - (\delta_{m-2} + 11\delta_{m-1} + 11\delta_m + \delta_{m+1})^2 \right]$$

elde edilir. Son olarak $\int_0^1 U_{\xi\xi t} d\xi$ integrali hesaplanırsa (4.1.6) eşitliği elde edilir. Hesaplanan tüm integraller (4.1.4) ile verilen denklemde yerine yazılır ve gerekli düzenlemeler yapılırsa (4.1.7) denklem sistemi elde edilir.

Problem 1 ve 2 için (4.1.7) ile verilen denklem sisteminde (4.1.14) kullanılarak elde edilen sayısal değerler Tablo 4.15-4.18'de verildi. Tablo 4.15'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 11.96921827 × 10⁻³, 10.71423105 × 10⁻³; h = 0.05 için sırasıyla 6.19734135 × 10⁻³, 5.55156990 × 10⁻³ olduğu görülür.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7808866	0.1637168	0.0050197	2.98251656	2.86820242
0.1	10.0	0.7765517	0.1608233	0.0048435	5.92859372	5.59615129
	15.0	0.7723783	0.1580699	0.0046784	8.90538245	8.20341442
	20.0	0.7683541	0.1554439	0.0045234	11.96921827	10.71423105
	0.0	0.7854102	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831325	0.1651500	0.0051125	1.50496146	1.44745967
0.05	10.0	0.7809002	0.1636476	0.0050197	3.01801425	2.85725641
	15.0	0.7787112	0.1621832	0.0049301	4.57242202	4.22066403
	20.0	0.7765634	0.1607544	0.0048434	6.19734135	5.55156990

Tablo 4.15: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 için elde edilen değerler Tablo 4.16'da verildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 11.97613462 × 10⁻³, 10.68240810 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.97600596 × 10⁻³, 10.68244530 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.97596704 × 10⁻³, 10.68246072 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı, Δt değerleri azaldıkça L_2 hatasında oldukça az bir azalma ve L_{∞} hatasında ise oldukça az bir artış görüldü.

Tablo 4.16: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808941	0.1636263	0.0050199	2.98123702	2.86424140
0.2	10.0	0.7765661	0.1607392	0.0048438	5.92833098	5.58226667
	15.0	0.7723992	0.1579915	0.0046788	8.90800225	8.18452275
	20.0	0.7683810	0.1553707	0.0045239	11.97613462	10.68240810
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808941	0.1636263	0.0050199	2.98124455	2.86426082
0.1	10.0	0.7765660	0.1607391	0.0048438	5.92831558	5.58228599
	15.0	0.7723991	0.1579915	0.0046788	8.90793946	8.18458004
	20.0	0.7683809	0.1553706	0.0045239	11.97600596	10.68244530
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808940	0.1636262	0.0050199	2.98124799	2.86426817
0.01	10.0	0.7765660	0.1607391	0.0048438	5.92831234	5.58229417
	15.0	0.7723991	0.1579914	0.0046788	8.90792144	8.18460142
	20.0	0.7683809	0.1553705	0.0045239	11.97596704	10.68246072

Problem 2 için hesaplamalar ilk olarak, $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1 alınarak Δt 'nin 0.25 ve 0.01 değerleri için yapıldı ve elde edilen sonuçlar Tablo 4.17'de verildi. Hesaplamalar ikinci olarak $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt 'nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 4.18'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333305	1.4166643	4.7123733	3.3333305	1.4166643		
10	4.2637277	2.3172112	0.6206307	4.2637204	2.3171908	0.6206172		
20	3.9969027	1.8194885	0.3584017	3.9968962	1.8194717	0.3583934		
30	3.8089574	1.5130727	0.2365067	3.8089524	1.5130601	0.2365017		
40	3.6667025	1.3038325	0.1695598	3.6666988	1.3038230	0.1695566		
50	3.5555514	1.1532282	0.1291058	3.5555487	1.1532208	0.1291036		
55	3.5092459	1.0939693	0.1148901	3.5092437	1.0939626	0.1148882		
60	3.4680182	1.0431410	0.1034469	3.4680163	1.0431349	0.1034454		
70	3.3970119	0.9595357	0.0861135	3.3970105	0.9595306	0.0861123		
80	3.3366846	0.8914642	0.0733399	3.3366836	0.8914597	0.0733389		

Tablo 4.17: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

Tablo 4.18: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	2	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3333023	22.6665313	-3.1415739	13.3333023	22.6665313		
5	-2.1662615	7.2780958	5.7347465	-2.1660610	7.2770109	5.7325928		
15	-1.6134019	4.0515506	1.5505119	-1.6133590	4.0511902	1.5501435		
25	-1.3690626	2.7563447	0.6697710	-1.3690972	2.7562290	0.6696837		
35	-1.2326169	2.0878770	0.3669131	-1.2327102	2.0878746	0.3668992		
45	-1.1396526	1.6787536	0.2284457	-1.1397977	1.6788144	0.2284565		
55	-1.0708591	1.4048272	0.1547666	-1.0710491	1.4049238	0.1547857		

Uygulama 5:

MEW denkleminde U^2U_x lineer olmayan terimi Bölüm 2'de verilen (2.1.19) şeklinde yazılırsa (4.1.3) ile verilen denklem (4.1.13) şeklinde yazılabilir. Bu denklemde Bölüm 1'de (1.6.1.2) ile verilen dönüşüm kullanılır ve ilk olarak $\int_0^1 U_t d\xi$ integrali alınırsa (4.1.5) ile verilen eşitlik elde edilir. İkinci olarak $\int_0^1 3UUU_\xi d\xi$ integralinde UU_ξ yerine (2.1.28) ile verilen yaklaşım alınırsa

$$Z_m = 3UU_{\xi} = \frac{3}{2} \left[U^{n+1}U_{\xi}^n + U^n U_{\xi}^{n+1} \right]$$
(4.1.15)

olmak üzere

$$\int_{0}^{1} 3UUU_{\xi} d\xi = Z_m \int_{0}^{1} U_{\xi} d\xi = Z_m [\frac{U^2}{2}]_{0}^{1} = \frac{Z_m}{2} [(\delta_{m-1} + 11\delta_m + 11\delta_{m+1} + \delta_{m+2})^2 - (\delta_{m-2} + 11\delta_{m-1} + 11\delta_m + \delta_{m+1})^2]$$

elde edilir. Son olarak $\int_0^1 U_{\xi\xi t} d\xi$ integrali hesaplanırsa (4.1.6) ile verilen denklem elde edilir. Hesaplanan tüm integraller (4.1.4) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa (4.1.7) denklem sistemi elde edilir.

Problem 1 ve 2 için (4.1.7) ile verilen denklemde (4.1.15) kullanılarak elde edilen sayısal değerler Tablo 4.19-4.22'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h' nın 0.11 ve 0.05 değerleri için yapılan hesaplamalar Tablo 4.19'da verildi. Tablodan t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla 11.88250919 × 10⁻³, 10.63795535 × 10⁻³; h = 0.05 için sırasıyla 6.10397429 × 10⁻³, 5.46860356 × 10⁻³ olduğu görülür. Problem 1 için $0 \le x \le 80$ aralığında h = 0.1

Tablo 4.19: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7809205	0.1637395	0.0050211	2.95983547	2.84646722
0.1	10.0	0.7766164	0.1608662	0.0048461	5.88422130	5.55434834
	15.0	0.7724713	0.1581308	0.0046821	8.83979356	8.14417409
	20.0	0.7684728	0.1555209	0.0045279	11.88250919	10.63795535
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7831675	0.1651736	0.0051139	1.48170009	1.42509728
0.05	10.0	0.7809686	0.1636935	0.0050226	2.97175058	2.81367123
	15.0	0.7788115	0.1622501	0.0049342	4.50292325	4.15678402
	20.0	0.7766941	0.1608412	0.0048486	6.10397429	5.46860356
-						

alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar Tablo 4.20'de verildi. Tablodan t = 20'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $11.62874778 \times 10^{-3}$, $10.37649402 \times 10^{-3}$, $\Delta t = 0.1$ için sırasıyla $11.80257271 \times 10^{-3}$, $10.52974540 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $11.95864680 \times 10^{-3}$, $10.66721360 \times 10^{-3}$ olduğu görülmektedir. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı, Δt değerleri azaldıkça hata norm değerlerinin arttığı görülür.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7810297	0.1637172	0.0050254	2.89046588	2.77716305
0.2	10.0	0.7768252	0.1609110	0.0048542	5.75068026	5.41474875
	15.0	0.7727713	0.1582355	0.0046934	8.64531632	7.94697510
	20.0	0.7688564	0.1556792	0.0045420	11.62874778	10.37649402
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7809618	0.1636717	0.0050226	2.93589064	2.82075902
0.1	10.0	0.7766954	0.1608249	0.0048490	5.83957646	5.49861590
	15.0	0.7725849	0.1581132	0.0046861	8.77675890	8.06598387
	20.0	0.7686182	0.1555245	0.0045330	11.80257271	10.52974540
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7809008	0.1636308	0.0050201	2.97671537	2.85992131
0.01	10.0	0.7765789	0.1607477	0.0048443	5.91944603	5.57393505
	15.0	0.7724177	0.1580036	0.0046795	8.89481776	8.17275760
	20.0	0.7684046	0.1553859	0.0045248	11.95864680	10.66721360

Tablo 4.20: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ için h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 4.21'de verildi. Hesaplamalar ikinci olarak $A_1 = -2, A_2 = 1$ için $0 \le x \le 150$ aralığında h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı ve elde edilen sonuçlar Tablo 4.22'de verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Tablo 4.21: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

·	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333305	1.4166643	4.7123733	3.3333305	1.4166643		
10	0.4277736	0.2346339	0.0639656	0.4269238	0.2328624	0.0628047		
20	0.4012217	0.1846624	0.0371606	0.4002907	0.1830075	0.0363521		
30	0.3823534	0.1535843	0.0245342	0.3814668	0.1521946	0.0239927		
40	0.3680323	0.1322981	0.0175755	0.3672036	0.1311290	0.0171957		
50	0.3568657	0.1170147	0.0133816	0.3560675	0.1159804	0.0130925		
55	0.3522296	0.1110311	0.0119155	0.3514345	0.1100315	0.0116536		
60	0.3481026	0.1059016	0.0107363	0.3473102	0.1049308	0.0104958		
70	0.3409751	0.0974171	0.0089409	0.3401990	0.0965228	0.0087386		
80	0.3349191	0.0904942	0.0076171	0.3341558	0.0896691	0.0074428		

4.2 Sektik B-spline Fonksiyonlar ile Subdomain Yöntemi

Bu kısımda, (1.7.3) ile verilen MEW denkleminin sektik B-spline subdomain yöntemi ile sayısal çözümleri elde edildi. MEW denkleminin U(x, t) tam çözümüne

Tablo 4.22: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3333023	22.6665313	-3.1415739	13.3333023	22.6665313		
5	-0.2282080	0.7771615	0.6730288	-0.2208057	0.7454793	0.6080830		
15	-0.1665401	0.4238997	0.1739364	-0.1632631	0.4120775	0.1618716		
25	-0.1354790	0.2785910	0.0690672	-0.1369194	0.2776309	0.0683213		
35	-0.1138362	0.2008919	0.0334334	-0.1210996	0.2075964	0.0362693		
45	-0.0971569	0.1539451	0.0182992	-0.1096916	0.1647389	0.0218498		
55	-0.0841599	0.1237457	0.0110120	-0.1009508	0.1362650	0.0143559		

karşılık gelen $U_N(x,t)$ yaklaşık çözümü sektik B-spline fonksiyonlar cinsinden

$$U_N(x,t) = \sum_{j=-3}^{N+2} \delta_j(t)\phi_j(x)$$
(4.2.1)

şeklinde yazılır [14]. (4.1.1) ile verilen ağırlık fonksiyonu Bölüm 2'de (2.1) ile verilen denklemde yerine yazılırsa her $[x_m, x_{m+1}]$ aralığında (4.1.3) denklemi elde edilir. Bu denklemde (1.6.1.2) ile verilen dönüşüm kullanılırsa (4.1.4) denklemi bulunur. (4.1.4) denklemindeki integralleri hesaplamak için yaklaşım fonksiyonlar yerine Bölüm 1'de (1.6.6.2) ile verilen sektik B-spline fonksiyonlar yazılırsa ilk olarak $\int_0^1 U_t d\xi$ integrali,

$$h \int_0^1 U_t d\xi = \frac{h}{7} (\dot{\delta}_{m-3} + 120\dot{\delta}_{m-2} + 1191\dot{\delta}_{m-1} + 2416\dot{\delta}_m + 1191\dot{\delta}_{m+1} + 120\dot{\delta}_{m+2} + \dot{\delta}_{m+3})$$

şeklinde elde edilir. Burada
 $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımının kullanılması ile

$$\int_{0}^{1} U_{t} d\xi = \frac{h}{7\Delta t} [(\delta_{m-3}^{n+1} - \delta_{m-3}^{n}) + 120(\delta_{m-2}^{n+1} - \delta_{m-2}^{n}) + 1191(\delta_{m-1}^{n+1} - \delta_{m-1}^{n}) + 2416(\delta_{m}^{n+1} - \delta_{m}^{n}) + 1191(\delta_{m+1}^{n+1} - \delta_{m+1}^{n}) + 120(\delta_{m+2}^{n+1} - \delta_{m+2}^{n}) + (\delta_{m+3}^{n+1} - \delta_{m+3}^{n})]$$

$$(4.2.2)$$

bulunur. İkinci olarak $\int_0^1 3U^2 U_\xi d\xi$ integrali

$$Z_m \int_0^1 U_{\xi} d\xi = Z_m [U]_0^1 =$$

$$Z_m [(\delta_{m-2} + 57\delta_{m-1} + 302\delta_m + 302\delta_{m+1} + 57\delta_{m+2} + \delta_{m+3}) - (\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_m + 57\delta_{m+1} + \delta_{m+2})]$$

$$= Z_m [-\delta_{m-3} - 56\delta_{m-2} - 245\delta_{m-1} + 245\delta_{m+1} + 56\delta_{m+2} + \delta_{m+3}]$$

şeklinde elde edilir. Burada

$$Z_m = 3U^2 = 3(\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_m + 57\delta_{m+1} + \delta_{m+2})^2$$

olup δ yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı yazılırsa

$$Z_m \int_0^1 U_{\xi} d\xi = \frac{Z_m}{2} \left[-(\delta_{m-3}^{n+1} - \delta_{m-3}^n) - 56(\delta_{m-2}^{n+1} + \delta_{m-2}^n) - 245(\delta_{m-1}^{n+1} + \delta_{m-1}^n) + 245(\delta_{m+1}^{n+1} + \delta_{m+1}^n) + 56(\delta_{m+2}^{n+1} + \delta_{m+2}^n) + (\delta_{m+3}^{n+1} + \delta_{m+3}^n) \right]$$

elde edilir. Son olarak $\ \int_0^1 \mu U_{\xi\xi t} d\xi$ integrali

$$\frac{\mu}{h} \int_0^1 U_{\xi\xi t} d\xi = \frac{\mu}{h} [U_{\xi t}]_0^1 = \frac{6\mu}{h} [-\dot{\delta}_{m-3} - 25\dot{\delta}_{m-2} - 40\dot{\delta}_{m-1} + 40\dot{\delta}_m + 25\dot{\delta}_{m+1} + \dot{\delta}_{m+2}]$$

şeklinde bulunur. Bu denklemde $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark dönüşümünün kullanılması ile

$$\int_{0}^{1} \mu U_{\xi\xi t} d\xi = \frac{6\mu}{h} [(\delta_{m-3}^{n+1} - \delta_{m-3}^{n}) + 24(\delta_{m-2}^{n+1} - \delta_{m-2}^{n}) + 15(\delta_{m-1}^{n+1} - \delta_{m-1}^{n}) - 80(\delta_{m}^{n+1} - \delta_{m}^{n}) + 15(\delta_{m+1}^{n+1} - \delta_{m+1}^{n}) + 24(\delta_{m+2}^{n+1} - \delta_{m+2}^{n}) + (\delta_{m+3}^{n+1} + \delta_{m+3}^{n})]$$

$$(4.2.3)$$

bulunur. Hesaplanan integraller (4.1.4) ile verilen denklemde yerine yazılır ve gerekli düzenlemeler yapılırsa

$$(1 - EZ_m - M)\delta_{m-3}^{n+1} + (120 - 56EZ_m - 24M)\delta_{m-2}^{n+1} + (1191 - 245EZ_m - 15M)\delta_{m-1}^{n+1} + (2416 + 80M)\delta_m^{n+1} + (1191 + 245EZ_m - 15M)\delta_{m+1}^{n+1} + (120 + 56EZ_m - 24M)\delta_{m+2}^{n+1} + (1 + EZ_m - M)\delta_{m+3}^{n+1} = (1 + EZ_m - M)\delta_{m-3}^n + (120 + 56EZ_m - 24M)\delta_{m-2}^n + (1191 + 245EZ_m - 15M)\delta_{m-1}^n + (2416 + 80M)\delta_m^n + (1191 - 245EZ_m - 15M)\delta_{m+1}^n + (120 - 56EZ_m - 24M)\delta_{m+2}^n + (1 - EZ_m - M)\delta_{m+3}^n \qquad m = 0, 1, \dots, N$$

$$(4.2.4)$$

şeklinde (N + 1)- tane denklem ve (N + 7)- tane bilinmeyenden oluşan cebirsel denklem sistemi elde edilir. Burada

$$E = \frac{7\Delta t}{2h}$$
 ve $M = \frac{42\mu}{h^2}$

dir. Bu denklem sisteminin çözülebilmesi için denklem sayısı ile bilinmeyen sayısı eşit olmalıdır. Bölüm 1'de (1.6.6.3) ile verilen yaklaşımlarda U_m ve U'_m 'nin sınırlardaki değerleri kullanılarak δ_{-3} , δ_{-2} , δ_{-1} , δ_N , δ_{N+1} ve δ_{N+2} parametreleri sistemden yok edilerek $(N + 1) \times (N + 1)$ - boyutlu karesel cebirsel denklem sistemi elde edilir.

 δ_m^{n+1} parametrelerini (4.2.4) denklem sisteminden elde edebilmek için δ^0 başlangıç değerlerinin hesaplanması gerekir. δ^0 vektörü problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanacaktır. t = 0.0'da, δ_j^0 belirlenecek parametreler olmak üzere (4.2.1) denklemi

$$U_N(x,0) = \sum_{j=-3}^{N+2} \delta_i^0(t) \phi_j(x)$$

şeklinde yeniden yazılabilir. Başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x_i, 0) = U(x_i, 0)$$
 $j = 0, 1, ..., N$

değerleri kullanılarak δ_j^0 parametreleri için (N + 6)- tane bilinmeyen ve (N + 1)tane denklem elde edilir. (1.6.6.3) yaklaşımlarında U'_m ve U''_m 'in sınırlardaki değerleri kullanılarak δ_{-3}^0 , δ_{-2}^0 , δ_{-1}^0 , δ_{N+1}^0 , δ_{N+2}^0 yok edilirek ve $(N + 1) \times (N + 1)$ - boyutlu cebirsel denklem sistemi elde edilir. Bu denklem sistemi

384	312	24					-	δ_0		U_0
$\frac{2681}{9}$	358	$\frac{568}{9}$	1					δ_1		U_1
$\frac{512}{9}$	303	$\frac{2719}{9}$	57	1				δ_2		U_2
	1	57	302	302	57	1			_	
		•••							_	:
			1	57	$\frac{2719}{9}$	303	$\frac{512}{9}$	δ_{N-2}		U_{N-2}
				1	$\frac{568}{9}$	358	$\frac{2681}{9}$	δ_{N-1}		U_{N-1}
					24	312	384	δ_N		U_N

şeklinde matris formunda yazılabilir. Bu sistemin çözülmesiyle başlangıç parametrelerine ulaşılır. Böylece (4.2.4) denkleminde başlangıç vektörleri kullanılarak istenilen t zamanındaki yaklaşık çözümler iterasyon yardımıyla elde edilir. (4.2.4) sisteminin lineer olmayan terimlerine her zaman adımında (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanırsa U_N yaklaşık çözümleri iyileştirilebilir.

Kararlılık Analizi

Subdomain yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılığı önceki bölümlerde olduğu gibi von Neumann yöntemi ile incelendi. Böylece (4.2.4)sisteminin *m*. genelleştirilmiş satırı

$$\begin{split} \gamma_1 &= 1 - E\lambda - M, & \gamma_2 &= 120 - 56E\lambda - 24M, \\ \gamma_3 &= 1191 - 245E\lambda - 15M, & \gamma_4 &= 2416 + 80M, \\ \gamma_5 &= 1191 + 245E\lambda - 15M, & \gamma_6 &= 120 + 56E\lambda - 24M, \\ \gamma_7 &= 1 + E\lambda - M \end{split}$$

olmak üzere

$$\gamma_{1}\delta_{m-3}^{n+1} + \gamma_{2}\delta_{m-2}^{n+1} + \gamma_{3}\delta_{m-1}^{n+1} + \gamma_{4} + \gamma_{5}\delta_{m+1}^{n+1} + \gamma_{6}\delta_{m+2}^{n+1} + \gamma_{7}\delta_{m+3}^{n+1} = \gamma_{7}\delta_{m-3}^{n} + \gamma_{6}\delta_{m-2}^{n} + \gamma_{5}\delta_{m-1}^{n} + \gamma_{4} + \gamma_{3}\delta_{m+1}^{n} + \gamma_{2}\delta_{m+2}^{n} + \gamma_{1}\delta_{m+3}^{n}$$

$$(4.2.5)$$

şeklinde yazılabilir. (2.1.13) ifadesi (4.2.5)denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\begin{split} \gamma_1 \hat{\delta}^{n+1} e^{-3ikh} &+ \gamma_2 \hat{\delta}^{n+1} e^{-2ikh} + \gamma_3 \hat{\delta}^{n+1} e^{-ikh} + \gamma_4 \hat{\delta}^{n+1} + \gamma_5 \hat{\delta}^{n+1} e^{ikh} + \\ \gamma_6 \hat{\delta}^{n+1} e^{2ikh} &+ \gamma_7 \hat{\delta}^{n+1} e^{3ikh} = \gamma_7 \hat{\delta}^n e^{-3ikh} + \gamma_6 \hat{\delta}^n e^{-2ikh} + \gamma_5 \hat{\delta}^n e^{-ikh} + \\ \gamma_4 \hat{\delta}^n &+ \gamma_3 \hat{\delta}^n e^{ikh} + \gamma_2 \hat{\delta}^n e^{2ikh} + \gamma_1 \hat{\delta}^n e^{3ikh} \end{split}$$

elde edilir. Bu denklem $\hat{\delta}^{n+1}$ ve $\hat{\delta}^n$ if adelerine göre düzenlenirse

$$\hat{\delta}^{n+1}[\gamma_1 e^{-3ikh} + \gamma_2 e^{-2ikh} + \gamma_3 e^{-ikh} + \gamma_4 + \gamma_5 e^{ikh} + \gamma_6 e^{2ikh} + \gamma_7 e^{3ikh}] = \hat{\delta}^n \left[\gamma_7 e^{-3ikh} + \gamma_6 e^{-2ikh} + \gamma_5 e^{-ikh} + \gamma_4 + \gamma_3 e^{ikh} + \gamma_2 e^{2ikh} + \gamma_1 e^{3ikh}\right]$$

bulunur. Bu denklemde (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 1208 + 40M + (1191 - 15M)\cos(kh) + (120 - 24M)\cos(2kh) + (1 - M)\cos(3kh),$$

$$b = 245E\lambda\sin(kh) + 56E\lambda\sin(2kh) + E\lambda\sin(3kh).$$

olmak üzere

$$(a+ib)\hat{\delta} = (a-ib)$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa buradan

$$g = \frac{a - ib}{a + ib}$$

elde edilir. $\left|g\right|=1$ olup yöntem şartsız kararlıdır.

Lineerleştirme Uygulamaları

Bu kısımda MEW denkleminde U^2U_x lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = [\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_{m} + 57\delta_{m+1} + \delta_{m+2}]^{2}$$

alınırsa (4.2.4) denklem sistemindek
i \mathbb{Z}_m

$$Z_m = 3 \left[U_m^n \right]^2 = 3 \left[\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_m + 57\delta_{m+1} + \delta_{m+2} \right]^2 \quad (4.2.6)$$

şeklinde elde edilir. Problem 1 ve 2 için (4.2.4) denkleminde (4.2.6) kullanılarak elde edilen sayısal değerler Tablo 4.23 ve 4.24'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 4.23'te verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 16.56394933 × 10⁻³, 12.27625631 × 10⁻³; h = 0.05 için sırasıyla 8.12186203 × 10⁻³, 6.02082931 × 10⁻³ olduğu görülür. Problem 1 için $0 \le x \le 80$

Tablo 4.23: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946756	0.1698269	0.0054076	3.81719277	2.36609009
0.1	10.0	0.8041396	0.1730742	0.0056161	7.79118356	5.20394728
	15.0	0.8137968	0.1764130	0.0058344	12.01009389	8.50741494
	20.0	0.8236574	0.1798495	0.0060632	16.56394933	12.27625631
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7900327	0.1682401	0.0053071	1.90182114	1.17723322
0.05	10.0	0.7947009	0.1698337	0.0054081	3.86234773	2.57560401
	15.0	0.7994163	0.1714494	0.0055113	5.92237590	4.19052508
	20.0	0.8041805	0.1730883	0.0056171	8.12186203	6.02082931

aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 4.24'de verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 16.56314615 × 10⁻³, 12.27521142 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 16.56379174 × 10⁻³, 12.27604964 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla $16.56399908 \times 10^{-3}$, $12.27632193 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı, Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olduğu görülür.

					0	0
Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946754	0.1698268	0.0054076	3.81708293	2.36586054
0.2	10.0	0.8041392	0.1730740	0.0056161	7.79090718	5.20346836
	15.0	0.8137961	0.1764128	0.0058344	12.00958809	8.50666519
	20.0	0.8236565	0.1798491	0.0060632	16.56314615	12.27521142
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946755	0.1698268	0.0054076	3.81717141	2.36604459
0.1	10.0	0.8041396	0.1730741	0.0056161	7.79112960	5.20385242
	15.0	0.8137966	0.1764130	0.0058344	12.00999484	8.50726655
	20.0	0.8236573	0.1798494	0.0060632	16.56379174	12.27604964
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946756	0.1698269	0.0054076	3.81719946	2.36610456
	10.0	0.8041397	0.1730742	0.0056161	7.79120053	5.20397743
0.0	l 15.0	0.8137968	0.1764131	0.0058344	12.01012511	8.50746207
	20.0	0.8236575	0.1798495	0.0060632	16.56399908	12.27632193

Tablo 4.24: $\mu=1,\,A=0.25,\,h=0.1,\,0\leq x\leq 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Uygulama 1 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 alınarak zaman adımı Δt 'nin 0.025 ve 0.01 değerleri için programın uygun değerler üretmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-3}^{n} + 58\delta_{m-2}^{n} + 359\delta_{m-1} + 604\delta_{m}^{n} + 359\delta_{m+1}^{n} + 58\delta_{m+2}^{n} + \delta_{m+3}^{n}}{2}\right]^{2}$$

alınırsa (4.2.4) denklem sistemindek
i \mathbb{Z}_m

$$Z_m = 3U^2 = \frac{3}{4} \left[\delta_{m-3}^n + 58\delta_{m-2}^n + 359\delta_{m-1} + 604\delta_m^n + 359\delta_{m+1}^n + 58\delta_{m+2}^n + \delta_{m+3}^n \right]^2$$
(4.2.7)

şeklinde elde edilir. Problem 1 ve 2 için (4.2.4) denkleminde (4.2.7) eşitliği kullanılarak elde edilen sayısal değerler Tablo 4.25-4.34'te verildi. Tablo 4.25'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri

için hesaplamalar yapıldı. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 0.0518367×10^{-3} , 0.0321527×10^{-3} ; h = 0.05 için sırasıyla $0.01324629 \times 10^{-3}$, $0.00810897 \times 10^{-3}$ olduğu görülür. Ayrıca Tablo 4.25'te korunum sabitlerinin t = 0.0 ve t = 20'deki değişimi h = 0.1 için sırasıyla % 0.183×10^{-5} , % 0.333×10^{-5} , % 0.698×10^{-5} ; h = 0.05 için sırasıyla % 0.028×10^{-5} , % 0.044×10^{-5} , % 0.091×10^{-5} olarak hesaplandı. Elde edilen sonuçlardan h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 4.25: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	+	Ι,	La	La	$L_{0} \times 10^{3}$	$L_{\rm v} \times 10^3$
11	ι	11	12	13	$L_{2}^{2} \times 10^{-10}$	$L_{\infty} \wedge 10$
	0.0	0.7853966	0.1666664	0.0052083	0.0000000	0.000000000
	5.0	0.7853966	0.1666664	0.0052083	0.0129430	0.0078059
0.1	10.0	0.7853966	0.1666663	0.0052083	0.0258956	0.0157990
	15.0	0.7853967	0.1666663	0.0052083	0.0388590	0.0239640
	20.0	0.7853967	0.1666663	0.0052083	0.0518367	0.0321527
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.00331243	0.00195132
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00662518	0.00396166
	15.0	0.7854101	0.1666679	0.0052084	0.00993559	0.00601826
	20.0	0.7854101	0.1666679	0.0052084	0.01324629	0.00810897

Tablo 4.26'da Problem 1 için 0
 $\leq x \leq 80$ aralığında h = 0.1 alınara
k Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tablodan t = 20.0'de hata 0.2için sırasıyla $0.05282142 \times 10^{-3}$ değerlerinin Δt norm = $0.03276504 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $0.05203279 \times 10^{-3}$, $0.03227354 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.05177426 \times 10^{-3}, 0.03211450 \times 10^{-3}$ olduğu görülür. Yine Tablodan korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi $\Delta t = 0.2$ için sırasıyla %0.010 × 10⁻³, %0.016 × 10⁻³, %0.032 × 10⁻³; $\Delta t = 0.1$ için sırasıyla $\%0.003 \times 10^{-3}$, $\%0.005 \times 10^{-3}$, $\%0.010 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\%0.002 \times 10^{-3}$, $\%0.003 \times 10^{-3}$, $\%0.007 \times 10^{-3}$ olarak bulundu. Bu sonuçlara göre Δt zaman adımı azaldıkça korunum sabitlerindeki değişimin de azaldığı görülmektedir.

Tablo 4.27'de Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen sayısal çözümlerinin aldığı en büyük genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın belirtilen zamanlardaki hızları verildi. Tabloda görüldüğü gibi solitary dalganın genliği t = 0.0 anında x = 30.0 noktasında 0.249999

Δt	+	L	I.	I.	$L_{\odot} \propto 103$	$I \sim 103$
$\Delta \iota$	ι	11	12	13	$L_2 \times 10^{\circ}$	$L_{\infty} \times 10^{\circ}$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666663	0.0052083	0.01318709	0.00795763
0.2	10.0	0.7853965	0.1666663	0.0052083	0.02638508	0.01609174
	15.0	0.7853965	0.1666663	0.0052083	0.03959529	0.02441403
	20.0	0.7853965	0.1666663	0.0052083	0.05282142	0.03276504
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.01299175	0.00783592
0.1	10.0	0.7853966	0.1666663	0.0052083	0.02599328	0.01585692
	15.0	0.7853966	0.1666663	0.0052083	0.03900576	0.02405291
	20.0	0.7853966	0.1666663	0.0052083	0.05203279	0.03227354
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.01292744	0.00779636
0.01	10.0	0.7853966	0.1666663	0.0052083	0.02586447	0.01578073
	15.0	0.7853966	0.1666663	0.0052083	0.03881221	0.02393590
	20.0	0.7853966	0.1666663	0.0052083	0.05177426	0.03211450

Tablo 4.26: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

iken t = 20.0 anında x = 30.6 noktasında 0.249926'dır. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 7.3×10^{-5} olarak bulundu. Ayrıca tabloda solitary dalganın t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genliğe sahip olduğu görülmektedir. Problem 1'in t = 20'deki hata dağılımının grafiği Şekil 4.7'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

Tablo 4.27: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

t	Konum	Genlik	Hız
0.0	30.0	0.249999	0.03125
5.0	30.2	0.249760	0.03119
10.0	30.3	0.249980	0.03124
15.0	30.5	0.249877	0.03121
20.0	30.6	0.249926	0.03123

Ayrıca Problem 1 için t = 0.01'de farklı A değerleri için sayısal değerleri elde edildi. Elde edilen hata normları ve korunum sabitleri Tablo 4.28'de verildi. Tablodan hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Tablo 4.29'da ise solitary dalga için t = 20'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tablodan solitary dalganın farklı A değerleri için elde

Şekil 4.7: Solitary dalganın h = 0.1, $\Delta t = 0.05$, $\mu = 1$, A = 0.25 için t = 20'deki hata grafiği.

edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Tablo 4.28: h = 0.1, $\Delta t = 0.01$, $0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata normları.

A	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5	0.7853966	0.1666664	0.0052083	0.01292744	0.00779636
0.25	10	0.7853966	0.1666663	0.0052083	0.02586447	0.01578073
	15	0.7853967	0.1666663	0.0052083	0.03881221	0.02393590
	20	0.7853967	0.1666663	0.0052083	0.05177425	0.03211450
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666654	0.0833330	0.00000000	0.00000000
	5	1.5707931	0.6666654	0.0833330	0.10362649	0.06427646
0.5	10	1.5707931	0.6666653	0.0833330	0.20797070	0.13208562
	15	1.5707930	0.6666653	0.0833330	0.31373302	0.20151738
	20	1.5707930	0.6666653	0.0833330	0.42111325	0.27119786
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999972	0.4218734	0.00000000	0.00000000
	5	2.3561896	1.4999970	0.4218733	0.35255060	0.22485426
0.75	10	2.3561895	1.4999970	0.4218733	0.71577352	0.46037488
	15	2.3561895	1.4999969	0.4218733	1.09445573	0.69809059
	20	2.3561895	1.4999969	0.4218733	1.48020852	0.93594891
	Tam	2.3561945	1.5000000	0.4218750	=	-
	0	3.1415863	2.6666616	1.3333283	0.00000000	0.00000000
	5	3.1415860	2.6666613	1.3333279	0.85227124	0.54835683
1.0	10	3.1415860	2.6666612	1.3333379	1.75893192	1.11658857
	15	3.1415860	2.6666612	1.3333379	2.68474706	1.68529447
	20	3.1415860	2.6666612	1.3333279	3.61297011	2.25401557
	Tam	3.1415927	2.6666667	1.3333333	=	-

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile hesaplandı. Elde edilen sonuçlar Tablo 4.30'da verildi. Tablo incelendiğinde zaman adımı Δt_m sabit olarak alındığında elde edilen yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1$, $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 80.0'e

A	Konum	Genlik	Hız
0.25	30.6	0.249926	0.03123
0.50	32.5	0.499999	0.12500
0.75	35.6	0.749766	0.28107
1.00	40.0	0.999999	0.49999

Tablo 4.29: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

Tablo 4.30: $\Delta t = 0.05, A = 0.25, t = 20, 0 \le x \le 80$, için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	3.93871952	-	3.16133286	-
0.4	0.81179451	2.27854019	0.50991029	2.63221758
0.2	0.20571238	1.98048559	0.12802658	1.99379920
0.1	0.05183664	1.98858450	0.03215247	1.99344276
0.05	0.01324614	1.96840019	0.00810867	1.98739236
0.025	0.00325155	2.02637249	0.00204993	1.98389065

kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 4.31'de verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\% 0.008 \times 10^{-3}$, $\% 0.414 \times 10^{-3}$, $\% 0.205 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\% 0.009 \times 10^{-3}$, $\% 0.416 \times 10^{-3}$, $\% 0.198 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 ve I_3 'deki değişimin azaldığı I_2 'deki değişimin ise arttığı görülmektedir. Tablo 4.32'de ikinci problem için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görülür. t = 0.0'da büyük dalganın tepe noktası x = 15.0 konumunda olup genliği 1.000000 iken küçük dalganın genliği 0.500000 olup tepe noktasının konumu x = 30.0'dur. t = 80.0'de ise büyük dalganın tepe noktası x = 56.9 konumunda ve genliği 1.000323 iken küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498728'dir. t = 80.0'de büyük dalganın genlikleri arasındaki fark 3.23×10^{-4} ve küçük dalganın genlikleri arasındaki fark ise 1.27×10^{-3} 'dür.

İkinci olarak hesaplamalar, $0 \le x \le 150$ aralığında $\mu = 1, A_1 = -2, A_2 = 1$ ve h = 0.1 alınarak Δt nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin

	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643
10	4.7123725	3.3333293	1.4166642	4.7123725	3.3333292	1.4166642
20	4.7123820	3.3333389	1.4166762	4.7123819	3.3333388	1.4166763
30	4.7126426	3.3336235	1.4170019	4.7126427	3.3336235	1.4170061
40	4.7123918	3.3333925	1.4168063	4.7123916	3.3333924	1.4168086
50	4.7121696	3.3332142	1.4166420	4.7121696	3.3332142	1.4166419
55	4.7121709	3.3332178	1.4166412	4.7121709	3.3332178	1.4166411
60	4.7122129	3.3332422	1.4166475	4.7122129	3.3332421	1.4166474
70	4.7123150	3.3332917	1.4166608	4.7123150	3.3332916	1.4166607
80	4.7123729	3.3333156	1.4166672	4.7123728	3.3333156	1.4166671

Tablo 4.31: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 4.32: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Subdo	main Yönter		[38]		
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333294	1.4166643	4.7123884	3.3352890	1.4166697
10	4.7123725	3.3333293	1.4166642	4.7123853	3.3352836	1.4166647
20	4.7123820	3.3333389	1.4166762	4.7123748	3.3353041	1.4166926
30	4.7126426	3.3336235	1.4170019	4.7126410	3.3359464	1.4176398
40	4.7123918	3.3333925	1.4168063	4.7123946	3.3355951	1.4170695
50	4.7121696	3.3332142	1.4166420	4.7121567	3.3351175	1.4165797
55	4.7121709	3.3332178	1.4166412	4.7121400	3.3350847	1.4165527
60	4.7122129	3.3332422	1.4166475	-	-	-
70	4.7123150	3.3332917	1.4166608	-	-	-
80	4.7123729	3.3333156	1.4166672	-	-	-

tam olarak görülebilmesi için program t = 0.0 dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 4.33'te verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %10.400 × 10⁻³, %4.242 × 10⁻³, %10.298 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %3.351 × 10⁻³, %0.400 × 10⁻³, %1.134 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 4.34'te Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da büyük dalganın genliği –1.999999 olup tepe noktasının konumu x = 30'dur. t = 55.0'de büyük dalganın tepesi x = 122.7 noktasında olup genliği –1.989377 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.974492'dir. t=55.0'de büyük dalganın genlikleri arasındaki far
k 0.106×10^{-1} ve küçük dalganın genlikleri arasındaki fark is
e 0.255×10^{-1} 'dir.

Tablo 4.33: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

-					1	
	4	$\Delta t = 0.025$			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415739	13.3332982	22.6665313	-3.1415739	13.3332982	22.6665313
5	-3.1415356	13.3332986	22.6665162	-3.1415196	13.3332556	22.6663222
15	-3.1429689	13.3321885	22.6660668	-3.1428703	13.3319073	22.6648261
25	-3.1416415	13.3335955	22.6678269	-3.1415121	13.3332296	22.6662509
35	-3.1417128	13.3336930	22.6681812	-3.1415528	13.3332428	22.6662668
45	-3.1418065	13.3337788	22.6685235	-3.1416157	13.3332442	22.6662706
55	-3.1419006	13.3338637	22.6688655	-3.1416791	13.3332448	22.6662742

Tablo 4.34: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

	Subdomain Yöntemi				[38]	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415739	13.3332982	22.6665313	-3.1415915	13.3411364	22.6666177
5	-3.1415356	13.3332986	22.6665162	-3.1373341	13.3297086	22.6211074
15	-3.1429689	13.3321885	22.6660668	-3.1243642	13.2879992	22.4502917
25	-3.1416415	13.3335955	22.6678269	-3.1147243	13.2672538	22.3644947
35	-3.1417128	13.3336930	22.6681812	-3.1065564	13.2454531	22.2776978
45	-3.1418065	13.3337788	22.6685235	-3.0985577	13.2238575	22.1921206
55	-3.1419006	13.3338637	22.6688655	-3.0905294	13.2023061	22.1067310

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-4}^{n} + 58\delta_{m-3}^{n} + 360\delta_{m-2}^{n} + 661\delta_{m-1}^{n} + 661\delta_{m}^{n} + 360\delta_{m+1}^{n} + 58\delta_{m+2}^{n} + \delta_{m+3}^{n}}{3}\right]^{2}$$

[48] alınırsa (4.2.4) denklem sistemindeki Z_m

$$Z_m = 3U^2 = \frac{1}{3} \left[\delta_{m-3}^n + 12\delta_{m-2}^n + 23\delta_{m-1}^n + 23\delta_m^n + 12\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(4.2.8)

şeklinde elde edilir. Problem 1 ve 2 için (4.2.4) denklem sisteminde (4.2.8) kullanılarak elde edilen sayısal değerler Tablo 4.35 ve 4.36'da verildi. Tablo 4.35'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için hesaplamalar yapıldı. t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla $16.4242684 \times 10^{-3}$, $12.1178575 \times 10^{-3}$; h = 0.05 için sırasıyla $8.10465979 \times 10^{-3}$, $5.99580269 \times 10^{-3}$ olarak bulundu. Tablo 4.36'da Problem 1

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.0000000	0.0000000
	5.0	0.7946133	0.1697996	0.0054059	3.7887645	2.3250382
0.1	10.0	0.8040116	0.1730178	0.0056125	7.7312561	5.1220925
	15.0	0.8135982	0.1763248	0.0058286	11.9137183	8.3902999
	20.0	0.8233820	0.1797259	0.0060549	16.4242684	12.1178575
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7900249	0.1682367	0.0053069	1.89826092	1.16970037
0.05	10.0	0.7946852	0.1698267	0.0054076	3.85487560	2.56116149
	15.0	0.7993921	0.1714387	0.0055106	5.91042452	4.16954819
	20.0	0.8041473	0.1730735	0.0056161	8.10465979	5.99580269

Tablo 4.35: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $16.42348067 \times 10^{-3}$, $12.11682111 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $16.42411388 \times 10^{-3}$, $12.11765251 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $16.42431726 \times 10^{-3}$, $12.11792258 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan hdeğerleri azaldıkça hata norm değerlerinin azaldığı, Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olduğu görülmektedir.

Uygulama 3 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için programın uygun değerler üretmediği görüldü.

Uygulama 4:

MEW denkleminde $U^2 U_x$ lineer olmayan terimi (2.1.19) şeklinde alınırsa (4.1.3) denklemi (4.1.13) şeklinde yazılabilir. Bu denklemde ilk olarak $\int_0^1 U_t d\xi$ integrali hesaplanırsa (4.2.2) denklemi elde edilir. İkinci olarak $\int_0^1 3UUU_\xi d\xi$ integralinde UU_ξ yerine (2.1.27) yaklaşımı alınırsa

$$Z_m = 3UU_{\xi} = 3\left[U^{n+1}U_{\xi}^n + U^n U_{\xi}^{n+1} - U^n U_{\xi}^n\right]$$
(4.2.9)

		-	-		· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·
Δt	t	I_1	I_2	I_3	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946131	0.1697995	0.0054059	3.78865753	2.32481129
0.2	10.0	0.8040112	0.1730176	0.0056125	7.73098596	5.12161747
	15.0	0.8135976	0.1763245	0.0058286	11.91322285	8.38955662
	20.0	0.8233812	0.1797255	0.0060549	16.42348067	12.11682111
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697996	0.0054059	3.78874378	2.32499327
0.1	10.0	0.8040116	0.1730178	0.0056125	7.73120344	5.12199847
	15.0	0.8135981	0.1763248	0.0058286	11.91362131	8.39015280
	20.0	0.8233819	0.1797258	0.0060549	16.42411388	12.11765251
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7946133	0.1697996	0.0054059	3.78877111	2.32505257
0.01	10.0	0.8040117	0.1730178	0.0056125	7.73127279	5.12212250
	15.0	0.8135982	0.1763248	0.0058286	11.91374892	8.39034666
	20.0	0.8233821	0.1797259	0.0060549	16.42431726	12.11792258

Tablo 4.36: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

olmak üzere

$$Z_m \int_0^1 U_\xi d\xi = Z_m \left[\frac{U^2}{2}\right]_0^1 = \frac{Z_m}{2} \left[(\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_m + 57\delta_{m+1} + \delta_{m+2})^2 - (\delta_{m-4} + 57\delta_{m-3} + 302\delta_{m-2} + 302\delta_{m-1} + 57\delta_m + \delta_{m+1})^2 \right]$$

elde edilir. Son olarak $\int_0^1 U_{\xi\xi t} d\xi$ integrali hesaplanırsa (4.2.3) denklemi bulunur. Hesaplanan integraller (4.1.4) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa (4.2.4) denklem sistemi elde edilir.

Problem 1 ve 2 için (4.2.4) denklem sisteminde (4.2.9) kullanılarak elde edilen sayısal değerler Tablo 4.37-4.40'ta verildi. Tablo 4.37'de Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için hesaplamalar yapıldı. t = 20.0'de L_2 ve L_{∞} hata norm değerleri h = 0.1 için sırasıyla 11.9760042 × 10⁻³, 10.6823543 × 10⁻³; h = 0.05 için sırasıyla 6.20028200 × 10⁻³, 5.54365713 × 10⁻³ olarak bulundu. Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için elde edilen değerler Tablo 4.38'de verildi. Tablodan t = 20.0'de L_2 ve L_{∞} hata norm değerleri $\Delta t = 0.2$ için sırasıyla 11.97616276 × 10⁻³, 10.68230570 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 11.97603409 × 10⁻³, 10.68234291 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 11.97599517 × 10⁻³, 10.68235833 × 10⁻³ olarak bulundu.

Tablo 4.37: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.0000000	0.0000000
	5.0	0.7808941	0.1636262	0.0050199	2.9812471	2.8642510
0.1	10.0	0.7765660	0.1607391	0.0048438	5.9283185	5.5822377
	15.0	0.7723991	0.1579914	0.0046788	8.9079408	8.1845224
	20.0	0.7683809	0.1553705	0.0045239	11.9760042	10.6823543
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7831334	0.1651265	0.0051125	1.50494597	1.44649793
0.05	10.0	0.7809020	0.1636250	0.0050198	3.01853935	2.85464507
	15.0	0.7787139	0.1621614	0.0049302	4.57396416	4.21499381
	20.0	0.7765669	0.1607333	0.0048434	6.20028200	5.54365713

az bir artma görülmektedir.

Tablo 4.38: $\mu = 1, h = 0.1, A = 0.25, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808941	0.1636262	0.0050199	2.98123711	2.86422613
0.2	10.0	0.7765661	0.1607391	0.0048438	5.92833656	5.58221242
	15.0	0.7723992	0.1579915	0.0046788	8.90801757	8.18444921
	20.0	0.7683810	0.1553706	0.0045239	11.97616276	10.68230570
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808941	0.1636262	0.0050199	2.98124464	2.86424555
0.1	10.0	0.7765660	0.1607391	0.0048438	5.92832115	5.58223174
	15.0	0.7723992	0.1579914	0.0046788	8.90795478	8.18450651
	20.0	0.7683809	0.1553705	0.0045239	11.97603409	10.68234291
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7808941	0.1636262	0.0050199	2.98124808	2.86425290
0.01	10.0	0.7765660	0.1607391	0.0048438	5.92831791	5.58223992
	15.0	0.7723991	0.1579914	0.0046788	8.90793676	8.18452789
	20.0	0.7683809	0.1553705	0.0045239	11.97599517	10.68235833

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ ve h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 4.39'da verildi. Hesaplamalar ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1$ ve h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 4.40'da verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Uygulama 5:

MEW denkleminde $U^2 U_x$ lineer olmayan terimi (2.1.19) şeklinde alınırsa (4.1.3) denklemi (4.1.13) şeklinde yazılabilir. Bu denklemde ilk olarak $\int_0^1 U_t d\xi$ integrali

	Δ	t = 0.025		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123733	3.333394	1.4166643	4.7123733	3.3333294	1.4166643	
10	4.2637266	2.3172113	0.6206311	4.2637192	2.3171909	0.6206176	
20	3.9969016	1.8194888	0.3584020	3.9968951	1.8194721	0.3583937	
30	3.8089563	1.5130731	0.2365070	3.8089513	1.5130605	0.2365020	
40	3.6667013	1.3038330	0.1695600	3.6666977	1.3038234	0.1695568	
50	3.5555502	1.1532286	0.1291059	3.5555475	1.1532212	0.1291038	
55	3.5092447	1.0939697	0.1148902	3.5092425	1.0939630	0.1148884	
60	3.4680170	1.0431414	0.1034471	3.4680151	1.0431353	0.1034455	
70	3.3970107	0.9595361	0.0861136	3.3970093	0.9595310	0.0861124	
80	3.3366834	0.8914645	0.0733400	3.3366824	0.8914601	0.0733390	

Tablo 4.39: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

Tablo 4.40: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	Ĺ	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3332982	22.6665313	-3.1415739	13.3332982	22.6665313	
5	-2.1662589	7.2780973	5.7347524	-2.1660584	7.2770124	5.7325986	
15	-1.6133991	4.0515526	1.5505148	-1.6133561	4.0511922	1.5501464	
25	-1.3690596	2.7563466	0.6697726	-1.3690942	2.7562309	0.6696853	
35	-1.2326136	2.0878786	0.3669141	-1.2327069	2.0878762	0.3669001	
45	-1.1396491	1.6787549	0.2284463	-1.1397942	1.6788157	0.2284571	
55	-1.0708554	1.4048283	0.1547671	-1.0710454	1.4049249	0.1547861	

hesaplanırsa (4.2.2) denklemi elde edilir. İkinci olarak $\int_0^1 3UUU_\xi d\xi$ integralinde UU_ξ yerine (2.1.28) yaklaşımı alınırsa

$$Z_m = 3UU_{\xi} = \frac{3}{2} \left[U^{n+1}U_{\xi}^n + U^n U_{\xi}^{n+1} \right]$$
(4.2.10)

olmak üzere

$$\int_{0}^{1} 3UUU_{\xi} d\xi = Z_{m} \int_{0}^{1} U_{\xi} d\xi = Z_{m} [\frac{U^{2}}{2}]_{0}^{1} = \frac{Z_{m}}{2} [(\delta_{m-3} + 57\delta_{m-2} + 302\delta_{m-1} + 302\delta_{m} + 57\delta_{m+1} + \delta_{m+2})^{2} - (\delta_{m-4} + 57\delta_{m-3} + 302\delta_{m-2} + 302\delta_{m-1} + 57\delta_{m} + \delta_{m+1})^{2}]$$

elde edilir. Son olarak $\int_0^1 U_{\xi\xi t} d\xi$ integrali hesaplanırsa (4.2.3) denklemi elde edilir. Hesaplanan integraller (4.1.4) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa (4.2.4) denklem sistemi elde edilir.

Problem 1 ve 2 için (4.2.4) denklem sisteminde (4.2.10) kullanılarak elde edilen sayısal değerler Tablo 4.41-4.44'te verildi. Problem 1 için $0 \le x \le 80$ aralığında

 $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 4.41'de verildi. Tablodan t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla 11.8893520 × 10⁻³, 10.6060679 × 10⁻³; h = 0.05 için sırasıyla 6.10693206 × 10⁻³, 5.46068929 × 10⁻³ olduğu görülür. Tablo 4.42'de, Problem 1 için $0 \le x \le 80$

Tablo 4.41: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.0000000	0.0000000
	5.0	0.7809279	0.1636489	0.0050213	2.9585779	2.8425093
0.1	10.0	0.7766307	0.1607819	0.0048464	5.8839702	5.5404246
	15.0	0.7724919	0.1580522	0.0046824	8.8423907	8.1252683
	20.0	0.7684994	0.1554474	0.0045284	11.8893520	10.6060679
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7831684	0.1651502	0.0051139	1.48168781	1.42413402
0.05	10.0	0.7809704	0.1636709	0.0050226	2.97228249	2.81105730
	15.0	0.7788141	0.1622282	0.0049342	4.50447674	4.15111168
	20.0	0.7766976	0.1608200	0.0048487	6.10693206	5.46068929

aralığında h = 0.1 alınarak Δt nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tablodan t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $11.62877627 \times 10^{-3}$, $10.37639135 \times 10^{-3}$, $\Delta t = 0.1$ için sırasıyla $11.80260102 \times 10^{-3}$, $10.52964286 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $11.95867495 \times 10^{-3}$, $10.66711119 \times 10^{-3}$ olduğu görülmektedir. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı, Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir artış görüldü.

Tablo 4.42: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7810297	0.1637171	0.0050254	2.89046602	2.77714760
0.2	10.0	0.7768252	0.1609109	0.0048542	5.75068596	5.41469424
	15.0	0.7727713	0.1582355	0.0046934	8.64533186	7.94690121
	20.0	0.7688565	0.1556791	0.0045420	11.62877627	10.37639135
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7809618	0.1636716	0.0050226	2.93589076	2.82074366
0.1	10.0	0.7766954	0.1608248	0.0048490	5.83958209	5.49856152
	15.0	0.7725849	0.1581132	0.0046861	8.77677433	8.06591016
	20.0	0.7686182	0.1555244	0.0045330	11.80260102	10.52964286
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7809008	0.1636307	0.0050201	2.97671546	2.85990603
0.01	10.0	0.7765789	0.1607476	0.0048443	5.91945161	5.57388079
	15.0	0.7724177	0.1580036	0.0046796	8.89483309	8.17268405
	20.0	0.7684046	0.1553859	0.0045248	11.95867495	10.66711119

Problem 2 için hesaplamalar ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ ve h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 4.43'te verildi. İkinci olarak hesaplamalar $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1$ ve h = 0.1 alınarak Δt nin 0.01 ve 0.025 değerleri için yapıldı. Elde edilen sonuçlar Tablo 4.44'te verildi. Tablolardan korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görülmektedir.

Tablo 4.43: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

	Δ	t = 0.025			$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643		
10	4.2777348	2.3463393	0.6396561	4.2692367	2.3286237	0.6280476		
20	4.0122155	1.8466246	0.3716064	4.0029057	1.8300758	0.3635213		
30	3.8235325	1.5358434	0.2453424	3.8146667	1.5219469	0.2399278		
40	3.6803218	1.3229816	0.1757549	3.6720349	1.3112907	0.1719572		
50	3.5686556	1.1701475	0.1338164	3.5606743	1.1598045	0.1309253		
55	3.5222949	1.1103113	0.1191555	3.5143443	1.1003150	0.1165357		
60	3.4810249	1.0590166	0.1073627	3.4731008	1.0493082	0.1049577		
70	3.4097493	0.9741715	0.0894094	3.4019886	0.9652287	0.0873858		
80	3.3491902	0.9049423	0.0761708	3.3415563	0.8966913	0.0744283		

Tablo 4.44: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 5 ile elde edilen korunum sabitleri.

$\Delta t = 0.025$					$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3332982	22.6665313	-3.1415739	13.3332982	22.6665313		
5	-2.2820774	7.7716161	6.7302940	-2.2080548	7.4547946	6.0808363		
15	-1.6653985	4.2389996	1.7393673	-1.6326283	4.1207772	1.6187187		
25	-1.3547871	2.7859119	0.6906738	-1.3691912	2.7763110	0.6832145		
35	-1.1383590	2.0089209	0.3343350	-1.2109930	2.0759653	0.3626938		
45	-0.9715651	1.5394529	0.1829927	-1.0969123	1.6473900	0.2184984		
55	-0.8415948	1.2374590	0.1101203	-1.0095045	1.3626512	0.1435595		

Sonuç

Bu bölümde MEW denkleminin sayısal çözümleri denklemdeki U^2U_x lineer olmayan terim yerine farklı lineerleştirme teknikleri uygulanarak kuartik ve sektik Bspline Subdomain sonlu eleman yöntemi ile elde edildi. Problem 1 için Tablo 4.45, t = 20.0'de farklı lineerleştirme teknikleriyle elde edilen korunum sabitleri ile L_2 ve L_{∞} hata normlarının değerlerini ve literatürdeki farklı çalışmalarla karşılaştırılmasını göstermektedir.
t = 20	I_1		1	2	1	$I_3 L_2 imes 10^3$		(10^{3})	$L_{\infty} \times 10^3$	
	Kuartik	Sektik	Kuartik	Sektik	Kuartik	Sektik	Kuartik	Sekt ik	Kuartik	Sekt ik
Uyg.1	0.8236523	0.8236574	0.1799408	0.1798495	0.0060628	0.0060632	16.5920172	16.56394933	12.30004421	12.27625631
Uyg.2	0.7853967	0.7853967	0.1666664	0.1666663	0.0052083	0.0052083	0.05187334	0.05183679	0.03211392	0.03210527
Uyg.3	0.8233779	0.8233820	0.1798179	0.1797259	0.0060545	0.0060549	16.45298273	16.4242684	12.14784906	12.1178575
Uyg.4	0.7683541	0.7683809	0.1554439	0.1553705	0.0045234	0.0045239	11.96921827	11.9760042	10.71423105	10.6823543
Uyg.5	0.7684728	0.7684994	0.1555209	0.1554474	0.0045279	0.0045284	11.88250919	11.8893520	10.63795535	10.6060679
[32]		-		-		-	0.1958878		0.1744330	
[33]	0.784	19545	0.166	54765	0.005	0.0051995 0.2905166		0.249	8925	
[38]	0.7853898		0.166	57614	0.005	52082	0.0796940 0.		0.046	5523
[42]	0.785	53977	0.166	54735	0.005	52083	0.269	2812	0.2569972	

Tablo 4.45: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\mu = 1$, A = 0.25, $\Delta t = 0.05$, için t = 20'de farklı uygulama ve çalışmalardan elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 4.45 incelendiğinde, Uygulama 2 kullanıldığında elde edilen L_2 ve L_{∞} hata normlarınının referans [38]'de elde edilen sonuçlarla uyum içerisinde olduğu ve korunum sabitlerinin bilgisayar çalışması boyunca hemen hemen sabit kaldığı görülmektedir. Ayrıca Tablo 4.45'te Uygulama 2 ile elde edilen L_2 ve L_{∞} hata normlarının referans [32, 33, 38, 42] de elde edilen L_2 ve L_{∞} hata normlarından daha küçük olduğu görülür. Problem 2 için kuartik ve sektik B-spline Subdomain yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde Uygulama 2 ile elde edilen Tablo 4.9, 4.11, 4.31 ve 4.33'deki değerlerin birbirleri ile ve referans [38] ile uyum içinde olduğu görülmektedir.

BÖLÜM 5 MODİFİYE EDİLMİŞ EŞİT GENİŞLİKLİ DALGA DENKLEMİNİN KOLLOKASYON SONLU ELEMAN YÖNTEMİ İLE ÇÖZÜMÜ

Bu bölümde, MEW denkleminin sayısal çözümleri kübik, kuintik ve septik Bspline fonksiyonlar kullanılarak kollokasyon yöntemi ile elde edildi. Denklemdeki U^2U_x lineer olmayan terimi için farklı lineerleşştirme teknikleri uygulandı. Kollokasyon yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılık analizi *Mathematica* programı kullanılarak von Neumann yöntemi ile incelendi. Solitary dalga çözümleri, iki dalganın girişimi ve Maxwellian başlangıç şartı ile dalga oluşumu problemleri ele alındı. Kübik, kuintik ve septik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümler için grafikler hemen hemen aynı olduğundan sadece kübik B-spline fonksiyonlar kullanılarak elde edilen sayısal çözümlerin grafikleri verildi. Kollokasyon yönteminin uygulanması ile oluşan denklem sistemleri Thomas algoritması kullanılarak çözüldü.

5.1 Kübik B-spline Kollokasyon Yöntemi

Bu kısımda, (1.7.3) denkleminin kübik B-spline kollokasyon yöntemi ile sayısal çözümleri elde edildi. MEW denklemindeki U(x,t) fonksiyonunun yaklaşık çözümü $U_N(x,t)$ olmak üzere bu yaklaşık çözüm Bölüm 1'de (1.6.3.1) ile verilen $\phi_m(x)$ kübik B-spline fonksiyonlar cinsinden

$$U_N(x,t) = \sum_{j=-1}^{N+1} \delta_j(t)\phi_j(x)$$
(5.1.1)

şeklinde yazılır [14]. Burada δ_j 'ler zamana bağlı parametreler olup (1.7.3) denkleminin kübik kollokasyon ve sınır şartlarından elde edilecektir. Her tipik $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) ile verilen lokal koordinat dönüşüm yardımıyla [0, 1] aralığına dönüşür. Bu nedenle kübik B-spline şekil fonksiyonları [0, 1] aralığında ξ cinsinden (1.6.3.2) şeklinde tanımlanır. $[x_m, x_{m+1}]$ aralığında $\phi_{m-1}(x), \phi_m(x), \phi_{m+1}(x)$ ve $\phi_{m+2}(x)$ dışındaki bütün spline fonksiyonlar sıfır olduğundan (5.1.1) yaklaşımı bu aralıkta (1.6.3.2) baz fonksiyonları cinsinden $[x_m, x_{m+1}]$ aralığında

$$U_N(x,t) = \sum_{j=m-1}^{m+2} \delta_j(t)\phi_j(x)$$
(5.1.2)

şeklinde yazılır. (1.6.3.2) kübik B-spline fonksiyonlar ve (5.1.2) yaklaşımı kullanılırsa x_m düğüm noktasında U_m 'in kendisinin ve x'e göre ikinci mertebeye kadar türevlerinin δ_m eleman parametreleri cinsinden noktasal değerleri (1.6.3.3)'deki gibi elde edilir. Burada m = 0(1)N olup üst indis x'e göre türevi göstermektedir. $\phi_m(x)$ kübik B-spline fonksiyonlar ile birinci ve ikinci mertebeden türevleri $x_{m-2} \leq x \leq x_{m+2}$ aralığı dışında sıfırdır. (1.7.3) denkleminde (1.6.3.3) yaklaşımları yerine yazılırsa

$$\dot{\delta}_{m-1} + 4\dot{\delta}_m + \dot{\delta}_{m+1} + 9\frac{Z_m}{h}(-\delta_{m-1} + \delta_{m+1}) - 6\frac{\mu}{h^2}(\dot{\delta}_{m-1} - 2\dot{\delta}_m + \dot{\delta}_{m+1}) = 0 \quad (5.1.3)$$

şeklinde bir denklem sistemi elde edilir. (5.1.3) denkleminde δ yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı ve $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı yazılırsa denklemin genelleştirilmiş satırı

$$(1 - EZ_m - M)\delta_{m-1}^{n+1} + (4 + 2M)\delta_m^{n+1} + (1 + EZ_m - M)\delta_{m+1}^{n+1} = (1 + EZ_m - M)\delta_{m-1}^n + (4 + 2M)\delta_m^n + (1 - EZ_m - M)\delta_{m+1}^n$$
(5.1.4)
$$m = 0, 1, \dots, N$$

şeklinde bulunur. Burada

$$Z_m = (\delta_{m-1} + 4\delta_m + \delta_{m+1})^2, \qquad E = \frac{9\Delta t}{2h}, \qquad M = \frac{6\mu}{h^2}$$

dir. Böylece (N + 3)- tane bilinmeyen (N + 1)- tane denklemden oluşan bir cebirsel denklem sistemi elde edilir. Bu denklem sisteminin çözülebilmesi için denklem sayısı ile bilinmeyen sayısı eşit olmalıdır. (1.6.3.3) yaklaşımlarında U_m 'in kendisinin ve x'e göre birinci mertebeden türevinin sınırlardaki değerleri kullanılarak δ_{-1} ve δ_{N+1} parametreleri sistemden yok edilerek $(N + 1) \times (N + 1)$ - boyutlu karesel cebirsel denklem sistemi elde edilir. İterasyona başlayabilmek için δ^0 başlangıç vektörünün bilinmesi gereklidir. δ^0 vektörü problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanabilir. t = 0.0 anında, δ_i^0 belirlenecek parametreler olmak üzere (5.1.1) denklemi

$$U_N(x,0) = \sum_{j=-1}^{N+1} \delta_j^0(t) \phi_j(x)$$
(5.1.5)

şeklinde yeniden yazılabilir. Başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x,0) = U(x_j,0)$$
 $j = 0,...,N$

değerleri alınırsa $\delta^0 = (\delta^0_{-1}, ..., \delta^0_N, \delta^0_{N+1})$ olmak üzere (N + 3)- tane bilinmeyen ve (N + 1)- tane denklemden oluşan bir denklem sistemi elde edilir. (1.6.3.3) yaklaşımlarında U_m ve U'_m sınırlardaki değerleri kullanıldığında ortaya çıkan δ_{-1} ve δ_{N+1} parametreleri yok edilerek $(N + 1) \times (N + 1)$ - denklem sistemi elde edilir. Bu denklem sistemi

$$\begin{bmatrix} 4 & 2 & & & & \\ 1 & 4 & 1 & & & \\ & 1 & 4 & 1 & & & \\ & & 1 & 4 & 1 & & \\ & & & \ddots & & & \\ & & & & 1 & 4 & 1 \\ & & & & & 2 & 4 \end{bmatrix} \begin{bmatrix} \delta_0^0 \\ \delta_1^0 \\ \delta_2^0 \\ \vdots \\ \delta_2^0 \\ \vdots \\ \delta_N^{0-1} \\ \delta_N^0 \end{bmatrix} = \begin{bmatrix} U(x_0) \\ U(x_1) \\ U(x_2) \\ \vdots \\ U(x_{N-1}) \\ U(x_N) \end{bmatrix}$$

şeklinde matris formunda yazılabilir. Bu sistemin çözülmesiyle başlangıç parametreleri elde edilir. (5.1.4) sisteminin lineer olmayan terimlerine her zaman adımında Bölüm 2'de (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanarak U_N yaklaşık çözümleri iyileştirilir.

Kararlılık Analizi

Kübik B-spline kollokasyon yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılığı önceki bölümlerde olduğu gibi von Neumann yöntemi ile incelendi. Böylece (5.1.4) sisteminin *m*. genelleştirilmiş satırı

$$\begin{aligned} \gamma_1 &= 1 - E\lambda - M, \qquad \gamma_2 &= 26 - 10E\lambda - 2M, \\ \gamma_3 &= 66 + 6M, \qquad \gamma_4 &= 26 + 10E\lambda - 2M, \\ \gamma_5 &= 1 + E\lambda - M \end{aligned}$$

olmak üzere

$$\gamma_1 \delta_{m-1}^{n+1} + \gamma_2 \delta_m^{n+1} + \gamma_3 \delta_{m+1}^{n+1} = \gamma_3 \delta_{m-1}^n + \gamma_2 \delta_m^n + \gamma_3 \delta_{m+1}^n \tag{5.1.6}$$

şeklindedir. (2.1.13) ifadesi (5.1.6) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1}[\gamma_1 e^{-ikh} + \gamma_2 + \gamma_3 e^{ikh}] = \hat{\delta}^n[\gamma_3 e^{-ikh} + \gamma_2 + \gamma_1 e^{ikh}]$$

bulunur. Bu denklemde Bölüm 2'de (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 2 + M + (1 - M)\cos(kh),$$

$$b = E\lambda\sin(kh)$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifade $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa buradan

$$g = \frac{a - ib}{a + ib}$$

elde edilir. |g| = 1 olup yöntem şartsız kararlıdır.

Lineerleştirme Uygulamaları

Bu kısımda MEW denkleminde $U^2 U_x$ lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmay
an teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = \left[\delta_{m-1}^{n} + 4\delta_{m}^{n} + \delta_{m+1}^{n}\right]^{2}$$

alınırsa (5.1.4) denklemindeki Z_m

$$Z_m = [U_m^n]^2 = \left[\delta_{m-1}^n + 4\delta_m^n + \delta_{m+1}^n\right]^2$$
(5.1.7)

şeklinde bulunur. Problem 1, 2 ve 3 için (5.1.4) denklem sisteminde (5.1.7) kullanılarak elde edilen sayısal değerler Tablo 5.1-5.5'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.1'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.17527714 \times 10^{-3}$, $0.17646577 \times 10^{-3}$; h = 0.05için sırasıyla $0.04334957 \times 10^{-3}$, $0.04410020 \times 10^{-3}$ olduğu görülür. Ayrıca Tablo 5.1'de verilen korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi h = 0.1için % 0.036×10^{-5} , % 5.48×10^{-5} , % 0.338×10^{-5} ; h = 0.05 için % 0.013×10^{-5} , % 0.324×10^{-5} , % 0.045×10^{-5} olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça hata norm değerlerinin ve korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 5.1: $\mu = 1$, A = 0.25, $\Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
0.1	5.0	0.7853966	0.1666662	0.0052083	0.04472873	0.04234541
	10.0	0.7853966	0.1666662	0.0052083	0.08908800	0.08672278
	15.0	0.7853966	0.1666662	0.0052083	0.13271793	0.13169635
	20.0	0.7853966	0.1666664	0.0052083	0.17527714	0.17646577
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.01106357	0.01052931
0.05	10.0	0.7854101	0.1666679	0.0052084	0.02203533	0.02165221
	15.0	0.7854101	0.1666679	0.0052084	0.03282567	0.03297296
	20.0	0.7854101	0.1666679	0.0052084	0.04334957	0.04410020

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 5.2'de gösterildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $0.17597617 \times 10^{-3}$, $0.17714251 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $0.17541638 \times 10^{-3}$, $0.17660190 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.17523269 \times 10^{-3}$, $0.17642205 \times 10^{-3}$ olduğu görülür. Tablo 5.2'de korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi $\Delta t = 0.2$ için sırasıyla $\% 0.851 \times 10^{-5}$, $\% 4.210 \times 10^{-5}$, $\% 2.916 \times 10^{-5}$; $\Delta t = 0.1$ için sırasıyla $\% 0.024 \times 10^{-5}$, $\% 5.346 \times 10^{-5}$, $\% 0.297 \times 10^{-5}$ olarak bulundu. Bu sonuçlardan Δt zaman adımı

azaldıkça I_1 ve I_3 korunum sabitlerindeki değişimin azaldığı I_2 'deki değişimin ise arttığı görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666661	0.0052083	0.04490059	0.04250477
0.2	10.0	0.7853965	0.1666662	0.0052083	0.08943312	0.08705619
	15.0	0.7853965	0.1666662	0.0052083	0.13323852	0.13221336
	20.0	0.7853965	0.1666662	0.0052083	0.17597617	0.17714251
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04476302	0.04237758
0.1	10.0	0.7853966	0.1666662	0.0052083	0.08915683	0.08678999
	15.0	0.7853966	0.1666662	0.0052083	0.13282169	0.13180043
	20.0	0.7853966	0.1666662	0.0052083	0.17541638	0.17660190
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04471776	0.04233505
0.01	10.0	0.7853966	0.1666662	0.0052083	0.08906601	0.08670116
	15.0	0.7853966	0.1666662	0.0052083	0.13268479	0.13166289
	20.0	0.7853966	0.1666662	0.0052083	0.17523269	0.17642205

Tablo 5.2: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Tablo 5.3'te Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen en büyük genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın t zamanlardaki hızları verildi. Tablodan görüldüğü gibi dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6 noktasında 0.249880'dir. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 7.4×10^{-5} olarak bulunur. t = 0.0 ve t = 20.0 değerleri için U_N 'nin grafiği Şekil 5.1'de verildi. Şekilde görüldüğü gibi dalga t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genlik ile sağa doğru ilerlemektedir. t = 20.0'de dalganın hızı 0.03122 olup bu değer dalganın t = 0.0'daki hızı olan 0.03125 değerine oldukça yakındır. Problem 1'in t = 20.0'deki tam ve sayısal değerleri arasındaki hata dağılımının grafiği Şekil 5.2'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

Ayrıca Problemin 1'in sayısal değerleri t = 0.01 zamanında farklı A değerleri için elde edildi. Elde edilen hata normları ve korunum sabitleri Tablo 5.4'te verildi. Tablo 5.4'te hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görülmektedir. Şekil 5.3'te t = 20.0için A = 0.25, 0.5, 0.75, 1.0 değerleri için grafikler verildi. Tablo 5.5'te ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik

	t	Konum	Genlik	Hız
-	0.0	30.0	0.250000	0.03125
	5.0	30.2	0.249750	0.03118
	10.0	30.3	0.249968	0.03124
	15.0	30.5	0.249833	0.03120
	20.0	30.6	0.249880	0.03122

Tablo 5.3: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 1 ile elde edilen konum, genlik ve hız değerleri.

Şekil 5.1: Solitary dalganın $h=0.1,\,\Delta t=0.05,\,\mu=1,\,A=0.25$ için t=0ve 20'deki hareketi.

ve hız değerleri verildi. Tabloda tek dalganın farklı A değerleri için elde edilen genlik değerlerinin tam değerlerine oldukça yakın olduğu görülmektedir.

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile hesaplandı. Elde edilen sonuçlar Tablo 5.6'da verildi. Tablo incelendiğinde zaman adımı Δt_m sabit olarak alındığında elde edilen yakınsama oranının 2 civarında olduğu görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1, A_1 = 1, A_2 = 0.5, h = 0.1$ için Δt 'nin 0.025 ve 0.01 değerleri ile hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0 dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.7'de verildi. Tabloda I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\% 0.025 \times 10^{-3}, \% 0.012 \times 10^{-3}, \% 0.004 \times 10^{-3}; \Delta t = 0.01$ için sırasıyla $\% 0.025 \times 10^{-3}, \% 0.008 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlarda zaman adımı Δt azaldıkça korunum sabitlerinden I_1 'deki değişimin aynı olduğu, I_2 değişimin azaldığı ve I_3 'deki değişimin ise arttığı açıkça görülmektedir. Tablo 5.8'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [32]'de elde edilen korunum

Şekil 5.2: Solitary dalganın $h = 0.1, \Delta t = 0.05, \mu = 1, A = 0.25$ için t = 20'deki hata grafiği.

Tablo 5.4: h = 0.1, $\Delta t = 0.01$, $0 \le x \le 80$ olmak üzere Problem 1' in farklı A değerleri için elde edilen korunum sabitleri ve hata norm değerleri.

A	t	I_1	I_2	I_3	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5	0.7853966	0.1666662	0.0052083	0.04471776	0.04233505
0.25	10	0.7853966	0.1666662	0.0052083	0.08906601	0.08670116
	15	0.7853966	0.1666662	0.0052083	0.13268479	0.13166289
	20	0.7853967	0.1666662	0.0052083	0.17523269	0.17642205
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666646	0.0833330	0.00000000	0.00000000
	5	1.5707932	0.6666649	0.0833330	0.35052093	0.35289878
0.5	10	1.5707932	0.6666656	0.0833330	0.65824902	0.65054805
	15	1.5707932	0.6666659	0.0833330	0.89807157	0.80335418
	20	1.5707931	0.6666660	0.0833330	1.06979673	0.86864227
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999953	0.4218734	0.00000000	0.00000000
	5	2.3561897	1.4999978	0.4218733	1.08833328	1.05417097
0.75	10	2.3561897	1.4999985	0.4218733	1.70491172	1.33432195
	15	2.3561896	1.4999983	0.4218733	2.01264576	1.46558019
	20	2.3561896	1.4999982	0.4218733	2.24293300	1.62010840
	Tam	2.3561945	1.5000000	0.4218750	-	-
	0	3.1415863	2.6666583	1.3333283	0.00000000	0.00000000
	5	3.1415858	2.6666633	1.3333275	2.14753916	1.74396281
1.0	10	3.1415852	2.6666624	1.3333268	2.87024724	2.07526179
	15	3.1415847	2.6666616	1.3333261	3.41524802	2.45685025
	20	3.1415842	2.6666609	1.3333253	3.98833508	2.84859636
	Tam	3.1415927	2.6666667	1.3333333	=	=

sabitlerinin değerleri karşılaştırıldı. Her ne kadar karşılaştırma Δt 'nin farklı değerleri için yapıldıysa da tabloda korunum sabitlerindeki değişimin referans [32]'de elde edilenler ile uyum içinde olduğu görülür.

Farklı t değerleri için iki pozitif solitary dalganın etkileşiminin grafiği Şekil 5.4'te verildi. Şekilde görüldüğü gibi t = 0.0 da solitary dalgalardan büyük dalganın genliği 1.000000 olup tepe noktasının konumu x = 15.0, küçük dalganın genliği 0.500001 olup tepe noktasının konumu x = 30.0'dur. t = 0.0'da büyük genlikli dalga küçük genlikli dalganın solundadır. Büyük dalga küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça küçük dalgayı yakalamaktadır. t = 25.0 zamanında iki dalganın

Şekil 5.3: Solitary dalganın $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.01$ için t = 20 zamanında farklı A değerleri için elde edilen grafikleri.

Tablo 5.5: Problem 1'in $0 \le x \le 80$ aralığında h = 0.1, $\Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 1 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249880	0.03122
0.50	32.5	0.499713	0.12485
0.75	35.6	0.749398	0.28079
1.00	40.0	0.999429	0.49942

etkileşiminin başladığı görülür. İç içe geçme süreci t = 25.0 ile t = 40.0 arasında görülmektedir. t = 40.0 dan sonra büyük dalganın küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülür. t = 80.0 de büyük dalganın tepe noktası x = 56.9 konumunda olup genliği 0.999698, küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498438 dir. t = 0.0-80.0'de büyük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark 1.56×10^{-3} iken küçük dalganın genlikleri arasındaki fark ise 3.02×10^{-4} dür. Şekil 5.4'de t = 80.0'deki grafikte solitary dalganın arkasında küçük genlikli bir salının görülmektedir. Bu salınım t = 80.0'de grafik büyütülerek Şekil 5.5'te verildi.

Hesaplamalar ikinci olarak, $0 \le x \le 150$ aralığında $\mu = 1, A_1 = -2, A_2 = 1,$ h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin

Tablo 5.6: $\Delta t = 0.05, 0 \le x \le 80, A = 0.25, t = 20$ için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	12.11845983	-	10.00376343	-
0.4	2.84807702	2.08914628	2.79212151	1.84110921
0.2	0.70275440	2.01889567	0.70521160	1.98523361
0.1	0.17527714	2.00338273	0.17646577	1.99866784
0.05	0.04334957	2.01554826	0.04410020	2.00053125
0.025	0.01073281	2.01398983	0.01081799	2.02735272

Tablo 5.7: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 1 ile elde edilen sayısal değerleri.

	Δ	t = 0.025	$\Delta t = 0.01$					
		u = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333253	1.4166643	4.7123733	3.3333253	1.4166643		
10	4.7123744	3.3333316	1.4166642	4.7123744	3.3333316	1.4166642		
20	4.7123744	3.3333302	1.4166640	4.7123744	3.3333302	1.4166641		
30	4.7123744	3.3334406	1.4166576	4.7123744	3.3334406	1.4166617		
40	4.7123749	3.3332759	1.4166614	4.7123748	3.3332758	1.4166638		
50	4.7123751	3.3332328	1.4166646	4.7123751	3.3332328	1.4166646		
55	4.7123750	3.3332427	1.4166646	4.7123750	3.3332427	1.4166645		
60	4.7123748	3.3332663	1.4166645	4.7123748	3.3332662	1.4166644		
70	4.7123745	3.3333083	1.4166643	4.7123745	3.3333083	1.4166643		
80	4.7123745	3.3333257	1.4166643	4.7123744	3.3333256	1.4166642		

tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.9'da verildi. Tabloda korunum sabitlerinin t = 0.0ve t = 55.0'deki değişimi $\Delta t = 0.025$ için sırasıyla %7.188 × 10⁻³, %4.596 × 10⁻³, %11.546 × 10⁻³ ; $\Delta t = 0.01$ için sırasıyla %0.137 × 10⁻³, %0.057 × 10⁻³, %0.139 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı açıkça görülmektedir. Tablo 5.10'da Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [36]'da elde edilen korunum sabitlerinin değerleri karşılaştırıldı. Tabloda korunum sabitlerindeki değişimin referans [36]'da elde edilenler ile uyum içinde olduğu görüldü. Farklı t'ler için elde edilen grafikler Şekil 5.6'da gösterildi. Şekilde görüldüğü gibi t = 0.0'da büyük dalganın genliği –1.999999 olup tepe noktasının konumu x = 15.0, küçük dalganın genliği 0.999999 olup tepe noktasının konumu x = 30.0'dur. Şekilde görüldüğü gibi t = 0.0'da büyük dalga küçük dalganın sol tarafında bulunmaktadır. Negatif genlikli büyük dalga pozitif genlikli küçük dalgadan daha hızlı hareket ettiği için zaman arttıkça pozitif genlikli küçük dalgayı yakalamaktadır. t = 10.0'da iki

	Kollokasyon Y	Yöntemi (Δt	[32] $(\Delta t = 0.2)$			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333253	1.4166643	4.712386	3.333331	1.416669
10	4.7123744	3.3333316	1.4166642	4.711840	3.325420	1.400544
20	4.7123744	3.3333302	1.4166640	4.711287	3.324732	1.400790
30	4.7123744	3.3334406	1.4166576	4.710739	3.347490	1.425064
40	4.7123749	3.3332759	1.4166614	4.710196	3.321484	1.397725
50	4.7123751	3.3332328	1.4166646	4.709644	3.320617	1.397663
55	4.7123750	3.3332427	1.4166646	4.709384	3.323082	1.397898
60	4.7123748	3.3332663	1.4166645	-	-	-
70	4.7123745	3.3333083	1.4166643	-	-	-
80	4.7123745	3.3333257	1.4166643	_	_	_

Tablo 5.8: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [32]'de elde edilen sonuçlarla karşılaştırılması.

Şekil 5.4: $h = 0.1, A_1 = 1, A_2 = 0.5, \mu = 1, 0 \le x \le 80$ için pozitif genlikli iki dalganın girişimi.

dalganın etkileşiminin başladığı görülür. İç içe geçme süreci ise t = 10.0 ile t = 20.0arasında görülmektedir. t = 25.0'ten sonra negatif genlikli büyük dalganın pozitif genlikli küçük dalgadan ayrılarak küçük dalganın sağına geçtiği ve dalgaların ilerlemeye devam ettiği görülür. t = 55.0'te büyük dalganın tepesi x = 123.6 noktasında olup genliği -2.000515 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.973786'dir. t = 55.0 zamanında büyük dalganın genlikleri arasındaki fark 5.16×10^{-4} ve küçük dalganın genlikleri arasındaki fark ise 2.62×10^{-2} dir.

Problem 3 için (1.7.3) ile verilen denklemin sayısal değerleri μ 'nün farklı değerleri için elde edildi. $-20 \le x \le 20$ aralığında konum adımı h = 0.1 ve zaman adımı

Şekil 5.5. t = 80 için Şekil 5.4'ün grafiğinin büyütülmüş şekli.

Tablo 5.9: h = 0.1, $\mu = 1$, $A_1 = -2$, $A_2 = 1$, $0 \le x \le 150$ için Problem 2'nin Uygulama 1 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3332816	22.6665313	-3.1415739	13.3332816	22.6665313	
5	-3.1415915	13.3333597	22.6667161	-3.1415764	13.3333171	22.6665355	
15	-3.1416695	13.3323996	22.6678073	-3.1415708	13.3321168	22.6665712	
25	-3.1417066	13.3336376	22.6681233	-3.1415773	13.3332701	22.6665522	
35	-3.1417376	13.3337243	22.6684649	-3.1415776	13.3332725	22.6665557	
45	-3.1417686	13.3338096	22.6688067	-3.1415779	13.3332735	22.6665592	
55	-3.1417997	13.3338945	22.6691485	-3.1415782	13.3332740	22.6665627	

 $\Delta t = 0.01 \text{ alındı. Bu problemde solitary dalgaların oluşma sayıları <math>\mu$ değişkenine bağlı olduğu için sırasıyla $\mu = 1.0, 0.5, 0.1, 0.05, 0.02$ ve 0.005 alındı. $\mu = 1.0$ için I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimi sırası ile %0.685 × 10⁻³, %9.38 × 10⁻², %3.052 × 10⁻³ olup Şekil 5.7 (a)'da görüldüğü gibi biri negatif diğeri pozitif genliğe sahip iki dalga oluşmaktadır. $\mu = 0.5$ için I_1, I_2 ve I_3 korunum sabitlerindeki değişim %0.339 × 10⁻³, %2.30 × 10⁻², %0.1 × 10⁻³ olup Şekil 5.7 (b)'de görüldüğü gibi solitary dalga açık bir şekilde oluşmamaktadır. Fakat $\mu = 0.1$ alındığında Şekil 5.7 (c)'deki gibi solitary dalganın belirgin bir şekilde oluştuğu görüldü ve korunum sabitlerinin değişimi %5.127 × 10⁻³, %26.3 × 10⁻², %1.851 × 10⁻³ olarak elde edildi. Benzer şekilde $\mu = 0.05$ için Şekil 5.7 (d)'de görülen iki tane solitary dalga oluşurken korunum sabitlerindeki değişim %37.160 × 10⁻³, %55.913 × 10⁻³, %44.818 × 10⁻³ olarak bulundu. $\mu = 0.02$ için Şekil 5.7 (e)'deki gibi üç tane ve $\mu = 0.005$ için Şekil 5.7 (f)'deki gibi yedi tane solitary dalga oluşurken korunum sabitlerindeki değişimler μ 'nün önceki değerlerine göre oldukça büyük olup elde edilen değerler Tablo 5.11'de verildi.

Tablo 5.10: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [36]'da elde edilen sonuçlarla karşılaştırılması.

	Kollok	asyon Yöntem	[36]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415739	13.3332816	22.6665313	-3.14158	13.33330	22.66652
10	-3.1416554	13.3190596	22.6701220	-3.14179	13.33364	22.66623
20	-3.1416910	13.3335464	22.6679530	-3.14170	13.33336	22.66598
30	-3.1417221	13.3336813	22.6682941	-3.14167	13.33330	22.66571
40	-3.1417531	13.3337670	22.6686358	-3.14166	13.33336	22.66677
50	-3.1417842	13.3338521	22.6689776	-3.14170	13.33331	22.66669
55	-3.1417997	13.3338945	22.6691485	-3.14172	13.33305	22.66608

Şekil 5.6. $h=0.1,\,A_1=-2,\,A_2=1,\,\mu=1,\,0\leq x\leq 150$ için iki dalganın girişimi.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-1}^{n} + 5\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{2}\right]^{2}$$

alınırsa (5.1.4) denklem sistemindeki Z_m

$$Z_m = 3U^2 = \frac{3}{4} \left[\delta_{m-1}^n + 5\delta_m^n + 5\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(5.1.8)

şeklinde elde edilir. Problem 1 ve 2 için (5.1.4) denklem sisteminde (5.1.8) kullanılarak elde edilen sayısal değerler Tablo 5.12 ve 5.13'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.12'de gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 15.11257402 × 10⁻³, 11.17518333 × 10⁻³; h = 0.05

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066073	0.8862269		1.7724537	1.3159788	0.8862269
3		1.7724575	2.5066329	0.8862412		1.7724772	1.3108104	0.8879092
6	1	1.7724455	2.5083459	0.8862054	0.05	1.7722951	1.3095477	0.8872762
9		1.7724423	2.5089578	0.8861997		1.7720383	1.3090815	0.8865516
12		1.7724416	2.5089588	0.8861999		1.7717951	1.3086207	0.8858297
0		1.7724537	1.8799607	0.8862269		1.7724537	1.2783800	0.8862269
3		1.7724591	1.8794240	0.8862548		1.7722682	1.2675724	0.8938665
6	0.5	1.7724493	1.8803887	0.8862197	0.02	1.7707571	1.2633830	0.8876738
9		1.7724486	1.8804044	0.8862190		1.7690538	1.2599281	0.8814034
12		1.7724477	1.8803945	0.8862180		1.7674587	1.2566543	0.8753965
0		1.7724537	1.3786434	0.8862269		1.7724537	1.2595806	0.8862269
3		1.7724794	1.3755873	0.8867179		1.7706812	1.2537689	0.9975863
6	0.1	1.7724372	1.3754596	0.8866053	0.005	1.7561181	1.2181356	0.9105701
9		1.7724019	1.3752156	0.8864986		1.7428768	1.1841292	0.8076883
12		1.7723629	1.3750049	0.8863910		1.7355300	1.1793688	0.8151322

Tablo 5.11: Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri.

için sırasıyla 7.79431715 × 10^{-3} , 5.78487281 × 10^{-3} olduğu görülür. h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 5.12: $\mu = 1, A = 0.25, h = 0.1$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763818	0.1636197	0.0050196	3.70747076	2.29037560
0.1	10.0	0.7675382	0.1606527	0.0048389	7.41822755	4.93271064
	15.0	0.7588642	0.1577642	0.0046661	11.20227571	7.90370947
	20.0	0.7503589	0.1549537	0.0045009	15.11257402	11.17518333
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7808345	0.1651176	0.0051119	1.88273137	1.17056601
0.05	10.0	0.7763035	0.1635880	0.0050176	3.78603277	2.53148796
	15.0	0.7718174	0.1620793	0.0049254	5.74579222	4.07299799
	20.0	0.7673764	0.1605917	0.0048353	7.79431715	5.78487281

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 5.13'te gösterildi. Tabloda t = 20.0'de L_2 ve L_{∞} hatalarının $\Delta t = 0.2$ için sırasıyla 15.23677556 × 10⁻³, 11.32282421 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 15.23675040 × 10⁻³, 11.32253733 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 15.23674580 × 10⁻³, 11.32244522 × 10⁻³ olduğu görülür. Bu değerlere göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında oldukça az bir artış olduğu görülmektedir.

Uygulama 2 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 ve zaman adımı Δt 'nin 0.025 ve 0.01 değerleri için programın uygun

Şekil 5.7: Maxwellian başlangıç şartının t = 12'de a) $\mu = 1, b$) $\mu = 0.5, c$) $\mu = 0.1, d$) $\mu = 0.05, e$) $\mu = 0.02, f$) $\mu = 0.005$ değerleri için grafiği.

değerler üretmediği görüldü. Benzer şekilde üçüncü problem μ 'nün faklı değerleri için çalıştırıldığında uygun değerler üretmediği görüldü.

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 5\delta_{m-1}^{n} + 6\delta_{m}^{n} + 5\delta_{m+1}^{n} + \delta_{m+2}^{n}}{3}\right]^{2}$$

alınırsa (5.1.4) denklem sistemindek
i \mathbb{Z}_m

$$Z_m = 3U^2 = \frac{1}{3} \left[\delta_{m-2}^n + 5\delta_{m-1}^n + 6\delta_m^n + 5\delta_{m+1}^n + \delta_{m+2}^n \right]^2$$
(5.1.9)

şeklinde elde edilir. Problem 1, 2 ve 3 için (5.1.4) denklem sisteminde (5.1.9) kullanılarak elde edilen sayısal değerler Tablo 5.14-5.18'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.14'te verildi. Tabloda t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla 0.13465154 × 10⁻³, 0.12492940 × 10⁻³; h = 0.05 için sırasıyla 0.04334957 × 10⁻³, 0.04410020 × 10⁻³ olduğu görülür. Ayrıca Tablo 5.14'te verilen korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla % 0.036×10^{-5} , % 5.487×10^{-5} , % 0.338×10^{-5} ; h = 0.05 içinsırasıyla % 0.013×10^{-5} ,

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7763123	0.1635962	0.0050181	3.73737343	2.33840629
0.2	10.0	0.7674041	0.1606081	0.0048362	7.47885079	5.01745347
	15.0	0.7586704	0.1577009	0.0046624	11.29235556	8.02975632
	20.0	0.7501104	0.1548741	0.0044962	15.23677556	11.32282421
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7763122	0.1635962	0.0050181	3.73740911	2.33831482
0.1	10.0	0.7674038	0.1606080	0.0048362	7.47889006	5.01728267
	15.0	0.7586701	0.1577008	0.0046624	11.29237253	8.02952628
	20.0	0.7501100	0.1548739	0.0044962	15.23675040	11.32253733
	0.0	0.7853966	0.1667640	0.0052083	0.00000000	0.00000000
	5.0	0.7763121	0.1635962	0.0050181	3.73742192	2.33828520
0.01	10.0	0.7674038	0.1606080	0.0048362	7.47890501	5.01722749
	15.0	0.7586700	0.1577007	0.0046624	11.29238099	8.02945223
	20.0	0.7501099	0.1548738	0.0044962	15.23674580	11.32244522

Tablo 5.13: $\mu = 1$, A = 0.25, $\Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

 $\%0.324 \times 10^{-5}$, $\%0.045 \times 10^{-5}$ olarak hesaplandı. Elde edilen sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı açıkça görülmektedir.

Tablo 5.14: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

		-	-	-	- 7	- 7
h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
0.1	5.0	0.7853967	0.1666664	0.0052083	0.03448444	0.03004033
	10.0	0.7853969	0.1666665	0.0052083	0.06863416	0.06163863
	15.0	0.7853972	0.1666668	0.0052083	0.10212609	0.09368629
	20.0	0.7853976	0.1666670	0.0052084	0.13465154	0.12492940
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854101	0.1666679	0.0052084	0.01106357	0.01052931
0.05	10.0	0.7854101	01666679.	0.0052084	0.02203533	0.02165221
	15.0	0.7854101	0.1666679	0.0052084	0.03282567	0.03297296
	20.0	0.7854101	0.1666679	0.0052084	0.04334957	0.04410020

Tablo 5.15'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.17597617 × 10⁻³, 0.17714251 × 10⁻³, $\Delta t = 0.1$ için sırasıyla 0.17541638 × 10⁻³, 0.17660190 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 0.17523269 × 10⁻³, 0.17642205 × 10⁻³ olduğu görülür. Görüldüğü gibi Δt zaman adımı azaldıkça L_2 ve L_{∞} hata değerlerinde oldukça az bir düşüş olmaktadır. Ayrıca Tablo 5.15 'te verilen korunum sabitlerinin t = 0.0ve t = 20.0'deki değişimi $\Delta t = 0.2$ için sırasıyla %0.851 × 10⁻⁵, %4.210 × 10⁻⁵, %2.916 × 10⁻⁵, $\Delta t = 0.1$ için sırasıyla %0.127 × 10⁻⁵, %5.346 × 10⁻⁵, %0.626 × 10⁻⁵ ve $\Delta t = 0.01$ için sırasıyla %0.024 × 10⁻⁵, %5.507 × 10⁻⁵, %0.297 × 10⁻⁵ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_3 korunum sabitlerindeki değişimin azaldığı, I_2 korunum sabitindeki değişimin ise arttığı görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666661	0.0052083	0.08943312	0.08705619
0.2	10.0	0.7853965	0.1666662	0.0052083	0.08943312	0.08705619
	15.0	0.7853965	0.1666662	0.0052083	0.13323852	0.13221336
	20.0	0.7853965	0.1666662	0.0052083	0.17597617	0.17714251
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04476302	0.04237758
0.1	10.0	0.7853966	0.1666662	0.0052083	0.08915683	0.08678999
	15.0	0.7853966	0.1666662	0.0052083	0.13282169	0.13180043
	20.0	0.7853966	0.1666661	0.0052083	0.17541638	0.17660190
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04471776	0.04233505
0.01	10.0	0.7853966	0.1666662	0.0052083	0.08906601	0.08670116
	15.0	0.7853966	0.1666662	0.0052083	0.13268479	0.13166289
	20.0	0.7853966	0.1666662	0.0052083	0.17523269	0.17642205

Tablo 5.15: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1' in Uygulama 3 ile elde edilen sayısal değerleri.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$, ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2, A_2 = 1$ için h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Elde edilen değerler Tablo 5.16 ve 5.17'de verildi. Tabloda I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\% 0.025 \times 10^{-3}, \% 0.012 \times 10^{-3}, \% 0.004 \times 10^{-3}$ ve $\Delta t = 0.01$ için $\% 0.025 \times 10^{-3}, \% 0.010 \times 10^{-3}, \% 0.008 \times 10^{-3}$ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 'deki değişimin aynı kaldığı, I_2 'deki değişimin azaldığı ve I_3 'deki değişimin ise azaldığı görülmektedir. Problem 2 için korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimleri ise $\Delta t = 0.025$ için sırasıyla $\% 7.188 \times 10^{-3}, \% 0.139 \times 10^{-3}, \% 11.546 \times 10^{-3}; \Delta t = 0.01$ için sırasıyla $\% 0.137 \times 10^{-3}, \% 0.057 \times 10^{-3}, \% 0.139 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlara göre zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Problem 3 için (1.7.3) ile verilendenklemin sayısal çözümleri farklı μ değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. $\mu = 1$, 0.5, 0.1, 0.05, 0.02 ve 0.005 alınarak elde edilen korunum sabitlerinin değerleri Tablo 5.18'de verildi.

Tablo 5.16: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 3 ile elde edilen korunum sabitleri.

	2	$\Delta t = 0.025$			$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3			
0	-3.1415739	13.3332816	22.6665313	-3.1415739	13.3332816	22.6665313			
5	-3.1415915	13.3333597	22.6667161	-3.1415764	13.3333171	22.6665355			
15	-3.1416695	13.3323996	22.6678073	-3.1415708	13.3321168	22.6665712			
25	-3.1417066	13.3336376	22.6681233	-3.1415773	13.3332701	22.6665522			
35	-3.1417376	13.3337243	22.6684649	-3.1415776	13.3332725	22.6665557			
45	-3.1417686	13.3338096	22.6688067	-3.1415779	13.3332735	22.6665592			
55	-3.1417997	13.3338945	22.6691485	-3.1415782	13.3332740	22.6665627			

Tablo 5.17: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 3 ile elde edilen korunum sabitleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333253	1.4166643	4.7123733	3.3333253	1.4166643		
10	4.7123744	3.3333316	1.4166642	4.7123744	3.3333316	1.4166642		
20	4.7123744	3.3333302	1.4166640	4.7123744	3.3333302	1.4166641		
30	4.7123744	3.3334406	1.4166576	4.7123744	3.3334406	1.4166617		
40	4.7123749	3.3332759	1.4166614	4.7123748	3.3332758	1.4166638		
50	4.7123751	3.3332328	1.4166646	4.7123751	3.3332328	1.4166646		
55	4.7123750	3.3332427	1.4166646	4.7123750	3.3332427	1.4166645		
60	4.7123748	3.3332663	1.4166645	4.7123748	3.3332662	1.4166644		
70	4.7123745	3.3333083	1.4166643	4.7123745	3.3333083	1.4166643		
80	4.7123745	3.3333257	1.4166643	4.7123744	3.3333256	1.4166642		

Uygulama 4:

MEW denkleminde $U^2 U_x$ lineer olmayan terim (2.1.19) şeklinde yazılır ve $U U_x$ yerine

$$UU_x = \left[U^{n+1}U_x^n + U^n U_x^{n+1} - U^n U_x^n\right]$$
(5.1.10)

yaklaşımı kullanılırsa (5.1.4) denklem sistemindeki Z_m

$$Z_m = 3UUU_x = 3U\left[U^{n+1}U_x^n + U^n U_x^{n+1} - U^n U_x^n\right]$$
(5.1.11)

şeklinde elde edilir. Problem 1, 2 ve 3 için (5.1.4) denklem sisteminde (5.1.11) kullanılarak elde edilen sayısal değerler Tablo 5.19-5.23'te verildi. Tablo 5.19'da Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.17526569 \times 10^{-3}$, $0.17645446 \times 10^{-3}$; h = 0.05 için sırasıyla $0.04333813 \times 10^{-3}$, $0.04408883 \times 10^{-3}$ olduğu görülür. Tablo 5.19'da korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla % 0.032×10^{-5} ,

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066073	0.8862269		1.7724537	1.3159788	0.8862269
3		1.7724539	2.5065988	0.8862275		1.7724592	1.3157582	0.8862842
6	1	1.7724544	2.5065749	0.8862292	0.05	1.7724896	1.3148498	0.8866183
9		1.7724551	2.5065412	0.8862318		1.7725532	1.3132644	0.8873450
12		1.7724560	2.5065057	0.8862348		1.7726056	1.3119372	0.8879634
0		1.7724537	1.8799607	0.8862269		1.7724537	1.2783800	0.8862269
3		1.7724542	1.8799233	0.8862291		1.7724679	1.2781196	0.8864151
6	0.5	1.7724556	1.8798191	0.8862351	0.02	1.7726374	1.2762565	0.8888743
9		1.7724575	1.8796704	0.8862437		1.7729526	1.2734237	0.8936164
12		1.7724596	1.8795092	0.8862531		1.7731141	1.2722436	0.8961936
0		1.7724537	1.3786434	0.8862269		1.7724537	1.2595806	0.8862269
3		1.7724566	1.3784738	0.8862504		1.7725327	1.2594256	0.8876121
6	0.1	1.7724668	1.3779460	0.8863380	0.005	1.7747222	1.2616595	0.9355362
9		1.7724846	1.3771309	0.8864965		1.7779160	1.2697181	0.9987660
12		1.7725026	1.3763139	0.8866606		1.7789986	1.2687438	1.0121738

Tablo 5.18: Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri.

 $\%5.481 \times 10^{-5}$, $\%0.350 \times 10^{-5}$; h = 0.05 için sırasıyla $\%0.007 \times 10^{-5}$, $\%0.319 \times 10^{-5}$, $\%0.054 \times 10^{-5}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 5.19: $\mu = 1, A = 0.25, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
0.1	5.0	0.7853966	0.1666662	0.0052083	0.04472579	0.04234269
	10.0	0.7853966	0.1666662	0.0052083	0.08908215	0.08671724
	15.0	0.7853966	0.1666662	0.0052083	0.13270923	0.13168797
	20.0	0.7853966	0.1666662	0.0052083	0.17526569	0.17645446
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.01106063	0.01052653
0.05	10.0	0.7854101	0.1666679	0.0052084	0.02202948	0.02164655
	15.0	0.7854101	0.1666679	0.0052084	0.03281697	0.03296440
	20.0	0.7854101	0.1666679	0.0052084	0.04333813	0.04408883

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için elde edilen değerler Tablo 5.20'de verildi. Tablodan t = 20.0 de L_2 ve L_{∞} hata değerlerinin $\Delta t = 0.2$ için sırasıyla $0.17579252 \times 10^{-3}$, $0.17695971 \times 10^{-3}$, $\Delta t = 0.1$ için sırasıyla $0.17537051 \times 10^{-3}$, $0.17655650 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.17523223 \times 10^{-3}$, $0.17642159 \times 10^{-3}$ olduğu görülür. Böylece Δt değerleri azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir düşüş görülür. Ayrıca Tablo 5.20'de korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri $\Delta t = 0.2$ için sırasıyla % 0.505×10^{-5} , % 3.913×10^{-5} , % 3.481×10^{-5} , $\Delta t = 0.1$ için sırasıyla $\%0.085 \times 10^{-5}$, $\%5.304 \times 10^{-5}$, $\%0.703 \times 10^{-5}$ ve $\Delta t = 0.01$ için sırasıyla $\%0.024 \times 10^{-5}$, $\%5.507 \times 10^{-5}$, $\%0.298 \times 10^{-5}$ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_3 'deki değişimin azaldığı, I_2 'deki değişimin ise arttığı görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666661	0.0052083	0.04485354	0.04246093
0.2	10.0	0.7853966	0.1666662	0.0052083	0.08933943	0.08696718
	15.0	0.7853966	0.1666662	0.0052083	0.13309915	0.13207927
	20.0	0.7853966	0.1666662	0.0052083	0.17579252	0.17695971
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04475125	0.04236666
0.1	10.0	0.7853966	0.1666662	0.0052083	0.08913341	0.08676778
	15.0	0.7853966	0.1666662	0.0052083	0.13278686	0.13176692
	20.0	0.7853966	0.1666662	0.0052083	0.17537051	0.17655650
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666662	0.0052083	0.04471765	0.04233494
0.01	10.0	0.7853966	0.1666662	0.0052083	0.08906578	0.08670094
	15.0	0.7853966	0.1666662	0.0052083	0.13268444	0.13166256
	20.0	0.7853966	0.1666662	0.0052083	0.17523223	0.17642159

Tablo 5.20: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$, ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2, A_2 = 1$ için h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Elde edilen değerler Tablo 5.21 ve 5.22'de verildi. Tabloda I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla $\% 0.024 \times 10^{-3}, \% 0.007 \times 10^{-3}, \% 0.018 \times 10^{-3}$; $\Delta t = 0.01$ için sırasıyla $\% 0.025 \times 10^{-3}, \% 0.010 \times 10^{-3}, \% 0.009 \times 10^{-3}$ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_2 korunum sabitlerindeki değişimin arttığı, I_3 korunum sabitindeki değişimin ise azaldığı görülmektedir. Problem 2 için korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimi ise $\Delta t = 0.025$ için sırasıyla $\% 2.183 \times 10^{-3}, \% 4.117 \times 10^{-3}, \% 8.706 \times 10^{-3}; \Delta t = 0.01$ için sırasıyla $\% 0.154 \times 10^{-3}, \% 0.129 \times 10^{-3}, \% 0.032 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Problem 3 için (1.7.3) ile verilen denklemin sayısal çözümleri farklı μ değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. $\mu = 1.0$, 0.5, 0.1, 0.05, 0.02 ve 0.005 alınarak elde edilen korunum sabitlerinin değerleri Tablo 5.23'te verildi.

	Δ	t = 0.025			$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3			
0	4.7123733	3.3333253	1.4166643	4.7123733	3.3333253	1.4166643			
10	4.7123744	3.3333314	1.4166641	4.7123744	3.3333316	1.4166642			
20	4.7123741	3.3333296	1.4166635	4.7123744	3.3333301	1.4166641			
30	4.7123663	3.3334249	1.4166428	4.7123731	3.3334381	1.4166594			
40	4.7123704	3.3332677	1.4166529	4.7123741	3.3332745	1.4166624			
50	4.7123751	3.3332327	1.4166643	4.7123751	3.3332328	1.4166645			
55	4.7123750	3.3332427	1.4166644	4.7123750	3.3332427	1.4166645			
60	4.7123749	3.3332662	1.4166643	4.7123748	3.3332662	1.4166644			
70	4.7123745	3.3333082	1.4166641	4.7123745	3.3333083	1.4166642			
80	4.7123744	3.3333255	1.4166641	4.7123744	3.3333256	1.4166642			

Tablo 5.21: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

Tablo 5.22: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3332816	22.6665313	-3.1415739	13.3332816	22.6665313		
5	-3.1415760	13.3332863	22.6664333	-3.1415774	13.3333181	22.6665414		
15	-3.1415515	13.3319573	22.6660387	-3.1415718	13.3321176	22.6665788		
25	-3.1415514	13.3330000	22.6656351	-3.1415792	13.3332658	22.6665496		
35	-3.1415362	13.3329118	22.6652758	-3.1415791	13.3332664	22.6665459		
45	-3.1415207	13.3328225	22.6649169	-3.1415789	13.3332656	22.6665422		
55	-3.1415053	13.3327327	22.6645580	-3.1415787	13.3332644	22.6665385		

Uygulama 5:

MEW denkleminde $U^2 U_x$ lineer olmayan terim (2.1.19) şeklinde yazılır ve $U U_x$ yerine

$$UU_x = \frac{1}{2} \left[U^{n+1} U_x^n + U^n U_x^{n+1} \right]$$
 (5.1.12)

yaklaşımı kullanılırsa (5.1.4) denklem sistemindek
i \mathbb{Z}_m terimi

$$Z_m = 3UUU_x = \frac{3U}{2} \left[U^{n+1}U_x^n + U^n U_x^{n+1} \right]$$
(5.1.13)

şeklinde elde edilir. Problem 1 ve Problem 2 için (5.1.4) denklem sisteminde (5.1.13) kullanılarak elde edilen sayısal çözümler Tablo 5.24-5.26'da verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.24'te verildi. Tabloda t = 20.0 de L_2 ve L_{∞} hata değerlerinin h = 0.1 için sırasıyla 0.14613889 × 10⁻³, 0.16897121 × 10⁻³ ; h = 0.05için sırasıyla 0.10469101 × 10⁻³, 0.09658002 × 10⁻³ olduğu görülür. Elde edilen değerlerden h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0	1	1.7724537	2.5066073	0.8862269	0.05	1.7724537	1.3159788	0.8862269
3		1.7724574	2.5066329	0.8862412		1.7726035	1.3108928	0.8880007
6		1.7724441	2.5083434	0.8862037		1.7725362	1.3095638	0.8872542
9		1.7724400	2.5089541	0.8861973		1.7723932	1.3090304	0.8864164
12		1.7724392	2.5089549	0.8861973		1.7722635	1.3085022	0.8855819
0	0.5	1.7724537	1.8799607	0.8862269	0.02	1.7724537	1.2783800	0.8862269
3		1.7724602	1.8794254	0.8862559		1.7729872	1.2676756	0.8938591
6		1.7724493	1.8803869	0.8862185		1.7723328	1.2632517	0.8871956
9		1.7724487	1.8804022	0.8862173		1.7714714	1.2595701	0.8804778
12		1.7724482	1.8803921	0.8862162		1.7707016	1.2560701	0.8740369
0	0.1	1.7724537	1.3786434	0.8862269	0.005	1.7724537	1.2595806	0.8862269
3		1.7725156	1.3756304	0.8867647		1.7792680	1.2613396	1.0120353
6		1.7724946	1.3754887	0.8866320		1.7731905	1.2305017	0.9352276
9		1.7724807	1.3752308	0.8865054		1.7682570	1.2072799	0.8565995
12		1.7724630	1.3750063	0.8863777		1.7659767	1.2016347	0.8568529

Tablo 5.23: Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri.

Tablo 5.24'te korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla %18.301 × 10⁻³, %58.564 × 10⁻³, %117.046 × 10⁻³ ve h = 0.05 için sırasıyla %18.320 × 10⁻³, %58.621 × 10⁻³, %117.267 × 10⁻³ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin oldukça az arttığı görülmektedir. Tablo 5.25'te Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak

Tablo 5.24: $\mu = 1, h = 0.1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7854325	0.1666905	0.0052098	0.05003366	0.05797210
0.1	10.0	0.7854684	0.1667149	0.0052114	0.09879588	0.11500197
	15.0	0.7855044	0.1667393	0.0052129	0.14613889	0.16897121
	20.0	0.7855403	0.1667638	0.0052144	0.19189701	0.21797638
	0.0	0.7854101	0.1666923	0.0052084	0.00000000	0.00000000
	5.0	0.7854461	0.1666923	0.0052099	0.02589050	0.02784994
0.05	10.0	0.7854821	0.1667168	0.0052115	0.05167288	0.05367104
	15.0	0.7855180	0.1667412	0.0052130	0.07779694	0.07679227
	20.0	0.7855540	0.1667656	0.0052145	0.10469101	0.09658002

 Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata değerlerinin $\Delta t = 0.2$ için sırasıyla 0.42010623 × 10⁻³, 0.38674343 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 0.25125069 × 10⁻³, 0.26772831 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 0.17411883 × 10⁻³, 0.18471390 × 10⁻³ olduğu görülür. Bu sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hata değerlerinde oldukça az bir düşüş görülür . Ayrıca Tablo 5.25'te korunum sabitlerinin t = 0.0 ve t = 20.0 'deki değişimleri $\Delta t = 0.2$ için

sırasıyla %73.393 × 10⁻³, %234.812 × 10⁻³, %470.007 × 10⁻³; $\Delta t = 0.1$ için sırasıyla %36.634 × 10⁻³, %117.194 × 10⁻³, %234.398 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %3.658 × 10⁻³, %11.747 × 10⁻³, %23.383 × 10⁻³ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça korunum sabitlerinin değişiminde düşüşün olduğu görülmektedir.

A /		T	r	T	1 103	1 103
Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7855403	0.1667637	0.0052144	0.10378826	0.11151249
0.2	10.0	0.7856843	0.1668614	0.0052205	0.20722806	0.21485738
	15.0	0.7858286	0.1669594	0.0052267	0.31210047	0.30833238
	20.0	0.7859730	0.1670575	0.0052328	0.42010623	0.38674343
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.00000000
	5.0	0.7854684	0.1667149	0.0052114	0.06428805	0.07441304
0.1	10.0	0.7855403	0.1667637	0.0052144	0.12728567	0.14543377
	15.0	0.7856123	0.1668126	0.0052175	0.18945836	0.21081079
	20.0	0.7856843	0.1668615	0.0052205	0.25125069	0.26772831
	0.0	0.7853966	0.1666661	0.0052083	0.00000000	0.000000000
	5.0	0.7854038	0.1666710	0.0052086	0.04483687	0.04514398
0.01	10.0	0.7854109	0.1666759	0.0052089	0.08904728	0.09176469
	15.0	0.7854181	0.1666808	0.0052092	0.13226217	0.13895564
	20.0	0.7854253	0.1666857	0.0052095	0.17411883	0.18471390

Tablo 5.25: $\mu = 1, A = 0.25, h = 0.1$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Hesaplamalar Problem 2 için ilk olarak, $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ için h = 0.1 alınarak Δt nin 0.025 ve 0.001 değerleri için yapılırken, ikinci olarak $A_1 = -2$, $A_2 = 1$ için $0 \le x \le 150$ aralığında konum adımı h = 0.1 alınarak zaman adımı Δt nin 0.025 ve 0.01 değerleri için yapıldı. Tablo 5.26'da $A_1 = 1$, $A_2 = 0.5$ ve $A_1 = -2$, $A_2 = 1$ genlikli iki dalganın korunum sabitlerinin değerleri verilmiştir. Tabloda korunum sabitlerinin değerlerinde çok hızlı bir düşüş olduğu görüldü.

Tablo 5.26: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2' nin Uygulama 5 ile elde edilen korunum sabitleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
		<i>u</i> = 0.020	-	~	$\Delta v = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333253	1.4166643	4.7123733	3.3333253	1.4166643		
10	4.7522075	3.4409224	1.5250986	4.7278232	3.3747850	1.4579486		
20	4.7961034	3.5620803	1.6523925	4.7438301	3.4180956	1.5017732		
30	4.8388914	3.6830495	1.7845161	4.7590565	3.4598913	1.5445459		
40	4.8762545	3.7872064	1.9004477	4.7700096	3.4885609	1.5734119		
50	4.9353596	3.9609873	2.1068701	4.7874949	3.5369585	1.6243955		
55	4.9682505	4.0597396	2.2292001	4.7966652	3.5624682	1.6516189		
60	5.0036631	4.1677756	2.3672406	4.8060328	3.5886617	1.6798220		
70	5.0836662	4.4183442	2.7043666	4.8253788	3.6431509	1.7393620		
80	5.1797237	4.7310466	3.1581886	4.8456057	3.7006755	1.8034850		

Uygulama 5 için Problem 2, $0 \le x \le 150$ aralığında konum adımı h = 0.1için Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü. Benzer şekilde Uygulama 5, üçüncü problem için μ 'nün faklı değerleri alınarak çalıştırıldığında uygun değerler üretmediği görüldü.

5.2 Kuintik B-spline Kollokasyon Yöntemi

Bu kısımda, (1.7.3) ile verilen denklemin kuintik B-spline kollokasyon yöntemi ile sayısal çözümleri elde edildi. MEW denklemindeki U(x, t) fonksiyonunun yaklaşık çözümü $U_N(x, t)$ olsun. Bu yaklaşık çözüm Bölüm 1'de (1.6.5.1) ile verilen $\phi_m(x)$ kuintik B-spline fonksiyonlar cinsinden

$$U_N(x,t) = \sum_{j=-2}^{N+2} \delta_j(t)\phi_j(x)$$
 (5.2.1)

şeklinde yazılır [14]. Burada δ_j 'ler zamana bağlı parametreler olup (1.7.3) denkleminin kuintik kollokasyon ve sınır şartlarından elde edilecektir. Her tipik $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) ile verilen lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Bu nedenle kuintik B-spline şekil fonksiyonları [0, 1] aralığında ξ cinsinden (1.6.5.2) şeklinde tanımlanır. $[x_m, x_{m+1}]$ aralığında $\phi_{m-2}(x), \phi_{m-1}(x),$ $\phi_m(x), \phi_{m+1}(x), \phi_{m+2}(x), \phi_{m+3}(x)$ dışındaki bütün spline fonksiyonlar sıfır olduğundan (5.1.1) yaklaşımı $[x_m, x_{m+1}]$ aralığında (1.6.5.2) baz fonksiyonlar cinsinden

$$U_N(x,t) = \sum_{j=m-2}^{m+3} \delta_j(t)\phi_j(x)$$
(5.2.2)

şeklinde yazılır. (1.6.5.2) ile verilen kuintik B-spline fonksiyonlar ve (5.2.2) yaklaşımı kullanılırsa x_m düğüm noktasında U_m ve U_m 'nin dördüncü mertebeye kadar türevlerinin δ_m eleman parametreleri cinsinden noktasal değerleri (1.6.5.3)'deki gibi elde edilir. Burada m = 0(1)N olup üst indis x'e göre türevi göstermektedir. $\phi_m(x)$ kuintik B-spline fonksiyonlar ile dördüncü mertebeye kadar olan türevleri $x_{m-3} \leq x \leq x_{m+3}$ aralığı dışında sıfırdır. (1.7.3) denkleminde (1.6.3.3) yaklaşımları yerine yazılırsa

$$\dot{\delta}_{m-2} + 26\dot{\delta}_{m-1} + 66\dot{\delta}_m + 26\dot{\delta}_{m+1} + \dot{\delta}_{m+2} + 15\frac{Z_m}{h}(-\delta_{m-2} - 10\delta_{m-1} + 10\delta_{m+1} + \delta_{m+2}) - 20\frac{\mu}{h^2}(\dot{\delta}_{m-2} + 2\dot{\delta}_{m-1} - 6\dot{\delta}_m + 2\dot{\delta}_{m+1} + \dot{\delta}_{m+2}) = 0$$
(5.2.3)

şeklinde bir denklem sistemi elde edilir. (5.2.3) denkleminde zamana bağlı δ parametresi yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ parametresi yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı yazılırsa denklemin genelleştirilmiş satırı

$$(1 - EZ_m - M)\delta_{m-2}^{n+1} + (26 - 10EZ_m - 2M)\delta_{m-1}^{n+1} + (66 + 6M)\delta_m^{n+1} + (26 + 10EZ_m - 2M)\delta_{m+1}^{n+1} + (1 + EZ_m - M)\delta_{m+2}^{n+1} = (1 + EZ_m - M)\delta_{m-2}^n + (26 + 10EZ_m - 2M)\delta_{m-1}^n + 66 + 6M)\delta_m^n$$
(5.2.4)

 $(+(26-10EZ_m-2M)\delta_{m+1}^n+(1-EZ_m-M)\delta_{m+2}^n$ $m=0,1,\ldots,N$ seklinde bulunur. Burada

$$Z_m = (\delta_{m-2} + 26\delta_{m-1} + 66\delta_m + 26\delta_{m+1} + \delta_{m+2})^2, \quad E = \frac{15\Delta t}{2h}, \quad M = \frac{20\mu}{h^2}$$

dir. Böylece (N + 5)- tane bilinmeyen (N + 1)- denklemden oluşan bir cebirsel denklem sistemi elde edilir. Bu denklem sisteminin çözülebilmesi için denklem sayısı ile bilinmeyen sayısı eşit olmalıdır. (1.6.5.3) yaklaşımlarında U_m ve U'_m sınırlardaki değerleri kullanılarak δ_{-2} , δ_{-1} ve δ_{N+1} , δ_{N+2} parametreleri sistemden yok edilerek $(N + 1) \times (N + 1)$ - boyutlu karesel cebirsel denklem sistemi elde edilir.

 δ_m^{n+1} parametresinin hesaplanabilmesi için δ^0 başlangıç vektörünün bilinmesi gereklidir. δ^0 vektörü problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanacaktır. Bunun için δ_j^0 belirlenecek parametreler olmak üzere t = 0.0 anında (5.2.1) denklemi

$$U_N(x,0) = \sum_{i=-2}^{N+2} \delta_i^0(t)\phi_i(x)$$
(5.2.5)

şeklinde yeniden yazılır. Başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x,0) = U(x_j,0)$$
 $j = 0, ..., N$

değerleri alınırsa $\delta^0 = (\delta_{-2}^0, \delta_{-1}^0, ..., \delta_{N+1}^0, \delta_{N+2}^0)$ olmak üzere (N+5)- tane bilinmeyen ve (N+1)- tane denklemden oluşan bir denklem sistemi elde edilir. (1.6.5.3) yak-laşımlarında U'_m ve U''_m sınırlardaki değerleri kullanıldığında ortaya çıkan $\delta_{-2}^0, \delta_{-1}^0$,

 $\delta^0_{N+1},\,\delta^0_{N+2}$ parametreleri yok edilerek $(N+1)\times (N+1)$ - denklem sistemi elde edilir. Bu denklem sistemi

54	60	6				-	δ_0		U_0
25.25	67.5	26.25	1				δ_1		U_1
1	26	66	26	1					
			·				:	=	÷
		1	26	66	26	1	δ_{N-2}		U_{N-2}
			1	26.25	67.5	25.25	δ_{N-1}		U_{N-1}
				6	60	54	δ_N		U_N

şeklinde matris formunda gösterilebilir. Bu sistemin çözülmesiyle başlangıç vektörleri elde edilir. Böylece (5.2.4) ile verilen denklem sisteminde başlangıç vektörleri kullanılarak istenilen t zamanındaki yaklaşık çözümler iterasyon yardımıyla bulunur. (5.2.4) sisteminin lineer olmayan terimlerine her zaman adımında (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanırsa U_N yaklaşık çözümleri iyileştirilebilir.

Kararlılık Analizi

Kuintik B-spline kollokasyon yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılığı önceki bölümlerde olduğu gibi von Neumann yöntemi ile incelendi. Böylece (5.2.4) sisteminin m. genelleştirilmiş satırı

$$\gamma_1 = 1 - E\lambda - M,$$
 $\gamma_2 = 26 - 10E\lambda - 2M,$
 $\gamma_3 = 66 + 6M,$ $\gamma_4 = 26 + 10E\lambda - 2M,$
 $\gamma_5 = 1 + E\lambda - M$

olmak üzere

$$\gamma_{1}\delta_{m-2}^{n+1} + \gamma_{2}\delta_{m-1}^{n+1} + \gamma_{3}\delta_{m}^{n+1} + \gamma_{4}\delta_{m+1}^{n+1} + \gamma_{5}\delta_{m+2}^{n+1} = \gamma_{5}\delta_{m-2}^{n} + \gamma_{4}\delta_{m-1}^{n} + \gamma_{3}\delta_{m}^{n} + \gamma_{2}\delta_{m+1}^{n} + \gamma_{1}\delta_{m+2}^{n}$$
(5.2.6)

şeklinde yazılabilir. (2.1.13) ifadesi (5.2.6) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1} [\gamma_1 e^{-2ikh} + \gamma_2 e^{-ikh} + \gamma_3 + \gamma_4 e^{ikh} + \gamma_5 e^{2ikh}] = \hat{\delta}^n [\gamma_5 e^{-2ikh} + \gamma_4 e^{-ikh} + \gamma_3 + \gamma_2 e^{ikh} + \gamma_1 e^{2ikh}]$$

bulunur. Bu denklemde (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 33 + 3M + (26 - 2M)\cos(kh) + (1 - M)\cos(2kh),$$

$$b = 10E\lambda\sin(kh) + E\lambda\sin(2kh).$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifad
e $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa buradan

$$g = \frac{a - ib}{a + ib}$$

elde edilir. Buradan |g| = 1 olup yöntem şartsız kararlıdır.

Lineerleştirme Uygulamaları

Bu kısımda (1.7.3) ile verilen MEW denklemindeki U^2U_x lineer olmayan terimi için dört farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m}^{n} + U_{m+1}^{n}}{2}\right]^{2} = \left[\frac{\delta_{m-2}^{n} + 27\delta_{m-1}^{n} + 92\delta_{m}^{n} + 92\delta_{m+1}^{n} + 27\delta_{m+2}^{n} + \delta_{m+3}^{n}}{2}\right]^{2}$$

alınırsa (5.2.4) denklem sistemindeki Z_m

$$Z_m = 3U^2 = \frac{3}{4} \left[\delta_{m-2}^n + 27\delta_{m-1}^n + 92\delta_m^n + 92\delta_{m+1}^n + 27\delta_{m+2}^n + \delta_{m+3}^n \right]^2$$
(5.2.7)

şeklinde elde edilir. Problem 1 ve 2 için (5.2.4) ile verilen denklem sisteminde (5.2.7) kullanılarak elde edilen sayısal değerler Tablo 5.27 ve 5.28'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.27'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 15.11257402 × 10⁻³, 11.17518333 × 10⁻³; h = 0.05 için sırasıyla 7.67358505 × 10⁻³, 5.68051599 × 10⁻³ olduğu görülür. Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 5.28'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 14.78835512 × 10⁻³, 10.94338430 × 10⁻³; $\Delta t = 0.1$

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763818	0.1636197	0.0050196	3.70747076	2.29037560
0.1	10.0	0.7675382	0.1606527	0.0048389	7.41822755	4.93271064
	15.0	0.7588642	0.1577642	0.0046661	11.20227571	7.90370947
	20.0	0.7503589	0.1549537	0.0045009	15.11257402	11.17518333
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7809053	0.1651415	0.0051134	1.85330468	1.14502071
0.05	10.0	0.7764430	0.1636350	0.0050205	3.72696873	2.48043068
	15.0	0.7720233	0.1621483	0.0049296	5.65642289	3.99594986
	20.0	0.7676465	0.1606818	0.0048407	7.67358505	5.68051599

Tablo 5.27: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

için sırasıyla 15.00461509 × 10⁻³, 11.09799729 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 15.19885224 × 10⁻³, 11.23686962 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h konum adımı azaldıkça hata norm değerlerinin azaldığı, Δt zaman adımı azaldıkça hata norm değerlerinin azaldığı, Δt zaman adımı azaldıkça

Tablo 5.28: $\mu = 1, A = 0.25, h = 0.1$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7765914	0.1636902	0.0050239	3.62176886	2.24056005
0.2	10.0	0.7679454	0.1607886	0.0048471	7.25102841	4.82720234
	15.0	0.7594576	0.1579607	0.0046778	10.95404871	7.73666265
	20.0	0.7511275	0.1552062	0.0045156	14.78835512	10.94338430
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7764516	0.1636432	0.0050210	3.67890805	2.27377080
0.1	10.0	0.7676739	0.1606980	0.0048417	7.36252037	4.89755497
	15.0	0.7590619	0.1578296	0.0046700	11.11826262	7.84806566
	20.0	0.7506148	0.1550377	0.0045058	15.00461509	11.09799729
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763259	0.1636010	0.0050184	3.73031566	2.30365808
0.01	10.0	0.7674298	0.1606165	0.0048367	7.46277093	4.96082303
	15.0	0.7587063	0.1577120	0.0046630	11.26583578	7.94819332
	20.0	0.7501543	0.1548865	0.0044970	15.19885224	11.23686962

Uygulama 1 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 alınarak zaman adımı Δt nin 0.025 ve 0.01 değerleri için programın uygun değerler üretmediği görüldü. Benzer şekilde üçüncü problemde μ 'nün farklı değerleri için program çalıştırıldığında uygun değerler elde edilmediği görüldü.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2} = \left[\frac{\delta_{m-3}^{n} + 27\delta_{m-2}^{n} + 93\delta_{m-1}^{n} + 118\delta_{m}^{n} + 93\delta_{m+1}^{n} + 27\delta_{m+2}^{n} + \delta_{m+3}^{n}}{3}\right]^{2}$$

alınırsa (5.2.4) denklem sistemindeki Z_m

$$Z_m = 3U^2 = \frac{1}{3} \left[\delta_{m-3}^n + 27\delta_{m-2}^n + 93\delta_{m-1}^n + 118\delta_m^n + 93\delta_{m+1}^n + 27\delta_{m+2}^n + \delta_{m+3}^n \right]^2$$
(5.2.8)

şeklinde elde edilir. Problem 1 ve 2 için (5.2.4) ile verilen denklem sisteminde (5.2.8) kullanılarak elde edilen sayısal değerler Tablo 5.29-5.33'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.29'da verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.13465154 \times 10^{-3}$, $0.12492940 \times 10^{-3}$; h = 0.05için sırasıyla $0.03298927 \times 10^{-3}$, $0.03084385 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir. Ayrıca Tablo 5.29'da korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla $\%0.130 \times 10^{-3}$, $\%0.409 \times 10^{-3}$, $\%0.735 \times 10^{-3}$; h = 0.05için sırasıyla $\%0.008 \times 10^{-3}$, $\%0.025 \times 10^{-3}$, $\%0.045 \times 10^{-3}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 5.29: $\mu = 1, A = 0.25, \Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

		-	-	_		
h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^{3}$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853967	0.1666664	0.0052083	0.03448444	0.03004033
0.1	10.0	0.7853969	0.1666665	0.0052083	0.06863416	0.06163863
	15.0	0.7853972	0.1666668	0.0052083	0.10212609	0.09368629
	20.0	0.7853976	0.1666670	0.0052084	0.13465154	0.12492940
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854102	0.1666679	0.0052084	0.00845560	0.00749644
0.05	10.0	0.7854102	01666679.	0.0052084	0.01682655	0.01532333
	15.0	0.7854102	0.1666680	0.0052084	0.02503043	0.02319911
	20.0	0.7854102	0.1666680	0.0052084	0.03298927	0.03084385

Tablo 5.30'da Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2,

0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.13505983 × 10⁻³, 0.12561049 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 0.13473262 × 10⁻³, 0.12506638 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 0.13462566 × 10⁻³, 0.13462566 × 10⁻³ olduğu görülür. Bu sonuçlara göre Δt zaman adımı azaldıkça L_2 ve L_{∞} hata norm değerlerinde oldukça az bir düşüş olmaktadır. Ayrıca Tablo 5.30'da verilen korunum sabitlerinin t = 0.0 ve t = 20.0 zamanlarındaki değişim sırasıyla $\Delta t = 0.2$ için sırasıyla %0.122×10⁻³, %0.397×10⁻³, %0.710×10⁻³; $\Delta t = 0.1$ için sırasıyla %0.129×10⁻³, %0.408×10⁻³, %0.735×10⁻³ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça korunum sabitlerindeki değişimin arttığı görülmektedir.

Tablo 5.30: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.03458561	0.03020061
0.2	10.0	0.7853968	0.1666665	0.0052083	0.06883697	0.06194961
	15.0	0.7853971	0.1666667	0.0052083	0.10243123	0.09417768
	20.0	0.7853975	0.1666670	0.0052084	0.13505983	0.12561049
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853967	0.1666664	0.0052083	0.03450454	0.03007267
0.1	10.0	0.7853969	0.1666665	0.0052083	0.06867446	0.06170134
	15.0	0.7853972	0.1666668	0.0052083	0.10218670	0.09378525
	20.0	0.7853976	0.1666670	0.0052084	0.13473262	0.12506638
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853967	0.1666664	0.0052083	0.03447802	0.03002991
0.01	10.0	0.7853969	0.1666665	0.0052083	0.06862130	0.06161844
	15.0	0.7853972	0.1666668	0.0052083	0.10210674	0.09365448
	20.0	0.7853976	0.1666670	0.0052084	0.13462566	0.12488540

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1, A_2 = 0.5$ için ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2, A_2 = 1$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Elde edilen değerler Tablo 5.31 ve 5.32'de verildi. Tablolarda I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla %0.913 × 10⁻³, %1.239 × 10⁻³, %3.642 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %0.911 × 10⁻³, %1.246 × 10⁻³, %3.625 × 10⁻³ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_3 'deki değişimin azaldığı, I_2 korunum sabitindeki değişimleri ise $\Delta t = 0.025$ için sırasıyla %20.748 × 10⁻³, $\%3.107 \times 10^{-3}$, %9.633 × 10⁻³ ; $\Delta t = 0.01$ için sırasıyla %13.883 × 10⁻³, %1.441 × 10⁻³, %1.502 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643		
10	4.7124067	3.3333908	1.4167147	4.7124066	3.3333906	1.4167146		
20	4.7124489	3.3334712	1.4167978	4.7124488	3.3334710	1.4167978		
30	4.7134952	3.3357542	1.4193399	4.7134954	3.3357547	1.4193446		
40	4.7124835	3.3338862	1.4177867	4.7124831	3.3338853	1.4177883		
50	4.7116042	3.3324790	1.4165506	4.7116040	3.3324786	1.4165504		
55	4.7116101	3.3325086	1.4165453	4.7116100	3.3325084	1.4165451		
60	4.7117778	3.3327032	1.4165863	4.7117777	3.3327030	1.4165861		
70	4.7121855	3.3330978	1.4166734	4.7121854	3.3330976	1.4166732		
80	4.7124163	3.3332881	1.4167159	4.7124162	3.3332879	1.4167157		

Tablo 5.31: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

Tablo 5.32: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 2 ile elde edilen sayısal değerleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3332981	22.6665313	-3.1415739	13.3332981	22.6665313		
5	-3.1414121	13.3332873	22.6661607	-3.1413935	13.3332320	22.6659293		
15	-3.1468018	13.3228711	22.6585735	-3.1467067	13.3225953	22.6573688		
25	-3.1414776	13.3333614	22.6676279	-3.1413518	13.3330023	22.6660954		
35	-3.1416665	13.3335431	22.6680446	-3.1415110	13.3331014	22.6661815		
45	-3.1419452	13.3336311	22.6683806	-3.1417596	13.3331070	22.6661872		
55	-3.1422257	13.3337124	22.6687147	-3.1420100	13.3331060	22.6661909		

Problem 3 için (1.7.3) denkleminin sayısal çözümleri μ 'nün farklı değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. Bu problemde solitary dalgaların oluşma sayıları μ değerine bağlı olduğu için sırasıyla $\mu = 1.0$, 0.5, 0.1, 0.05, 0.02 ve 0.005 alınarak elde edilen korunum sabitlerinin değerleri Tablo 5.33'te verildi.

Uygulama 3:

MEW denkleminde U^2U_x lineer olmayan terim (2.1.19) şeklinde yazılır ve UU_x yerine (5.1.10) ile verilen eşitlik alınırsa (5.2.4) denklem sistemindeki Z_m

$$Z_m = 3UUU_x = 3U\left[U^{n+1}U_x^n + U^n U_x^{n+1} - U^n U_x^n\right]$$
(5.2.9)

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066283	0.8862269		1.7724537	1.3159798	0.8862269
3		1.7724534	2.5066258	0.8862267		1.7722734	1.3156015	0.8859075
6	1	1.7724530	2.5066291	0.8862259	0.05	1.7719871	1.3150896	0.8850761
9		1.7724527	2.5066293	0.8862256		1.7716978	1.3145904	0.8842399
12		1.7724522	2.5066291	0.8862255		1.7714098	1.3140913	0.8834063
0		1.7724537	1.8799712	0.8862269		1.7724537	1.2783804	0.8862269
3		1.7724525	1.8799672	0.8862257		1.7709762	1.2752603	0.8828002
6	0.5	1.7724515	1.8799683	0.8862237	0.02	1.7687594	1.2715081	0.8762963
9		1.7724507	1.8799672	0.8862227		1.7664757	1.2669379	0.8670081
12		1.7724499	1.8799662	0.8862217		1.7642955	1.2627104	0.8585407
0		1.7724537	1.3786455	0.8862269		1.7724537	1.2595807	0.8862269
3		1.7724208	1.3785732	0.8861874		1.7580569	1.2460949	0.9283076
6	0.1	1.7723688	1.3784890	0.8860671	0.005	1.7449184	1.2295179	0.8598480
9		1.7723171	1.3784039	0.8859470		1.7245358	1.1846764	0.7734852
12		1.7722653	1.3783193	0.8858270		1.7142953	1.1682828	0.7449770

Tablo 5.33: Maxwellian başlangıç şartının farklı μ değerleri için elde edilen korunum sabitleri.

şeklinde elde edilir. Problem 1, 2 ve 3 için (5.2.4) ile verilen denklem sisteminde (5.2.9) kullanılarak elde edilen sayısal değerler Tablo 5.34- 5.44'te verildi. Tablo 5.34'te Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 0.058×10^{-5} , 0.038×10^{-5} ve h = 0.05 için sırasıyla 0.087×10^{-5} , 0.041×10^{-5} olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin arttığı görülmektedir. Tablo 5.34'te korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla $\%0.007 \times 10^{-5}$, $\%0.024 \times 10^{-5}$, $\%0.049 \times 10^{-5}$; h = 0.05 için sırasıyla $\%0.007 \times 10^{-5}$, $\%0.049 \times 10^{-5}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin aynı kaldığı görülmektedir.

Tablo 5.34: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.00012817	0.00009554
0.1	10.0	0.7853966	0.1666664	0.0052083	0.00026757	0.00019542
	15.0	0.7853966	0.1666664	0.0052083	0.00042037	0.00029409
	20.0	0.7853966	0.1666664	0.0052083	0.00058949	0.00038610
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854101	0.1666679	0.0052084	0.00021872	0.00010430
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00043707	0.00020851
	15.0	0.7854101	0.1666679	0.0052084	0.00065468	0.00031232
	20.0	0.7854101	0.1666679	0.0052084	0.00087116	0.00041612

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 için elde edilen sayısal değerler Tablo 5.35'te verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.136×10^{-5} , 0.090×10^{-5} , $\Delta t = 0.1$ için sırasıyla 0.070×10^{-5} , 0.048×10^{-5} ve $\Delta t = 0.01$ için sırasıyla 0.056×10^{-5} , 0.035×10^{-5} olduğu görülür. Elde edilen sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hata norm değerlerinde düşüş gözlendi. Ayrıca Tablo 5.35'te verilen korunum sabitlerinin t = 0.0 ve t = 20.0 zamanlarındaki değişimi sırasıyla $\Delta t = 0.2$ için sırasıyla $\%0.472 \times 10^{-5}$, $\%1.569 \times 10^{-5}$, $\%3.139 \times 10^{-5}$; $\Delta t = 0.1$ için sırasıyla $\%0.059 \times 10^{-5}$, $\%0.196 \times 10^{-5}$, $\%0.392 \times 10^{-5}$ ve $\Delta t = 0.01$ için sırasıyla $\%0.0006 \times 10^{-5}$, $\%0.00017 \times 10^{-5}$, $\%0.00040 \times 10^{-5}$ olarak bulundu. Bu sonuçlara göre zaman adımı azaldıkça korunum sabitlerindeki değişimin azaldığı açıkça görülmektedir.

Tablo 5.35: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0.2	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666663	0.0052083	0.00031324	0.00020682
	10.0	0.7853966	0.1666663	0.0052083	0.00064185	0.00043209
	15.0	0.7853966	0.1666663	0.0052083	0.00098964	0.00066822
	20.0	0.7853965	0.1666663	0.0052083	0.00136087	0.00090705
0.1	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666663	0.0052083	0.00015291	0.00011671
	10.0	0.7853966	0.1666663	0.0052083	0.00031926	0.00024135
	15.0	0.7853966	0.1666663	0.0052083	0.00050183	0.00036761
	20.0	0.7853966	0.1666663	0.0052083	0.00070401	0.00048923
0.01	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666664	0.0052083	0.00012326	0.00008868
	10.0	0.7853966	0.1666664	0.0052083	0.00025662	0.00018057
	15.0	0.7853966	0.1666664	0.0052083	0.00040204	0.00027036
	20.0	0.7853966	0.1666664	0.0052083	0.00056222	0.00035288

Tablo 5.36'da Problem 1'in t = 0.0, 5.0, 10.0, 15.0, 20.0 zamanlarında elde edilen sayısal çözümlerinin aldığı maksimum genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın belirtilen zamanlardaki hızları verildi. Tablodan görüldüğü gibi tek dalganın genliği t = 0.0'da x = 30.0 noktasında 0.25 iken t = 20.0'de x = 30.6 noktasında 0.249992'dir. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 8×10^{-6} olarak bulundu. Yine tablodan solitary dalganın t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genliğe sahip olduğu görülmektedir. t = 20.0'de dalganın hızı 0.03122 olup bu değer dalganın başlangıç yani t = 0.0'daki hızı olan 0.03125 değerine oldukça yakındır. Problem 1'in t = 20.0'deki tam ve sayısal çözümleri arasındaki hata dağılımının grafiği Şekil 5.8'de verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

t	Konum	Genlik	Hız
0.0	30.0	0.250000	0.03125
5.0	30.2	0.249760	0.03119
10.0	30.3	0.249981	0.03124
15.0	30.5	0.249877	0.03121
20.0	30.6	0.249922	0.03123

Tablo 5.36: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 3 ile elde edilen konum, genlik ve hız değerleri.

Şekil 5.8: Solitary dalganın $h=0.1,~\Delta t=0.05,~\mu=1,~A=0.25$ için t=20zamanındaki hata grafiği.

Ayrıca Problem 1'in sayısal değerleri t = 0.01 zamanında farklı A değerleri için elde edildi. Elde edilen hata normları ve korunum sabitleri Tablo 5.37'de verildi. Tablo 5.37'den hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görüldü. Tablo 5.38'de ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tablodan solitary dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile hesaplandı. Elde edilen sonuçlar Tablo 5.39'da verildi. Tablo incelendiğinde, zaman adımı Δt_m sabit olarak alındığında elde edilen yakınsama oranının giderek azaldığı
A	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0	0.7853966	0.1666664	0.0052083	0.00000000	0.0000000
	5	0.7853966	0.1666664	0.0052083	0.00012332	0.00008879
0.25	10	0.7853966	0.1666664	0.0052083	0.00025675	0.00018079
	15	0.7853966	0.1666664	0.0052083	0.00040221	0.00027071
	20	0.7853966	0.1666664	0.0052083	0.00056242	0.00035333
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666654	0.0833330	0.00000000	0.000000000
	5	1.5707932	0.6666654	0.0833330	0.00116361	0.00076189
0.5	10	1.5707932	0.6666654	0.0833330	0.00293719	0.00188256
	15	1.5707932	0.6666654	0.0833330	0.00551049	0.00372510
	20	1.5707932	0.6666654	0.0833330	0.00836569	0.00599384
	Tam	1.5707920	0.6666667	0.0833333	-	-
	0	2.3561897	1.4999972	0.4218734	0.00000000	0.000000000
	5	2.3561897	1.4999971	0.4218734	0.00614440	0.00388196
0.75	10	2.3561897	1.4999971	0.4218734	0.01666882	0.01211917
	15	2.3561896	1.4999970	0.4218733	0.03002142	0.02166782
	20	2.3561896	1.4999970	0.4218733	0.04516456	0.03155389
	Tam	2.3561945	1.5000000	0.4218750	-	-
	0	3.1415863	2.6666616	1.3333283	0.00000000	0.00000000
	5	3.1415858	2.6666609	1.3333276	0.02553465	0.01775454
1.0	10	3.1415853	2.6666602	1.3333269	0.06597948	0.04540837
	15	3.1415847	2.6666595	1.3333261	0.11171675	0.07416034
	20	3.1415842	2.6666588	1.3333254	0.15879729	0.10334265
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 5.37: $h = 0.1, \Delta t = 0.01, 0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata norm değerleri.

Tablo 5.38: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 3 ile elde edilen konum, genlik ve hız değerleri.

A	Konum	Genlik	Hız
0.25	30.6	0.249922	0.03123
0.50	32.5	0.499999	0.12500
0.75	35.6	0.749766	0.28107
1.00	40.0	0.999997	0.49999

görülmektedir.

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1, A_1 = 1, A_2 = 0.5$ ve h = 0.1 alınarak Δt nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.40'da verildi. Tabloda I_1, I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimi $\Delta t = 0.025$ için sırasıyla $\% 0.028 \times 10^{-3}, \% 0.002 \times 10^{-3}, \% 0.001 \times 10^{-3}$; $\Delta t = 0.01$ için sırasıyla $\% 0.027 \times 10^{-3}$, $\% 0.000 \times 10^{-3}, \% 0.001 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan zaman

Tablo 5.39: $\Delta t = 0.05, 0 \le x \le 80, A = 0.25, t = 20$ için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	3.06140858	=	2.28720085	=
0.4	0.09629133	4.99064588	0.11760664	4.28154163
0.2	0.00420930	4.51575366	0.0050402	4.54434472
0.1	0.00058949	4.31320754	0.00038610	3.70643452
0.05	0.00087116	-0.56347037	0.00041612	-0.10802507
0.025	0.00165515	-0.92595235	0.00110291	-1.40624353

adımı Δt azaldıkça korunum sabitlerindeki değişiminde azaldığı açıkça görülmektedir. Tablo 5.41'de Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [43]'de elde edilen korunum sabitlerinin değerleri karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [43]'de elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da büyük dalganın genliği 1.000000 olup tepe noktasının konumu x = 15.0'dir. Küçük dalganın genliği ise 0.500000 olup tepe noktasının konumu x = 30'dur. t = 80.0'de ise büyük dalganın tepe noktası x = 56.9 konumunda olup genliği 1.000021 iken küçük dalganın tepe noktası x = 37.7 noktasında olup genliği 0.498760 dır. t = 80.0'de büyük dalganın genlikleri arasındaki fark 2.1×10^{-5} iken küçük dalganın genlikleri arasındaki fark ise 1.24×10^{-3} olarak bulundu. İkinci olarak hesaplamalar $0 \le x \le 150$ aralığında $\mu = 1$, $A_1 = -2$,

Tablo 5.40: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 3 ile elde edilen sayısal değerleri.

	Δ	t = 0.025	$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643
10	4.7123578	3.3333071	1.4166420	4.7123745	3.3333294	1.4166643
20	4.7123412	3.3332848	1.4166197	4.7123745	3.3333294	1.4166643
30	4.7123266	3.3332654	1.4165955	4.7123745	3.3333295	1.4166635
40	4.7123202	3.3332570	1.4165899	4.7123745	3.3333294	1.4166639
50	4.7123044	3.3332358	1.4165716	4.7123745	3.3333294	1.4166643
55	4.7123745	3.3333294	1.4166644	4.7123745	3.3333293	1.4166643
60	4.7123745	3.3333294	1.4166644	4.7123745	3.3333294	1.4166643
70	4.7123745	3.3333294	1.4166644	4.7123745	3.3333294	1.4166643
80	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643

 $A_2 = 1$ ve h = 0.1 alınarak Δt nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.42'de verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla

	Kollok	asyon Yönten	[43]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333294	1.4166643	4.712389	3.333336	1.416669
10	4.7123578	3.3333071	1.4166420	4.712389	3.333336	1.416669
20	4.7123412	3.3332848	1.4166197	4.712389	3.324734	1.416667
30	4.7123266	3.3332654	1.4165955	4.712389	3.324718	1.416647
40	4.7123202	3.3332570	1.4165899	4.712389	3.324725	1.416655
50	4.7123044	3.3332358	1.4165716	4.712389	3.324732	1.416665
55	4.7123745	3.3333294	1.4166644	4.712389	3.324732	1.416665
60	4.7123745	3.3333294	1.4166644	-	-	-
70	4.7123745	3.3333294	1.4166644	-	-	-
80	4.7123745	3.3333295	1.4166644	-	-	-

Tablo 5.41: h = 0.1, $A_1 = 1$, $A_2 = 0.5$, $\Delta t = 0.025$ için $0 \le x \le 80$ aralığında Problem 2' nin referans [43] ile elde edilen sonuçlar ile karşılaştırılması.

%2.132 × 10⁻³, %4.001 × 10⁻³, %8.671 × 10⁻³; $\Delta t = 0.01$ için %0.184 × 10⁻³, %0.010 × 10⁻³, %0.076 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 5.43'de, Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [38]'de elde edilen korunum sabitlerinin değerleri karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [38]'de elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da büyük dalganın genliği –1.999999 olup tepe noktasının konumu x = 15.0'dır. t = 55.0'de büyük dalganın tepesi x = 123.6 noktasında olup genliği –2.003037 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.974206 dir. t = 55.0'de büyük dalganın genlikleri arasındaki fark 3.03×10^{-3} ve küçük dalganın genlikleri arasındaki fark ise 2.57×10^{-2} olarak bulundu.

Tablo 5.42: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 3 ile elde edilen sayısal değerleri.

	,	1 + - 0.025			A = 0.01		
	2	$\Delta t = 0.023$		$\Delta t = 0.01$			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3332981	22.6665313	-3.1415739	13.3332981	22.6665313	
5	-3.1415917	13.3333401	22.6667249	-3.1415765	13.3332985	22.6665372	
15	-3.1416776	13.3335861	22.6678178	-3.1415774	13.3332993	22.6665546	
25	-3.1417090	13.3336741	22.6681599	-3.1415777	13.3333020	22.6665574	
35	-3.1417404	13.3337604	22.6685059	-3.1415781	13.3333029	22.6665610	
45	-3.1417718	13.3338466	22.6688519	-3.1415784	13.3333037	22.6665645	
55	-3.1418032	13.3339329	22.6691981	-3.1415787	13.3333046	22.6665681	

Problem 3 için MEW denkleminin sayısal çözümleri farklı μ değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. Bu problemde tek dalgaların oluşma sayıları μ değerine bağlı olduğu için sırasıyla $\mu = 1.0, 0.5, 0.1,$

	Kollol	asyon Yöntem	ni	[38]			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	-3.1415739	13.3332981	22.6665313	-3.1415915	13.3411364	22.6666177	
5	-3.1415917	13.3333401	22.6667249	-3.1373341	13.3297086	22.6211074	
15	-3.1416776	13.3335861	22.6678178	-3.1243642	13.2879992	22.4502917	
25	-3.1417090	13.3336741	22.6681599	-3.1147243	13.2672538	22.3644947	
35	-3.1417404	13.3337604	22.6685059	-3.1065564	13.2454531	22.2776978	
45	-3.1417718	13.3338466	22.6688519	-3.0985577	13.2238575	22.1921206	
55	-3.1418032	13.3339329	22.6691981	-3.0905294	13.2023061	22.1067310	

Tablo 5.43: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [38]'de elde edilen sonuçlarla karşılaştırılması.

0.05, 0.02 ve 0.005 alındı. μ 'nün bu değerleri için bulunan sayısal değerler Tablo 5.44'de verildi.

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066283	0.8862269		1.7724537	1.3159798	0.8862269
3		1.7724534	2.5066258	0.8862267		1.7724734	1.3156015	0.8859075
6	1	1.7724530	2.5066291	0.8862259	0.05	1.7719871	1.3150896	0.8850761
9		1.7724527	2.5066293	0.8862256		1.7716978	1.3145904	0.8842399
12		1.7724522	2.5066291	0.8862255		1.7714098	1.3140913	0.8834063
0		1.7724537	1.8799712	0.8862269		1.7724537	1.2783804	0.8862269
3		1.7724525	1.8799672	0.8862257		1.7709762	1.2752603	0.8828002
6	0.5	1.7724515	1.8799683	0.8862237	0.02	1.7687594	1.2715081	0.8762963
9		1.7724507	1.8799672	0.8862227		1.7664757	1.2669379	0.8670081
12		1.7724499	1.8799662	0.8862217		1.7642955	1.2627104	0.8585407
0		1.7724537	1.3786455	0.8862269		1.7724537	1.2595807	0.8862269
3		1.7724208	1.3785732	0.8861874		1.7580569	1.2460949	0.9283076
6	0.1	1.7723688	1.3784890	0.8860671	0.005	1.7449184	1.2295179	0.8598480
9		1.7723171	1.3784039	0.8859470		1.7245358	1.1846764	0.7734852
12		1.7722653	1.3783193	0.8858270		1.7142953	1.1682828	0.7449770

Tablo 5.44. Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri.

Uygulama 4:

MEW denkleminde U^2U_x lineer olmayan terimi Bölüm 2'de verilen (2.1.19) şeklinde yazılır ve UU_x yerine (5.1.12) alınırsa (5.2.4) ile verilen denklem sisteminde Z_m

$$Z_m = 3UUU_x = \frac{3U}{2} \left[U^{n+1}U_x^n + U^n U_x^{n+1} \right]$$
(5.2.10)

şeklinde elde edilir. Problem 1 ve 2 için (5.2.4) denklem sisteminde (5.2.10) kullanılarak elde edilen sayısal değerler Tablo 5.45-5.47'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.45'te verildi. Tabloda t = 20.0'de hata norm değerlerinin h = 0.1için sırasıyla $0.13465154 \times 10^{-3}$, $0.12492940 \times 10^{-3}$; h = 0.05için sırasıyla $0.10039643 \times 10^{-3}$, $0.09024495 \times 10^{-3}$ olduğu görülür. Elde edilen sonuçlara göre h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir. Tablo 5.45'te verilen korunum sabitlerinin t = 0.0 vet = 20.0 zamanlarındaki değişimi h = 0.1için sırasıyla %18.326 $\times 10^{-3}$, %58.654 $\times 10^{-3}$, %117.340 $\times 10^{-3}$; h = 0.05için sırasıyla %18.245 $\times 10^{-3}$, %58.108 $\times 10^{-3}$, %117.012 $\times 10^{-3}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin hemen hemen aynı kaldığı görülmektedir.

Tablo 5.45: $\mu = 1$, A = 0.25, $\Delta t = 0.05$ ve $0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7854325	0.1666908	0.0052098	0.02373328	0.02279085
0.1	10.0	0.7854685	0.1667152	0.0052114	0.04803043	0.04536075
	15.0	0.7855045	0.1667396	0.0052129	0.07342847	0.06773998
	20.0	0.7853976	0.1666670	0.0052084	0.13465154	0.12492940
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854461	0.1666924	0.0052099	0.02373044	0.02284840
0.05	10.0	0.7854821	0.1667168	0.0052115	0.04801804	0.04556186
	15.0	0.7855181	0.1667412	0.0052130	0.07340639	0.06795044
	20.0	0.7855541	0.1667657	0.0052145	0.10039643	0.09024495
-						

Tablo 5.46'da Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için 0.40242903 × 10⁻³, 0.36086132 × 10⁻³; $\Delta t = 0.1$ için 0.20100348 × 10⁻³, 0.18009388 × 10⁻³ ve $\Delta t = 0.01$ için 0.02002098 × 10⁻³, 0.01778714 × 10⁻³ olduğu görülmektedir. Bu sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir düşüş görülmektedir. Ayrıca Tablo 5.46'da korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri $\Delta t = 0.2$ için sırasıyla %73.494 × 10⁻³, %235.344 × 10⁻³, %471.184 × 10⁻³, $\Delta t = 0.1$ için sırasıyla %36.684 × 10⁻³, %117.430 × 10⁻³, %234.984 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla %3.663 × 10⁻³, %11.721 × 10⁻³, %23.444 × 10⁻³ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Problem 2 için ilk olarak, $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Tablo 5.47'de $A_1 = 1, A_2 = 0.5$ genlikli iki dalganın korunum sabitlerinin değerleri verildi. Tabloda

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7855405	0.1667641	0.0052144	0.09496772	0.09128496
0.2	10.0	0.7856847	0.1668621	0.0052206	0.19227149	0.18182783
	15.0	0.7858291	0.1669602	0.0052267	0.29408932	0.27180253
	20.0	0.7859738	0.1670586	0.0052329	0.40243241	0.36086443
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7854685	0.1667152	0.0052114	0.04747378	0.04561868
0.1	10.0	0.7855405	0.1667641	0.0052144	0.09609214	0.09081338
	15.0	0.7856126	0.1668131	0.0052175	0.14693703	0.13569222
	20.0	0.7856847	0.1668621	0.0052206	0.20100390	0.18009426
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7854038	0.1666712	0.0052086	0.00474524	0.00454133
0.01	10.0	0.7854110	0.1666761	0.0052089	0.00959714	0.00902538
	15.0	0.7854182	0.1666810	0.0052092	0.01465827	0.01342830
	20.0	0.7854253	0.1666859	0.0052095	0.02002098	0.01778714

Tablo 5.46: $\mu = 1$, A = 0.25, h = 0.1, $0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

korunum sabitlerinin değerlerinde çok hızlı bir düşüş görüldü. Uygulama 4 için

Tablo 5.47: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	Δ	t = 0.025			$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3			
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643			
10	4.7523257	3.4413699	1.5255613	4.7278669	3.3749489	1.4581157			
20	4.7963924	3.5631531	1.6535443	4.7439293	3.4184613	1.5021474			
30	4.8393308	3.6844018	1.7863551	4.7592015	3.4602632	1.5451055			
40	4.8769271	3.7897587	1.9032507	4.7702059	3.4893488	1.5741410			
50	4.9363672	3.9648212	2.1113682	4.7877625	3.5380287	1.6254101			
55	4.9694650	4.0643420	2.2348303	4.7969709	3.5636615	1.6527908			
60	5.0051189	4.1732832	2.3742668	4.8063786	3.5899733	1.6811620			
70	5.0857437	4.4262773	2.7153330	4.8258101	3.6447347	1.7410736			
80	5.1827035	4.7426585	3.1756542	4.8461312	3.7025925	1.8056225			

Problem 2, $0 \le x \le 150$ aralığında h = 0.1 için Δt 'nin 0.025 ve 0.01 değerleri alındığında programın uygun değerler üretmediği görüldü. Benzer şekilde üçüncü problem de μ 'nün faklı değerleri için program çalıştırıldığında uygun değerler elde edilmediği görüldü.

5.3 Septik B-spline Kollokasyon Yöntemi

Bu kısımda, (1.7.3) ile verilen denklemin septik B-spline kollokasyon yöntemi ile sayısal çözümleri elde edildi. MEW denklemindeki U(x,t) fonksiyonunun yaklaşık çözümü $U_N(x,t)$ olsun. Bu yaklaşık çözüm Bölüm 1'de (1.6.7.2) ile verilen $\phi_m(x)$ septik B-spline fonksiyonlar cinsinden

$$U_N(x,t) = \sum_{j=-3}^{N+3} \delta_j(t)\phi_j(x)$$
(5.3.1)

şeklinde yazılır [14]. Burada δ_j 'ler zamana bağlı parametreler olup (1.7.3) denkleminin septik kollokasyon ve sınır şartlarından elde edilecektir. Her tipik $[x_m, x_{m+1}]$ sonlu eleman (1.6.1.2) ile verilen lokal koordinat dönüşümü yardımıyla [0, 1] aralığına dönüşür. Bu nedenle septik B-spline şekil fonksiyonları [0, 1] aralığında ξ cinsinden (1.6.7.2) şeklinde tanımlanır. $[x_m, x_{m+1}]$ aralığında $\phi_{m-3}(x), \phi_{m-2}(x), \phi_{m-1}(x),$ $\phi_m(x), \phi_{m+1}(x), \phi_{m+2}(x), \phi_{m+3}(x)$ dışındaki bütün spline fonksiyonlar sıfır olduğundan (5.3.1) yaklaşımı $[x_m, x_{m+1}]$ aralığında (1.6.7.2) baz fonksiyonları cinsinden

$$U_N(x,t) = \sum_{j=m-3}^{m+4} \delta_j(t)\phi_j(x)$$
(5.3.2)

şeklinde yazılır. (1.6.7.2) septik B-spline fonksiyonları ve (5.3.2) yaklaşımı kullanılırsa x_m düğüm noktasında U_m ve U_m 'nin altıncı mertebeye kadar türevlerinin δ_m eleman parametreleri cinsinden noktasal değerleri Bölüm 1'de verilen (1.6.7.3)'deki gibi elde edilir. Burada m = 0(1)N olup üst indis x'e göre türevi göstermektedir. $\phi_m(x)$ septik B-spline fonksiyonlar ile altıncı mertebeye kadar olan türevleri $x_{m-4} \leq x \leq x_{m+4}$ aralığı dışında sıfırdır. (1.7.3) denkleminde (1.6.3.3) yaklaşımları yerine yazılırsa

$$\dot{\delta}_{m-3} + 120\dot{\delta}_{m-2} + 1191\dot{\delta}_{m-1} + 2416\dot{\delta}_m + 1191\dot{\delta}_{m+1} + 120\dot{\delta}_{m+2} + \dot{\delta}_{m+3} -\frac{21}{h}Z_m(-\delta_{m-3} - 56\delta_{m-2} - 245\delta_{m-1} + 245\delta_{m+1} + 56\delta_{m+2} + \delta_{m+3})$$
(5.3.3)
$$-42\frac{\mu}{h^2}(\dot{\delta}_{m-3} + 24\dot{\delta}_{m-2} + 15\dot{\delta}_{m-1} - 80\dot{\delta}_m + 15\dot{\delta}_{m+1} + 24\dot{\delta}_{m+2} + \dot{\delta}_{m+3}) = 0$$

şeklinde (N + 1)- tane denklemden oluşan bir denklem sistemi elde edilir. (5.3.3) denklem sisteminde $\dot{\delta}$ yerine (2.1.8) ile verilen ileri sonlu fark yaklaşımı ve δ yerine (2.1.9) ile verilen Crank-Nicolson sonlu fark yaklaşımı yazılırsa denklemin genelleştirilmiş satırı

$$(1 - EZ_m - M)\delta_{m-3}^{n+1} + (120 - 56EZ_m - 24M)\delta_{m-2}^{n+1} + (1191 - 245EZ_m - 15M)\delta_{m-1}^{n+1} + (2416 + 80M)\delta_m^{n+1} + (1191 + 245EZ_m - 15M)\delta_{m+1}^{n+1} + (120 + 56EZ_m - 24M)\delta_{m+2}^{n+1} + (1 + EZ_m - M)\delta_{m+3}^{n+1} = (1 + EZ_m - M)\delta_{m-3}^n + (120 + 56EZ_m - 24M)\delta_{m-2}^n + (1191 + 245EZ_m - 15M)\delta_{m-1}^n + (2416 + 80M)\delta_m^n + (1191 - 245EZ_m - 15M)\delta_{m+1}^n + (120 - 56EZ_m - 24M)\delta_{m+2}^n + (1 - EZ_m - M)\delta_{m+3}^n \qquad m = 0(1)N$$

$$(5.3.4)$$

şeklinde bulunur. Burada

$$Z_m = (\delta_{m-3} + 120\delta_{m-2} + 1191\delta_{m-1} + 2416\delta_m + 1191\delta_{m+1} + 120\delta_{m+2} + \delta_{m+3})^2$$
$$E = \frac{21\Delta t}{2h} \text{ ve } M = \frac{42\mu}{h^2},$$

dir. Böylece (N + 7)- tane bilinmeyen (N + 1)- tane denklemden oluşan bir cebirsel denklem sistemi elde edilir. Bu denklem sisteminin çözülebilmesi için denklem sayısı ile bilinmeyen sayısı eşit olmalıdır.(1.6.7.3) yaklaşımlarında U_m, U'_m ve U''_m sınırlardaki değerleri kullanılarak $\delta_{-3}, \delta_{-2}, \delta_{-1}, \delta_{N+1}, \delta_{N+2}, \delta_{N+3}$ parametreleri sistemden yok edilerek $(N + 1) \times (N + 1)$ - boyutlu karesel cebirsel denklem sistemi elde edilir.

 δ_m^{n+1} parametresinin hesaplanabilmesi için δ^0 başlangıç vektörünün bilinmesi gereklidir. δ^0 vektörü problem ile verilen başlangıç ve sınır şartları kullanılarak hesaplanacaktır. t = 0.0 anında, δ_j^0 belirlenecek parametreler olmak üzere (5.3.1) denklemi

$$U_N(x,0) = \sum_{j=-3}^{N+3} \delta_j^0(t) \phi_j(x)$$
(5.3.5)

şeklinde yeniden yazılır. Başlangıç şartlarının x_j düğüm noktalarındaki

$$U_N(x,0) = U(x_j,0)$$
 $j = 0,...,N$

değerleri alınırsa $\delta^0 = (\delta^0_{-3}, \delta^0_{-2}, \delta^0_{-1}, ..., \delta^0_{N+1}, \delta^0_{N+2}, \delta^0_{N+3})$ olmak üzere (N+7)- tane bilinmeyen ve (N + 1)- tane denklem
den oluşan bir denklem sistemi elde edilir. (1.6.7.3) yaklaşımlarında U'_m, U''_m ve U'''_m sınırlardaki değerleri kullanıldığında ortaya

çıkan δ_{-3}^0 , δ_{-2}^0 , δ_{-1}^0 , δ_{N+1}^0 , δ_{N+2}^0 , δ_{N+3}^0 parametreleri yok edilerek $(N+1) \times (N+1)$ denklem sistemi elde edilir. Bu denklem sistemi matris formunda

$$Ad^0 = b$$

şeklinde yazılabilir. Burada

$$A = \begin{bmatrix} 1536 & 2712 & 768 & 24 \\ \frac{82731}{81} & \frac{210563.5}{81} & \frac{104796}{81} & \frac{10063.5}{81} & 1 \\ \frac{9600}{81} & \frac{96597}{81} & \frac{195768}{81} & \frac{96474}{81} & 120 & 1 \\ 1 & 120 & 1191 & 2416 & 1191 & 120 & 1 \\ & & \ddots & \\ & & & & 1 & 120 & \frac{96474}{81} & \frac{195768}{81} & \frac{96597}{81} & \frac{9600}{81} \\ & & & & & 1 & 120 & \frac{96474}{81} & \frac{195768}{81} & \frac{96597}{81} & \frac{9600}{81} \\ & & & & & 1 & \frac{10063.5}{81} & \frac{104796}{81} & \frac{210563.5}{81} & \frac{82731}{81} \\ & & & & 24 & 768 & 2712 & 1536 \end{bmatrix}$$

 $d^0 = (\delta_0, \delta_1 \dots, \delta_{N-2}, \delta_{N-1}, \delta_N)^T$,

ve

 $b = (U_0, U_1, \dots, U_{N-2}, U_{N-1}, U_N)^T$

dir. Bu sistemin çözülmesiyle başlangıç parametreleri elde edilir. (5.3.4) sisteminin lineer olmayan terimlerine her zaman adımında (2.1.12) ile verilen iterasyon formülü üç veya dört defa uygulanarak U_N yaklaşık çözümleri iyileştirildi.

Kararlılık Analizi

Septik B-spline kollokasyon yönteminin uygulanması ile elde edilen sayısal yöntemin kararlılığı önceki bölümlerde olduğu gibi von Neumann yöntemi ile incelendi. Böylece (5.3.4) sisteminin m. genelleştirilmiş satırı

$$\begin{split} \gamma_1 &= 1 - E\lambda - M, & \gamma_2 &= 120 - 56E\lambda - 24M, & \gamma_3 &= 1191 - 245E\lambda - 15M, \\ \gamma_4 &= 2416 + 80M, & \gamma_5 &= 1191 + 245E\lambda - 15M, & \gamma_6 &= 120 + 56E\lambda - 24M, \\ \gamma_7 &= 1 + E\lambda - M \end{split}$$

olmak üzere

$$\gamma_{1}\delta_{m-3}^{n+1} + \gamma_{2}\delta_{m-2}^{n+1} + \gamma_{3}\delta_{m-1}^{n+1} + \gamma_{4}\delta_{m}^{n+1} + \gamma_{5}\delta_{m+1}^{n+1} + \gamma_{6}\delta_{m+2}^{n+1} + \gamma_{7}\delta_{m+3}^{n+1} = \gamma_{7}\delta_{m-3}^{n} + \gamma_{6}\delta_{m-2}^{n} + \gamma_{5}\delta_{m-1}^{n} + \gamma_{4}\delta_{m}^{n} + \gamma_{3}\delta_{m+1}^{n} + \gamma_{2}\delta_{m+2}^{n} + \gamma_{1}\delta_{m+3}^{n}$$
(5.3.6)

şeklinde yazılabilir. (2.1.13) ifadesi (5.3.6) denkleminde yerine yazılır ve gerekli düzenlemeler yapılırsa,

$$\hat{\delta}^{n+1}[\gamma_1 e^{-3ikh} + \gamma_2 e^{-2ikh} + \gamma_3 e^{-ikh} + \gamma_4 + \gamma_5 e^{ikh} + \gamma_6 e^{2ikh} + \gamma_7 e^{3ikh}] = \hat{\delta}^n[\gamma_7 e^{-3ikh} + \gamma_6 e^{-2ikh} + \gamma_5 e^{-ikh} + \gamma_4 + \gamma_3 e^{ikh} + \gamma_2 e^{2ikh} + \gamma_1 e^{3ikh}]$$

bulunur. Bu denklemde (2.1.15) ile verilen Euler formülü kullanılırsa

$$a = 1208 + 40M + (1191 - 15M)\cos(kh) + (120 - 24M)\cos(2kh) + (1 - M)\cos(3kh),$$

$$b = 245E\lambda\sin(kh) + 56E\lambda\sin(2kh) + E\lambda\sin(3kh)$$

olmak üzere

$$(a+ib)\hat{\delta}^{n+1} = (a-ib)\hat{\delta}^n$$

elde edilir. Bu ifad
e $\hat{\delta}^{n+1}=g\hat{\delta}^n$ şeklinde yazılırsa buradan

$$g = \frac{a - ib}{a + ib}$$

elde edilir. Buradan |g| = 1 olup yöntem şartsız kararlıdır.

Lineerleştirme Uygulamaları

Bu kısımda (1.7.3) ile verilen MEW denklemindeki U^2U_x lineer olmayan terimi için beş farklı lineerleştirme tekniği uygulandı.

Uygulama 1:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong [U_{m}^{n}]^{2} = \left[\delta_{m-3}^{n} + 120\delta_{m-2}^{n} + 1191\delta_{m-1}^{n} + 2416\delta_{m}^{n} + 1191\delta_{m+1}^{n} + 120\delta_{m+2}^{n} + \delta_{m+3}^{n}\right]^{2}$$

alınırsa (5.3.4) denklem sistemindek
i \mathbb{Z}_m terimi

$$Z_m = [U_m^n]^2 = \left[\delta_{m-3}^n + 120\delta_{m-2}^n + 1191\delta_{m-1}^n + 2416\delta_m^n + 1191\delta_{m+1}^n + 120\delta_{m+2}^n + \delta_{m+3}^n\right]^2$$
(5.3.7)

şeklinde elde edilir. Problem 1, 2 ve 3 için (5.3.4) denklem sisteminde (5.3.7) kullanılarak elde edilen sayısal değerler Tablo 5.48-5.58'de verildi. Problem 1 için $0 \leq x \leq 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için elde edilen I_1 , I_2 ve I_3 korunum sabitleri ile L_2 ve L_∞ hata norm değerleri Tablo 5.48'de verildi. Tabloda t = 20.0'de L_2 ve L_∞ hata norm değerlerinin h = 0.1 için sırasıyla 0.049×10^{-5} , 0.033×10^{-5} ; h = 0.05 için sırasıyla 0.086×10^{-5} , 0.041×10^{-5} olduğu görülür. Elde edilen sonuçlardan h konum adımı azaldıkça hata norm değerlerinin çok az arttığı görülmektedir. Ayrıca Tablo 5.48'de korunum sabitlerinin t = 0.0ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla $\% 0.012 \times 10^{-5}$, $\% 0.020 \times 10^{-5}$, $\% 0.040 \times 10^{-5}$; h = 0.05 için sırasıyla $\% 0.012 \times 10^{-5}$, $\% 0.040 \times 10^{-5}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin aynı olduğu görülmektedir.

Tablo 5.48: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.00009796	0.00006223
0.1	10.0	0.7853966	0.1666664	0.0052083	0.00021133	0.00013683
	15.0	0.7853966	0.1666664	0.0052083	0.00034323	0.00022572
	20.0	0.7853966	0.1666664	0.0052083	0.00049691	0.00033094
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854101	0.1666679	0.0052084	0.00021774	0.00010351
0.05	10.0	0.7854101	0.1666679	0.0052084	0.00043512	0.00020691
	15.0	0.7854101	0.1666679	0.0052084	0.00065176	0.00031011
	20.0	0.7854101	0.1666679	0.0052084	0.00086730	0.00041325

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 5.49'da verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $0.133 \times 10^{-5}, 0.083 \times 10^{-5};$ $\Delta t = 0.1$ için $0.061 \times 10^{-5}, 0.037 \times 10^{-5}$ ve $\Delta t = 0.01$ için sırasıyla $0.047 \times 10^{-5},$ 0.031×10^{-5} olduğu görülür. Elde edilen sonuçlardan Δt zaman adımı azaldıkça L_2 ve L_{∞} hata normlarında az bir düşüş olduğu görülmektedir. Tablo 5.49'da korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri $\Delta t = 0.2$ için sırasıyla % $0.008 \times 10^{-3},$ % $0.013 \times 10^{-3}, %0.026 \times 10^{-3}; \Delta t = 0.1$ için sırasıyla % $0.001 \times 10^{-3}, %0.002 \times 10^{-3},$ % 0.003×10^{-3} ve $\Delta t = 0.01$ için sırasıyla % $0.000 \times 10^{-3}, %0.000 \times 10^{-3}$ olarak bulundu. Bu sonuçlara göre Δt zaman adımı azaldıkça korunum sabitlerindeki değişimin azaldığı açıkça görülmektedir.

Tablo 5.50'de Problem 1'in $t=0.0,\,5.0,\,10.0,\,15.0,\,20.0$ zamanlarında elde edilen

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 0^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666663	0.0052083	0.00030673	0.00019898
0.2	10.0	0.7853965	0.1666663	0.0052083	0.00062850	0.00040837
	15.0	0.7853965	0.1666663	0.0052083	0.00096932	0.00062306
	20.0	0.7853965	0.1666663	0.0052083	0.00133368	0.00083999
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.00012623	0.00006818
0.1	10.0	0.7853966	0.1666663	0.0052083	0.00026884	0.00015122
	15.0	0.7853966	0.1666663	0.0052083	0.00043141	0.00025160
	20.0	0.7853966	0.1666663	0.0052083	0.00061773	0.00037194
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666664	0.0052083	0.00009318	0.00006041
0.01	10.0	0.7853966	0.1666664	0.0052083	0.00020075	0.00013249
	15.0	0.7853966	0.1666664	0.0052083	0.00032567	0.00021802
	20.0	0.7853966	0.1666664	0.0052083	0.00047104	0.00031884

Tablo 5.49: $\mu = 1$, A = 0.25, h = 0.1, $0 \le x \le 80$ için Problem 1'in Uygulama 1 ile elde edilen sayısal değerleri.

sayısal çözümlerinin aldığı en büyük genlik değerleri, bu değerleri aldığı x konum değişkeninin değerleri ve dalganın belirtilen zamanlardaki hızları verildi. Tabloda görüldüğü gibi dalganın genliği t = 0.0'da x = 30.0 noktasında 0.249999 iken t = 20.0'de x = 30.6 noktasında 0.249992'dir. t = 0.0 ve t = 20.0'de dalganın genlikleri arasındaki mutlak fark 7.7×10^{-5} olarak bulundu. Ayrıca tablodan solitary dalganın t'nin artan değerleri için hemen hemen değişmeyen bir hız ve genliğe sahip olduğu görülmektedir. Problem 1'in t = 20.0'deki tam ve sayısal çözümleri arasındaki hata dağılımının grafiği Şekil 5.9'da verildi. Şekilde görüldüğü gibi en büyük hata dalganın genliğinin en yüksek olduğu x konumu civarında oluşmaktadır.

t	$\operatorname{Konum}(x)$	$\operatorname{Genlik}(U_N)$	Hız
0.0	30.0	0.249999	0.03125
5.0	30.2	0.249760	0.03119
10.0	30.3	0.249980	0.03124
15.0	30.5	0.249877	0.03121
20.0	30.6	0.249922	0.03123

Tablo 5.50: $\mu = 1, A = 0.25, h = 0.1, \Delta t = 0.05$ için $0 \le x \le 80$ aralığında Problem 1'in Uygulama 1 ile elde edilen konum, genlik ve hız değerleri.

Ayrıca Problem 1'in sayısal çözümleri t = 0.01 zamanında farklı A değerleri için elde edildi ve elde edilen hata normları ve korunum sabitleri Tablo 5.51'de verildi.

Şekil 5.9: Solitary dalganın h = 0.1, $\Delta t = 0.05$, $\mu = 1$, A = 0.25 için t = 20'deki hata grafiği.

Tablo 5.51'den hata norm değerlerinin oldukça küçük ve korunum sabitlerinin de programın çalışması boyunca hemen hemen aynı kaldığı görüldü. Tablo 5.52'de ise solitary dalga için t = 20.0'de A = 0.25, 0.5, 0.75, 1.0 değerleri için elde edilen konum, genlik ve hız değerleri verildi. Tabloda solitary dalganın farklı A değerleri için elde edilen genlik değerlerinin analitik değerlerine oldukça yakın olduğu görülmektedir.

A	t	I_1	I_2	I_3	$L_2 \times 10^{-3}$	$L_{\infty} \times 10^{-3}$
	0	0.7853966	0.1666664	0.0052083	0.00000000	0.0000000
	5	0.7853966	0.1666664	0.0052083	0.00009318	0.00006041
0.25	10	0.7853966	0.1666664	0.0052083	0.00020075	0.00013249
	15	0.7853966	0.1666664	0.0052083	0.00032567	0.00021802
	20	0.7853966	0.1666664	0.0052083	0.00047104	0.00031884
	Tam	0.7853982	0.1666667	0.0052083	-	-
	0	1.5707932	0.6666654	0.0833330	0.0000000	0.0000000
	5	1.5707932	0.6666654	0.0833330	0.00097262	0.00065278
0.5	10	1.5707932	0.6666654	0.0833330	0.00270866	0.00186625
	15	1.5707932	0.6666654	0.0833330	0.00526262	0.00372259
	20	1.5707932	0.6666654	0.0833330	0.00811810	0.00599820
	Tam	1.5707920	0.6666667	0.0833333	-	=
	0	2.3561897	1.4999972	0.4218734	0.0000000	0.0000000
	5	2.3561897	1.4999971	0.4218734	0.00572900	0.00387507
0.75	10	2.3561897	1.4999971	0.4218734	0.01618562	0.01212649
	15	2.3561896	1.4999970	0.4218733	0.02925605	0.02159660
	20	2.3561896	1.4999970	0.4218733	0.04416314	0.03139574
	Tam	2.3561945	1.5000000	0.4218750	-	-
	0	3.1415863	2.6666616	1.3333283	0.00000000	0.0000000
	5	3.1415858	2.6666609	1.3333276	0.02472666	0.01778753
1.0	10	3.1415853	2.6666602	1.3333269	0.06467999	0.04524895
	15	3.1415847	2.6666595	1.3333261	0.11000371	0.07378645
	20	3.1415842	2.6666588	1.3333254	0.15671543	0.10276168
	Tam	3.1415927	2.6666667	1.33333333	-	-

Tablo 5.51: h = 0.1, $\Delta t = 0.01$, $0 \le x \le 80$ olmak üzere Problem 1'in farklı A değerleri için elde edilen korunum sabitleri ve hata normları.

Konum adımı h_m için yakınsama oranları Bölüm 2'de verilen (2.2.10) formülü ile hesaplandı. Elde edilen sonuçlar Tablo 5.53'te verildi. Tablo incelendiğinde

A	$\operatorname{Konum}(x)$	$\operatorname{Genlik}(U_N)$	Hız
0.25	30.6	0.249922	0.03123
0.50	32.5	0.499999	0.12500
0.75	35.6	0.749766	0.28107
1.00	40.0	0.999999	0.49999

Tablo 5.52: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \Delta t = 0.05$ ve A = 0.25, 0.5, 0.75, 1.0 değerleri için Uygulama 2 ile elde edilen konum, genlik ve hız değerleri.

zaman adımı Δt_m sabit olarak alındığında ise elde edilen yakınsama oranının giderek azaldığı görülmektedir.

Tablo 5.53: $\Delta t = 0.05, A = 0.25, t = 20, 0 \le x \le 80$, için hesaplanan hata normları ve yakınsama oranları.

h_m	$L_2 \times 10^3$	YO	$L_{\infty} \times 10^3$	YO
0.8	1.91983566	=	1.26770137	-
0.4	0.01306770	7.19883377	0.01609180	6.29974541
0.2	0.00025217	5.69546477	0.00021842	6.20307693
0.1	0.00049691	-0.97858792	0.00033094	-0.59946471
0.05	0.00086730	-0.80354653	0.00041325	-0.32044514
0.025	0.00165404	-0.93139110	0.00110485	-1.41876379

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $\mu = 1$, $A_1 = 1$, $A_2 = 0.5$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. İki pozitif dalganın girişiminin tam olarak görülebilmesi için program t = 0.0 dan t = 80.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.54'te verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla $\% 0.026 \times 10^{-3}$, $\% 0.001 \times 10^{-3}$, $\% 0.006 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\% 0.026 \times 10^{-3}$, $\% 0.001 \times 10^{-3}$, $\% 0.006 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $\% 0.026 \times 10^{-3}$, $\% 0.001 \times 10^{-3}$ olarak hesaplandı. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerinden I_1 'deki değişimin aynı olduğu I_2 ve I_3 'deki değişimin ise azaldığı açıkça görülmektedir. Tablo 5.55'te Problem 2 için elde edilen korunum sabitlerinin değerleri ile referans [43]'de elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Karşılaştırıma her ne kadar x'in farklı aralıkları için yapıldıysa da korunum sabitlerindeki değişimin referans [43]'de elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da büyük dalganın genliği 1.000000 olup tepe noktasının konumu x = 15.0 iken küçük dalganın genliği 0.500000 olup

x = 56.9 konumunda olup genliği 1.000021'dir. Küçük dalganın tepe noktası ise x = 37.7 noktasında olup genliği 0.498760'dır. t = 80.0'de büyük dalganın genlikleri arasındaki fark 2.1×10^{-5} iken küçük dalganın genlikleri arasındaki fark ise 1.24×10^{-3} 'dür.

Tablo 5.54: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 1 ile elde edilen sayısal değerleri.

	Δ	t = 0.025			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643
10	4.7123745	3.3333294	1.4166643	4.7123745	3.3333294	1.4166643
20	4.7123745	3.3333294	1.4166642	4.7123745	3.3333294	1.4166643
30	4.7123745	3.3333295	1.4166594	4.7123745	3.3333294	1.4166635
40	4.7123745	3.3333295	1.4166615	4.7123745	3.3333294	1.4166639
50	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643
55	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643
60	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643
70	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643
80	4.7123745	3.3333295	1.4166644	4.7123745	3.3333294	1.4166643

Tablo 5.55: Problem 2'nin $0 \le x \le 80$ aralığında $h = 0.1, A_1 = 1, A_2 = 0.5, \Delta t = 0.025$ için referans [43]'de elde edilen sonuçlarla karşılaştırılması.

	Kollok	asyon Yönten	ni	[43]			
t	I_1	I_2	I_3	I_1	I_2	I_3	
0	4.7123733	3.3333294	1.4166643	4.712389	3.333336	1.416669	
10	4.7123745	3.3333294	1.4166643	4.712389	3.333336	1.416669	
20	4.7123745	3.3333294	1.4166642	4.712389	3.324734	1.416667	
30	4.7123745	3.3333295	1.4166594	4.712389	3.324718	1.416647	
40	4.7123745	3.3333295	1.4166615	4.712389	3.324725	1.416655	
50	4.7123745	3.3333295	1.4166644	4.712389	3.324732	1.416665	
55	4.7123745	3.3333295	1.4166644	4.712389	3.324732	1.416665	
60	4.7123745	3.3333295	1.4166644	-	-	-	
70	4.7123745	3.3333295	1.4166644	-	-	-	
80	4.7123745	3.3333295	1.4166644	-	-	-	

İkinci olarak hesaplamalar, $0 \le x \le 150$ aralığında $\mu = 1$, $A_1 = -2$, $A_2 = 1$ ve h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için yapıldı. İki dalganın girişiminin tam olarak görülebilmesi için program t = 0.0'dan t = 55.0'e kadar çalıştırıldı. Elde edilen sayısal değerler Tablo 5.56'da verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla %7.298 × 10⁻³, %4.761×10⁻³, %11.766×10⁻³; $\Delta t = 0.01$ için sırasıyla %0.153×10⁻³, %0.049×10⁻³, %0.162 × 10⁻³ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir. Tablo 5.57'de Problem 2

için elde edilen korunum sabitlerinin değerleri ile referans [36]'da elde edilen korunum sabitlerinin değerleri ile karşılaştırıldı. Tablodan korunum sabitlerindeki değişimin referans [36]'da elde edilenler ile uyum içinde olduğu görüldü. t = 0.0'da büyük dalganın genliği –1.999999 olup tepe noktasının konumu x = 15.0'dır. Küçük dalganın genliği 0.999999 olup tepe noktasının konumu x = 30.0'dır. t = 55.0'de büyük dalganın tepesi x = 123.6 noktasında olup genliği –2.003038 iken küçük dalganın tepe noktası x = 52.5 noktasında olup genliği 0.974205'dir. t = 55.0'de büyük dalganın genlikleri arasındaki fark 3.03×10^{-3} ve küçük dalganın genlikleri arasındaki fark ise 2.57×10^{-2} 'dir.

Tablo 5.56: $\mu = 1$, h = 0.1, $A_1 = -2$, $A_2 = 1$, $0 \le x \le 150$ için Problem 2'nin Uygulama 1 ile elde edilen sayısal değerleri.

					A ·	
	4	$\Delta t = 0.025$			$\Delta t = 0.01$	
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415739	13.3332981	22.6665313	-3.1415739	13.3332981	22.6665313
5	-3.1415916	13.3333401	22.6667249	-3.1415765	13.3332986	22.6665372
15	-3.1416776	13.3335879	22.6678177	-3.1415774	13.3333011	22.6665545
25	-3.1417089	13.3336742	22.6681599	-3.1415777	13.3333020	22.6665574
35	-3.1417403	13.3337604	22.6685060	-3.1415780	13.3333029	22.6665610
45	-3.1417717	13.3338467	22.6688520	-3.1415783	13.3333038	22.6665646
55	-3.1418031	13.3339330	22.6691982	-3.1415787	13.3333047	22.6665681

Tablo 5.57: Problem 2'nin $0 \le x \le 150$ aralığında $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, \Delta t = 0.025$ için referans [36]'da elde edilen sonuçlarla karşılaştırılması.

	Kollol	kasyon Yönter	[36]			
t	I_1	I_2	I_3	I_1	I_2	I_3
0	-3.1415739	13.3332981	22.6665313	-3.14158	13.33330	22.66652
5	-3.1415916	13.3333401	22.6667249	-3.14179	13.33364	22.66623
15	-3.1416776	13.3335879	22.6678177	-3.14170	13.33336	22.66598
25	-3.1417089	13.3336742	22.6681599	-3.14167	13.33330	22.66571
35	-3.1417403	13.3337604	22.6685060	-3.14166	13.33336	22.66677
45	-3.1417717	13.3338467	22.6688520	-3.14170	13.33331	22.66669
55	-3.1418031	13.3339330	22.6691982	-3.14172	13.33305	22.66608

Problem 3 için (1.7.3) denkleminin sayısal çözümleri farklı μ değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. Bu problemde solitary dalgaların oluşma sayıları μ değerine bağlı olduğu için sırasıyla $\mu = 1.0$, 0.5, 0.1, 0.05, 0.02 ve 0.005 alındı. $\mu = 1.0$ için korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri sırasıyla %0.082 × 10⁻³, %0.149 × 10⁻³, %0.155 × 10⁻³; $\mu = 0.5$ için korunum sabitlerindeki değişim sırasıyla %0.216 × 10⁻³, %0.271 × 10⁻³, $\%0.593\times10^{-3}$; $\mu=0.1$ alındığında korunum sabitlerinin değişimi %10.728 × 10⁻³, %22.159 × 10⁻³, %46.709 × 10⁻³ olarak elde edildi. Benzer şekilde $\mu=0.05$ için korunum sabitlerindeki değişim %59.689 × 10⁻³, %139.236 × 10⁻³, %333.651 × 10⁻³ olarak bulundu. $\mu=0.02$ ve $\mu=0.005$ için korunum sabitlerindeki değişimler μ 'nün önceki değerlerine göre oldukça büyük olup elde edilen değerler Tablo 5.58'de verildi.

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066283	0.8862269		1.7724537	1.3159798	0.8862269
3		1.7724534	2.5066258	0.8862267		1.7724734	1.3156015	0.8859075
6	1	1.7724530	2.5066291	0.8862259	0.05	1.7719871	1.3150896	0.8850761
9		1.7724527	2.5066293	0.8862256		1.7716978	1.3145904	0.8842399
12		1.7724522	2.5066291	0.8862255		1.7714098	1.3140913	0.8834063
0		1.7724537	1.8799712	0.8862269		1.7724537	1.2783804	0.8862269
3		1.7724525	1.8799672	0.8862257		1.7709762	1.2752603	0.8828002
6	0.5	1.7724515	1.8799683	0.8862237	0.02	1.7687594	1.2715081	0.8762963
9		1.7724507	1.8799672	0.8862227		1.7664757	1.2669379	0.8670081
12		1.7724499	1.8799662	0.8862217		1.7642955	1.2627104	0.8585407
0		1.7724537	1.3786455	0.8862269		1.7724537	1.2595807	0.8862269
3		1.7724208	1.3785732	0.8861874		1.7580569	1.2460949	0.9283076
6	0.1	1.7723688	1.3784890	0.8860671	0.005	1.7449184	1.2295179	0.8598480
9		1.7723171	1.3784039	0.8859470		1.7245358	1.1846764	0.7734852
12		1.7722653	1.3783193	0.8858270		1.7142953	1.1682828	0.7449770

Tablo 5.58. Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri.

Uygulama 2:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$\begin{split} U^2 &\cong \left[\frac{U_m^n + U_{m+1}^n}{2}\right]^2 = \\ &= \left[\frac{\delta_{m-3}^n + 121\delta_{m-2}^n + 1311\delta_{m-1}^n + 3607\delta_m^n + 3607\delta_{m+1}^n}{2} + \frac{1311\delta_{m+2}^n + 121\delta_{m+3}^n + \delta_{m+4}^n}{2}\right]^2 \end{split}$$

alınırsa (5.3.4) denklem sistemindek
i \mathbb{Z}_m

$$Z_{m} = 3U^{2}$$

$$= \frac{3}{4} \left[\delta_{m-3}^{n} + 121 \delta_{m-2}^{n} + 1311 \delta_{m-1}^{n} + 3607 \delta_{m}^{n} + 3607 \delta_{m+1}^{n} + 1311 \delta_{m+2}^{n} + 121 \delta_{m+3}^{n} + \delta_{m+4}^{n} \right]^{2}$$
(5.3.8)

şeklinde elde edilir. Problem 1 ve 2 için (5.3.4) denklem sisteminde (5.3.8) kullanılarak elde edilen sayısal değerler Tablo 5.59 ve 5.60'da verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.59'da verildi. Tabloda t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla $15.22040738 \times 10^{-3}$, $11.25231946 \times 10^{-3}$; h = 0.05 için sırasıyla $7.78938468 \times 10^{-3}$, $5.76496083 \times 10^{-3}$ olduğu görülür.

Tablo 5.59: $\mu = 1, A = 0.25, \Delta t = 0.05, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763119	0.1635963	0.0050181	3.73602205	2.30696750
0.1	10.0	0.7674027	0.1606075	0.0048362	7.47389785	4.96785441
	15.0	0.7586668	0.1576989	0.0046623	11.28221374	7.95931585
	20.0	0.7501033	0.1548695	0.0044960	15.22040738	11.25231946
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7808345	0.1651176	0.0051119	1.88236679	1.16246341
0.05	10.0	0.7763034	0.1635880	0.0050176	3.78465728	2.51789235
	15.0	0.7718170	0.1620791	0.0049254	5.74286161	4.05583430
	20.0	0.7673756	0.1605912	0.0048352	7.78938468	5.76496083

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar ise Tablo 5.60'da verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 15.22042984 × 10⁻³, 11.25267821 × 10⁻³; $\Delta t = 0.1$ için sırasıyla 15.22040989 × 10⁻³, 11.25238984 × 10⁻³ ve $\Delta t = 0.01$ için sırasıyla 15.22040702 × 10⁻³, 11.25229724 × 10⁻³ olduğu görülür. Elde edilen sonuçlardan h ve Δt değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir.

Tablo 5.60: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 2 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763121	0.1635963	0.0050181	3.73597455	2.30708229
0.2	10.0	0.7674029	0.1606076	0.0048362	7.47384341	4.96806842
	15.0	0.7586672	0.1576991	0.0046623	11.28218517	7.95960394
	20.0	0.7501038	0.1548700	0.0044960	15.22042984	11.25267821
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7764516	0.1635963	0.0050181	3.73601200	2.30699016
0.1	10.0	0.7674027	0.1606075	0.0048362	7.47388589	4.96789658
	15.0	0.7586669	0.1576989	0.0046623	11.28220649	7.95937247
	20.0	0.7501034	0.1548698	0.0044960	15.22040989	11.25238984
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7763119	0.1635963	0.0050181	3.73602540	2.30696032
0.01	10.0	0.7674026	0.1606075	0.0048362	7.47390191	4.96784106
	15.0	0.7586668	0.1576989	0.0046623	11.28221640	7.95929796
	20.0	0.7501032	0.1548697	0.0044960	15.22040702	11.25229724

Uygulama 2 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 alınarak zaman adımı Δt 'nin 0.025 ve 0.01 değerleri için uygun değerler üretmediği görüldü. Benzer şekilde Uygulama 2 için Problem 3, μ 'nün farklı değerleri için çalıştırıldığında uygun değerler elde edilmediği görüldü.

Uygulama 3:

MEW denkleminde $U^2 U_x$ lineer olmayan teriminde U^2 yerine

$$U^{2} \cong \left[\frac{U_{m-1}^{n} + U_{m}^{n} + U_{m+1}^{n}}{3}\right]^{2}$$

= $\left[\frac{\delta_{m-4}^{n} + 121\delta_{m-3}^{n} + 1312\delta_{m-2}^{n} + 3727\delta_{m-1}^{n} + 4798\delta_{m}^{n}}{3} + \frac{3727\delta_{m+1}^{n} + 1312\delta_{m+2}^{n} + 121\delta_{m+3}^{n} + \delta_{m+4}^{n}}{3}\right]^{2}$

alınırsa (5.3.4) denklem sistemindeki Z_m

$$Z_{m} = 3U^{2}$$

$$= \frac{1}{3} \left[\delta_{m-4}^{n} + 121 \delta_{m-3}^{n} + 1312 \delta_{m-2}^{n} + 3727 \delta_{m-1}^{n} + 4798 \delta_{m}^{n} + 3727 \delta_{m+1}^{n} + 1312 \delta_{m+2}^{n} + 121 \delta_{m+3}^{n} + \delta_{m+4}^{n} \right]^{2}$$
(5.3.9)

şeklinde elde edilir. Problem 1 ve 2 için (5.3.4) denklem sisteminde (5.3.9) kullanılarak elde edilen sayısal değerlerler Tablo 5.61-5.65'te verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.61'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla 0.134×10^{-3} , 0.124×10^{-3} ; h = 0.05 için sırasıyla 0.032×10^{-3} , 0.030×10^{-3} olduğu görülür. Elde edilen sonuçlardan h değerleri azaldıkça hata norm değerlerinin azaldığı görülmektedir. Ayrıca Tablo 5.61'de korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla $\% 0.129 \times 10^{-3}$, $\% 0.408 \times 10^{-3}$, $\% 0.733 \times 10^{-3}$; h = 0.05 için sırasıyla $\% 0.008 \times 10^{-3}$, $\% 0.025 \times 10^{-3}$, $\% 0.045 \times 10^{-3}$ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin azaldığı açıkça görülmektedir.

Tablo 5.62'de Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.134×10^{-3} , 0.125×10^{-3} ;

Tablo 5.61: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
0.1	5.0	0.7853967	0.1666664	0.0052083	0.03443323	0.02998098
	10.0	0.7853969	0.1666665	0.0052083	0.06853303	0.06149787
	15.0	0.7853972	0.1666668	0.0052083	0.10197747	0.09347672
	20.0	0.7853976	0.1666670	0.0052084	0.13445883	0.12465838
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.000000000
	5.0	0.7854102	0.1666679	0.0052084	0.00845243	0.00749245
0.05	10.0	0.7854102	01666679.	0.0052084	0.01682029	0.01531518
	15.0	0.7854102	0.1666680	0.0052084	0.02502123	0.02318688
	20.0	0.7854102	0.1666680	0.0052084	0.03297735	0.03082788

 $\Delta t = 0.1 \text{ için } 0.134 \times 10^{-3}, 0.124 \times 10^{-3} \text{ ve } \Delta t = 0.01 \text{ için sırasıyla } 0.134 \times 10^{-3}, 0.124 \times 10^{-3} \text{ olduğu görülür. Elde edilen sonuçlardan } \Delta t \text{ zaman adımı azaldıkça } L_2 \text{ ve } L_{\infty} \text{ hata normlarında oldukça az bir düşüş olduğu görülür. Ayrıca Tablo 5.62'de korunum sabitlerinin } t = 0.0 \text{ ve } t = 20.0'deki değişimleri } \Delta t = 0.2 \text{ için sırasıyla } \% 0.122 \times 10^{-3}, \% 0.396 \times 10^{-3}, \% 0.709 \times 10^{-3}; \Delta t = 0.1 \text{ için sırasıyla } \% 0.129 \times 10^{-3}, \% 0.407 \times 10^{-3}, \% 0.731 \times 10^{-3} \text{ ve } \Delta t = 0.01 \text{ için sırasıyla } \% 0.130 \times 10^{-3}, \% 0.408 \times 10^{-3}, \% 0.734 \times 10^{-3} \text{ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça korunum sabitlerindeki değişimin hemen hemen aynı kaldığı görülmektedir.$

Tablo 5.62: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 3 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.03453439	0.03014127
0.2	10.0	0.7853968	0.1666665	0.0052083	0.06873579	0.06180886
	15.0	0.7853971	0.1666667	0.0052083	0.10228254	0.0396812
	20.0	0.7853975	0.1666670	0.0052084	0.13486701	0.12533948
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853967	0.1666664	0.0052083	0.03445333	0.03001333
0.1	10.0	0.7853969	0.1666665	0.0052083	0.06857332	0.06156059
	15.0	0.7853972	0.1666668	0.0052083	0.10203807	0.09357568
	20.0	0.7853976	0.1666670	0.0052084	0.13453989	0.12479536
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853967	0.1666664	0.0052083	0.03442681	0.02997057
0.01	10.0	0.7853969	0.1666665	0.0052083	0.06852017	0.06147769
	15.0	0.7853972	0.1666668	0.0052083	0.10195812	0.09344490
	20.0	0.7853976	0.1666670	0.0052084	0.13443296	0.12461438

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ için, ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1$ için h = 0.1 alınarak Δt nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Elde edilen değerler Tablo 5.63- 5.64'de

verildi. Tabloda I_1 , I_2 ve I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla % 0.912×10^{-3} , % 1.242×10^{-3} , % 3.638×10^{-3} ; $\Delta t = 0.01$ için sırasıyla % 0.910×10^{-3} , % 1.248×10^{-3} , % 3.622×10^{-3} olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_3 'deki değişimin azaldığı, I_2 korunum sabitlerinin deki değişimin ise arttığı görülmektedir. İkinci problem için korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimleri ise $\Delta t = 0.025$ için sırasıyla % 20.742×10^{-3} , % 3.105×10^{-3} , % 9.628×10^{-3} ; $\Delta t = 0.01$ için sırasıyla % 13.878×10^{-3} , % 1.443×10^{-3} , % 1.507×10^{-3} olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin de azaldığı görülmektedir.

Tablo 5.63: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 3 ile elde edilen sayısal değerleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643		
10	4.7124066	3.3333908	1.4167147	4.7124065	3.3333906	1.4167145		
20	4.7124488	3.3334711	1.4167978	4.7124487	3.3334709	1.4167977		
30	4.7134951	3.3357541	1.4193398	4.7134953	3.3357546	1.4193446		
40	4.7124835	3.3338861	1.4177867	4.7124830	3.3338853	1.4177882		
50	4.7116041	3.3324790	1.4165505	4.7116039	3.3324787	1.4165503		
55	4.7116100	3.3325086	1.4165453	4.7116099	3.3325084	1.4165450		
60	4.7117777	3.3327032	1.4165862	4.7117776	3.3327030	1.4165860		
70	4.7121855	3.3330977	1.4166734	4.7121854	3.3330975	1.4166731		
80	4.7124162	3.3332880	1.4167159	4.7124161	3.3332878	1.4167156		

Tablo 5.64: $\mu = 1, h = 0.1, A_1 = -2, A_2 = 1, 0 \le x \le 150$ için Problem 2'nin Uygulama 3 ile elde edilen korunum sabitleri.

-	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3332981	22.6665313	-3.1415739	13.3332981	22.6665313		
5	-3.1414121	13.3332870	22.6661598	-3.1413934	13.3332317	22.6659285		
15	-3.1468019	13.3228719	22.6585718	-3.1467069	13.3225961	22.6573671		
25	-3.1414774	13.3333611	22.6676268	-3.1413516	13.3330020	22.6660942		
35	-3.1416664	13.3335429	22.6680434	-3.1415108	13.3331012	22.6661803		
45	-3.1419451	13.3336308	22.6683795	-3.1417595	13.3331067	22.6661860		
55	-3.1422255	13.3337122	22.6687136	-3.1420099	13.3331057	22.6661897		

Problem 3 için, (1.7.3) denkleminin sayısal çözümleri farklı μ değerleri için elde edildi. Konum adımı h = 0.1 ve zaman adımı $\Delta t = 0.01$ alındı. Bu problemde solitary dalgaların oluşma sayıları μ değerine bağlıolduğu için sırasıyla $\mu = 1.0, 0.5,$ 0.1, 0.05, 0.02 ve 0.005 alınarak elde edilen korunum sabitlerinin değerleri Tablo 5.65'de verildi.

t	μ	I_1	I_2	I_3	μ	I_1	I_2	I_3
0		1.7724537	2.5066283	0.8862269		1.7724537	1.3159798	0.8862269
3		1.7724534	2.5066258	0.8862267		1.7722734	1.3156015	0.8859075
6	1	1.7724530	2.5066291	0.8862259	0.05	1.7719871	1.3150896	0.8850761
9		1.7724527	2.5066293	0.8862256		1.7716978	1.3145904	0.8842399
12		1.7724522	2.5066291	0.8862255		1.7714098	1.3140913	0.8834063
0		1.7724537	1.8799712	0.8862269		1.7724537	1.2783804	0.8862269
3		1.7724525	1.8799672	0.8862257		1.7709762	1.2752603	0.8828002
6	0.5	1.7724515	1.8799683	0.8862237	0.02	1.7687594	1.2715081	0.8762963
9		1.7724507	1.8799672	0.8862227		1.7664757	1.2669379	0.8670081
12		1.7724499	1.8799662	0.8862217		1.7642955	1.2627104	0.8585407
0		1.7724537	1.3786455	0.8862269		1.7724537	1.2595807	0.8862269
3		1.7724208	1.3785732	0.8861874		1.7580569	1.2460949	0.9283076
6	0.1	1.7723688	1.3784890	0.8860671	0.005	1.7449184	1.2295179	0.8598480
9		1.7723171	1.3784039	0.8859470		1.7245358	1.1846764	0.7734852
12		1.7722653	1.3783193	0.8858270		1.7142953	1.1682828	0.7449770

Tablo 5.65. Maxwellian başlangıç şartının farklı μ değerleri için korunum sabitleri

Uygulama 4:

MEW denkleminde $U^2 U_x$ lineer olmayan terim (2.1.19) şeklinde yazılır ve UU_x yerine (5.1.10) yaklaşımı alınırsa (5.3.4) denklem sistemindeki Z_m

$$Z_m = 3UUU_x = 3U\left[U^{n+1}U_x^n + U^n U_x^{n+1} - U^n U_x^n\right]$$
(5.3.10)

şeklinde elde edilir. Problem 1 ve 2 için (5.3.4) denklem sisteminde (5.3.10) kullanılarak elde edilen sayısal değerler Tablo 5.66-5.69'da verildi. Tablo 5.66'da Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar verildi. t = 20.0'de hata norm değerlerinin h = 0.1 için sırasıyla 0.049×10^{-5} , 0.033×10^{-5} ; h = 0.05 için sırasıyla 0.087×10^{-5} , 0.041×10^{-5} olduğu görülür. Tablo 5.66'da korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla $\%0.007 \times 10^{-5}$, $\%0.024 \times 10^{-5}$, $\%0.049 \times 10^{-5}$; h = 0.05 için sırasıyla $\%0.007 \times 10^{-5}$, $\%0.024 \times 10^{-5}$, olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin aynı kaldığı görülmektedir.

Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için yapılan hesaplamalar Tablo 5.67'de verildi. Tabloda t = 20.0'de hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla 0.127×10^{-5} , 0.068×10^{-5} ; $\Delta t = 0.1$ için sırasıyla 0.060×10^{-5} , 0.038×10^{-5} ve $\Delta t = 0.01$ için sırasıyla 0.047×10^{-5} , 0.031×10^{-5} olduğu görülür. Elde edilen sonuçlardan Δt azaldıkça

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7853966	0.1666664	0.0052083	0.00009728	0.00006270
0.1	10.0	0.7853966	0.1666664	0.0052083	0.00021024	0.00013782
	15.0	0.7853966	0.1666664	0.0052083	0.00034198	0.00022729
	20.0	0.7853966	0.1666664	0.0052083	0.00049570	0.00033316
	0.0	0.7853880	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7853883	0.1666679	0.0052084	0.00278859	0.00384023
0.05	10.0	0.7853714	0.1666679	0.0052084	0.00604583	0.00832991
	15.0	0.7853609	0.1666679	0.0052084	0.00985130	0.01357888
	20.0	0.7853486	0.1666679	0.0052084	0.01429801	0.01971554

Tablo 5.66: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

 L_2 ve L_∞ hata norm değerlerinin de azaldığı görülmektedir. Ayrıca Tablo 5.67'de korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri $\Delta t = 0.2$ için sırasıyla $\%0.472 \times 10^{-5}$, $\%1.569 \times 10^{-5}$, $\%3.138 \times 10^{-5}$; $\Delta t = 0.1$ için sırasıyla $\%0.059 \times 10^{-5}$, $\%0.196 \times 10^{-5}$, $\%0.392 \times 10^{-5}$ ve $\Delta t = 0.01$ için sırasıyla $\%0.006 \times 10^{-5}$, $\%0.002 \times 10^{-5}$, $\%0.004 \times 10^{-5}$ olarak bulundu. Bu sonuçlardan zaman adımı azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 5.67: $\mu = 1, A = 0.25, h = 0.1, 0 \le x \le 80$ için Problem 1'in Uygulama 4 ile elde edilen sayısal değerleri.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666663	0.0052083	0.00029000	0.00017211
0.2	10.0	0.7853966	0.1666663	0.0052083	0.00059672	0.00034411
	15.0	0.7853966	0.1666663	0.0052083	0.00092439	0.00051587
	20.0	0.7853965	0.1666663	0.0052083	0.00127758	0.00068873
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666664	0.0052083	0.00012250	0.00007019
0.1	10.0	0.7853966	0.1666663	0.0052083	0.00026236	0.00015545
	15.0	0.7853966	0.1666663	0.0052083	0.00042314	0.00025827
	20.0	0.7853966	0.1666663	0.0052083	0.00060850	0.00038146
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7853966	0.1666664	0.0052083	0.00009316	0.00006043
0.01	10.0	0.7853966	0.1666664	0.0052083	0.00020072	0.00013253
	15.0	0.7853966	0.1666664	0.0052083	0.00032564	0.00021808
	20.0	0.7853966	0.1666664	0.0052083	0.00047102	0.00031893

Problem 2 için ilk olarak $0 \le x \le 80$ aralığında $A_1 = 1$, $A_2 = 0.5$ için ikinci olarak $0 \le x \le 150$ aralığında $A_1 = -2$, $A_2 = 1$ için h = 0.1 alınarak Δt 'nin 0.025 ve 0.01 değerleri için hesaplamalar yapıldı. Elde edilen değerler Tablo 5.68-5.69'da verildi. Tabloda I_1 , I_2 , I_3 korunum sabitlerinin t = 0.0 ve t = 80.0'deki değişimleri $\Delta t = 0.025$ için sırasıyla $\% 0.027 \times 10^{-3}$, $\% 0.002 \times 10^{-3}$, $\% 0.001 \times 10^{-3}$ $\Delta t = 0.01 \text{ için sırasıyla } \% 0.026 \times 10^{-3}, \% 0.001 \times 10^{-3}, \% 0.001 \times 10^{-3} \text{ olarak bulundu}.$ Bu sonuçlardan zaman adımı azaldıkça I_1 ve I_2 korunum sabitlerindeki değişimin azaldığı, I_3 korunum sabitlerinin ise aynı kaldığı görülmektedir. İkinci problem için korunum sabitlerinin t = 0.0 ve t = 55.0'deki değişimleri ise $\Delta t = 0.025$ için sırasıyla $\% 2.134 \times 10^{-3}, \% 4.001 \times 10^{-3}, \% 8.670 \times 10^{-3}$; $\Delta t = 0.01$ için sırasıyla $\% 0.182 \times 10^{-3}, \% 0.010 \times 10^{-3}, \% 0.076 \times 10^{-3}$ olarak bulundu. Elde edilen sonuçlardan zaman adımı Δt azaldıkça korunum sabitlerindeki değişimin azaldığı görülmektedir.

Tablo 5.68: $\mu = 1, h = 0.1, A_1 = 1, A_2 = 0.5, 0 \le x \le 80$ için Problem 2'nin Uygulama 4 ile elde edilen sayısal değerleri.

	Δ	t = 0.025		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	4.7123733	3.3333294	1.4166643	4.7123733	3.3333294	1.4166643		
10	4.7123745	3.3333294	1.4166643	4.7123745	3.3333294	1.4166643		
20	4.7123743	3.3333290	1.4166638	4.7123744	3.3333294	1.4166642		
30	4.7123665	3.3333139	1.4166446	4.7123732	3.3333269	1.4166612		
40	4.7123702	3.3333214	1.4166532	4.7123738	3.3333281	1.4166625		
50	4.7123745	3.3333295	1.4166642	4.7123745	3.3333295	1.4166643		
55	4.7123746	3.3333296	1.4166644	4.7123745	3.3333295	1.4166643		
60	4.7123746	3.3333296	1.4166644	4.7123745	3.3333295	1.4166643		
70	4.7123746	3.3333295	1.4166643	4.7123745	3.3333295	1.4166643		
80	4.7123745	3.3333295	1.4166643	4.7123745	3.3333294	1.4166643		

Tablo 5.69: $\mu = 1$, h = 0.1, $A_1 = -2$, $A_2 = 1$, $0 \le x \le 150$ için Problem 2'nin Uygulama 4 ile elde edilen korunum sabitleri.

	4	$\Delta t = 0.025$		$\Delta t = 0.01$				
t	I_1	I_2	I_3	I_1	I_2	I_3		
0	-3.1415739	13.3332981	22.6665313	-3.1415739	13.3332981	22.6665313		
5	-3.1415783	13.3332781	22.6664709	-3.1415778	13.3333016	22.6665483		
15	-3.1415598	13.3331491	22.6660478	-3.1415787	13.3333039	22.6665672		
25	-3.1415536	13.3330376	22.6656602	-3.1415800	13.3332997	22.6665598		
35	-3.1415381	13.3329465	22.6652953	-3.1415799	13.3332987	22.6665560		
45	-3.1415225	13.3328556	22.6649306	-3.1415797	13.3332978	22.6665523		
55	-3.1415068	13.3327647	22.6645660	-3.1415796	13.3332969	22.6665486		

Uygulama 4 için Problem 3, μ 'nün faklı değerleri alınarak çalıştırıldığında uygun değerler üretmediği görüldü.

Uygulama 5:

MEW denkleminde $U^2 U_x$ lineer olmayan terimi (2.1.19) şeklinde yazılır ve UU_x yerine (5.1.12) alınırsa (5.3.4) ile verilen denklem sisteminde Z_m

$$Z_m = 3UU_x = \frac{3U}{2} \left[U^{n+1}U_x^n + U^n U_x^{n+1} \right]$$
(5.3.11)

şeklinde elde edilir. Problem 1 ve 2 için (5.3.4) denklem sisteminde (5.3.11) kullanılarak elde edilen sayısal değerler Tablo 5.70-5.71'de verildi. Problem 1 için $0 \le x \le 80$ aralığında $\Delta t = 0.05$ alınarak h'nın 0.1 ve 0.05 değerleri için yapılan hesaplamalar Tablo 5.70'de verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin h = 0.1 için sırasıyla $0.100 \times 10^{-3}, 0.090 \times 10^{-3}$; h = 0.05 için sırasıyla $0.100 \times 10^{-3}, 0.090 \times 10^{-3}$ olduğu görülür. Tablo 5.70'de korunum sabitlerinin t = 0.0ve t = 20.0'deki değişimleri h = 0.1 için sırasıyla %18.326 × 10⁻³, %58.655 × 10⁻³, %117.340 × 10⁻³; h = 0.05 için sırasıyla %18.326 × 10⁻³, %58.654 × 10⁻³, %117.340 × 10⁻³ olarak hesaplandı. Bu sonuçlara göre h konum adımı azaldıkça korunum sabitlerindeki değişimin hemen hemen aynı kaldığı görülmektedir.

Tablo 5.70: $\mu = 1$, A = 0.25, $\Delta t = 0.05$, $0 \le x \le 80$ için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
0.1	5.0	0.7854325	0.1666908	0.0052098	0.02373336	0.02281906
	10.0	0.7854685	0.1667152	0.0052114	0.04803115	0.04540895
	15.0	0.7855045	0.1667397	0.0052129	0.07343072	0.06786038
	20.0	0.7855405	0.1667641	0.0052144	0.10042495	0.09005798
	0.0	0.7854101	0.1666679	0.0052084	0.00000000	0.00000000
	5.0	0.7854461	0.1666924	0.0052099	0.02373046	0.02284919
0.05	10.0	0.7854821	0.1667168	0.0052115	0.04801809	0.04556621
	15.0	0.7855181	0.1667412	0.0052130	0.07340654	0.06795766
	20.0	0.7855541	0.1667657	0.0052145	0.10039675	0.09025581

Tablo 5.71'de Problem 1 için $0 \le x \le 80$ aralığında h = 0.1 alınarak Δt 'nin 0.2, 0.1 ve 0.01 değerleri için hesaplamalar verildi. Tabloda t = 20.0'de L_2 ve L_{∞} hata norm değerlerinin $\Delta t = 0.2$ için sırasıyla $0.402 \times 10^{-3}, 0.361 \times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla $0.201 \times 10^{-3}, 0.180 \times 10^{-3}$ ve $\Delta t = 0.01$ için sırasıyla $0.020 \times 10^{-3}, 0.017 \times 10^{-3}$ olduğu görülmektedir. Bu sonuçlara göre Δt değerleri azaldıkça L_2 ve L_{∞} hatalarında oldukça az bir düşüş görüldü . Ayrıca Tablo 5.71'de korunum sabitlerinin t = 0.0 ve t = 20.0'deki değişimleri $\Delta t = 0.2$ için sırasıyla %73.494 $\times 10^{-3}$, %235.344 $\times 10^{-3}$, %471.185 $\times 10^{-3}$; $\Delta t = 0.1$ için sırasıyla %36.684 $\times 10^{-3}$, %117.431 $\times 10^{-3}$, %23.444 $\times 10^{-3}$ olarak bulundu. Bu sonuçlardan

zaman adımı azaldıkça korunum sabitlerinin değişiminde bir düşüş olduğu görülmektedir.

Δt	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.000000000
	5.0	0.7855405	0.1667641	0.0052144	0.09496719	0.0931286
0.2	10.0	0.7856847	0.1668621	0.0052206	0.19227096	0.18187540
	15.0	0.7858291	0.1669602	0.0052267	0.29408968	0.27192193
	20.0	0.7859738	0.1670586	0.0052329	0.40243497	0.36104280
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7854685	0.1667152	0.0052114	0.04747387	0.04564696
0.1	10.0	0.7855405	0.1667641	0.0052144	0.09609286	0.09086171
	15.0	0.7856126	0.1668131	0.0052175	0.14693928	0.13581280
	20.0	0.7856847	0.1668621	0.0052206	0.20100901	0.18027429
	0.0	0.7853966	0.1666664	0.0052083	0.00000000	0.00000000
	5.0	0.7854038	0.1666712	0.0052086	0.00474477	0.00455953
0.01	10.0	0.7854110	0.1666761	0.0052089	0.00959678	0.00907335
	15.0	0.7854182	0.1666810	0.0052092	0.01465897	0.01354839
	20.0	0.7854253	0.1666859	0.0052095	0.02002416	0.01796659

Tablo 5.71: $\mu = 1$, A = 0.25, h = 0.1, $0 \le x \le 80$ için Problem 1'in Uygulama 5 ile elde edilen sayısal değerleri.

Uygulama 5 için Problem 2, $0 \le x \le 80$ ve $0 \le x \le 150$ aralıklarında konum adımı h = 0.1 alınarak zaman adımı Δt nin 0.025 ve 0.01 değerleri için programın uygun değerler üretmediği görüldü. Benzer şekilde Uygulama 5 için Problem 3, μ 'nün faklı değerleri için çalıştırıldığında uygun değerler üretmediği görüldü.

Sonuç

Bu bölümde MEW denkleminin sayısal çözümleri, denklemdeki U^2U_x lineer olmayan terim yerine farklı lineerleştirme teknikleri uygulanarak kübik, kuintik ve septik B-spline Kollokasyon sonlu eleman yöntemi ile elde edildi. Problem 1 için Tablo 5.72-5.73, t = 20.0'de farklı lineerleştirme teknikleriyle elde edilen korunum sabitleri ile L_2 ve L_∞ hata normlarının değerlerini ve literatürdeki farklı çalışmalarla karşılaştırılmasını göstermektedir.

Tablo 5.73 incelendiğinde Uygulama 1 ve 4 ile elde edilen L_2 ve L_{∞} hata normlarının referans [32, 33, 36, 42] de elde edilen L_2 ve L_{∞} hata normlarından daha küçük olduğu, referans [39, 43] ile uyum içinde olduğu ve korunum sabitlerinin bilgisayar çalışması boyunca hemen hemen sabit kaldığı görüldü.

Tablo 5.72: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \mu = 1, A = 0.25, \Delta t = 0.05$ için t = 20' de farklı uygulama ve çalışmalardan elde edilen korunum sabitleri.

t = 20		I_1			I_2			I_3	
	Kübik	Kuintik	Septik	Kübik	Kuintik	Septik	Kübik	Kuintik	Septik
Uyg.1	0.7853966	-	0.7853966	0.1666664	-	0.1666664	0.0052083	-	0.0052083
Uyg.2	0.7503589	0.7503589	0.7501033	0.1549537	0.1549537	0.1548695	0.0045009	0.0045009	0.0044960
Uyg.3	0.7853976	0.7853976	0.7853976	0.1666670	0.1666670	0.1666670	0.0052084	0.0052084	0.0052084
Uyg.4	0.7853966	0.7853966	0.7853966	0.1666662	0.1666664	0.1666664	0.0052083	0.0052083	0.0052083
Uyg.5	0.7855403	0.7853976	0.7855405	0.1667638	0.1666670	0.1667641	0.0052144	0.0052084	0.0052144
[32]		-			-			=	
[33]		0.7849545			0.1664765		0.0051995		
[36]		0.7853900			0.1666700			0.0052100	
[39]	0.7853982			0.1666667			0.0052083		
[42]	2 0.7853977			0.1664735			0.0052083		
[43]		0.7853980		0.1666670			0.0052080		

Tablo 5.73: Problem 1'in $0 \le x \le 80$ aralığında $h = 0.1, \mu = 1, A = 0.25, \Delta t = 0.05$ için t = 20' de farklı uygulama ve çalışmalardan elde edilen hata norm değerleri.

t = 20		$L_2 \times 10^3$			$L_{\infty} \times 10^3$	
	Kübik	Kuintik	Septik	Kübik	Kuintik	Septik
Uyg.1	0.17527714	=	0.0004969	0.17646577	-	0.0003309
Uyg.2	15.11257402	15.1125740	15.2204073	11.17518333	11.1751833	11.2523194
Uyg.3	0.13465154	0.1346515	0.1344588	0.12492940	0.1249294	0.1246583
Uyg.4	0.17526569	0.0005894	0.0004957	0.17645446	0.0003861	0.0003331
Uyg.5	0.19189701	0.1346515	0.1004249	0.21797638	0.1249294	0.0900579
[32]		0.1958878			0.1744330	
[33]		0.2905166			0.2498925	
[36]		0.0034500			0.0020300	
[39]		0.0002700			0.0003200	
[42]		0.2692812			0.2569972	
[43]		0.0009269			0.0007867	

Problem 2 için kübik, kuintik ve septik B-spline Kollokasyon yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde Uygulama 1, 3 ve 4 ile elde edilen sonuçların birbirleriyle ve karşılaştırma yapılan referanslarla uyum içinde olduğu görülür.

Problem 3 için kübik B-spline Kollokasyon yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde Uygulama 1, 3 ve 4 ile elde edilen sonuçların, kuintik B-spline Kollokasyon yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde Uygulama 3, 4 ve septik B-spline Kollokasyon yönteminin uygulanması ile elde edilen sonuçların verildiği tablolar incelendiğinde ise Uygulama 1, 3 ile elde edilen sonuçların birbirleriyle uyum içinde olduğu görülür.

KAYNAKLAR

- [1] J. N. Reddy, An introduction to Nonlinear Finite Element Analysis, Oxford University Press Inc., New York, 2004.
- [2] D. L. Logan, A First Course in the Finite Element Method (Fourth Edition), Thomson, 2007.
- [3] G. D. Smith, Numerical solution of partial differential equations: Finite Difference Methods (Third edition), Clarendon Press, Oxford, 1987.
- [4] F. L. Stasa, Applied finite element Analysis for Engineers, CBS College Publishing, New York, 1985.
- [5] A. Hrennikoff, Solution of problems in elasticity by the framework method, J. Appl. Mech., A8 (1941) 169-175.
- [6] D. McHenry, A lattice analogy for the solution of plane stress problems, J. Inst. Civ. Eng., 21 (1943) 59-82.
- [7] J. H. Argyris, Recent advances in matrix methods of structural analysis, Progr. Aeron. Sci., 4 (1964).
- [8] R. W. Clough, The finite element in plane stress analysis, Proc. 2nd A.S.C.E. Conf. on Electronic Computation, Pittsburgh, Pa. (1960), 345-378.
- [9] A. J. Davies, *The Finite Element Method: A First Approach*, Oxford University Press, Oxford, 1986.
- [10] M. A. Walkley, A Numerical Method for Extended Boussinesg Shallow-water Wave Equations, The University of Leeds School of Computer Studies, 1999.
- [11] T. Geyikli, "Finite Element Studies of the Modified KdV Equation", Ph. D. Thesis, University College of North Wales, Bangor, Gwynedd (UK),1994.
- [12] I. Dağ, "Studies of B-spline Finite Elements", Ph. D. Thesis, University College of North Wales, Bangor, Gwynedd (UK),1994.
- [13] W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Sixth Edition, Thomson, 2008.
- [14] P. M. Prenter, Splines and variational methods, Wiles, New York, 1975.
- [15] P. J. Morrison, J. D. Meiss and J. R. Carey, Scattering of RLW solitary waves, Physica 11 D(1984) 324-336.

- [16] D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966) 321-330.
- [17] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in non-linear dispersive systems, Philos. Trans. Roy. Soc. London, A272 (1972) 47-78.
- [18] L. R. T. Gardner and G. A. Gardner, Solitary waves of the equal width wave equation, J. Comput. Phys., 101:1(1992) 218-223.
- [19] L.R.T. Gardner, G. A. Gardner, F. A. Ayoup and N. K. Amein, Simulations of the EW undular bore, Commun. Numer. Meth. En., 13:7 (1997) 583-592.
- [20] B. Garcia-Archilla, A spectral method for the equal width equation, J. Comput. Phys., 125:2 (1996) 395-402.
- [21] S. I. Zaki, A Least-squares finite element scheme for the EW equation, Comp. Methods in Appl. Mech. and Eng., 189:2 (2000) 587-594.
- [22] S.I. Zaki, Solitary waves induced by the boundary forced EW equation, Comp. Methods in Appl. Mech. and Eng., 190:37-38 (2001) 4881-4887.
- [23] S. Hamdi, "Numerical Solutions of The Equal Width Wave Equation Using an Adaptive Method of Lines", Ph. D. Thesis, University of Toronto, Canada 2002.
- [24] I. Dağ and B. Saka, A cubic B-spline collocation method for the EW equation, Math. Comput. Appl., 9:3 (2004) 381-392.
- [25] A. Esen, A numerical solution of the equal width wave equation by a lumped Galerkin method, Appl. Math. Comput., 168:1 (2005) 270-282.
- [26] A. Doğan, Application of Galerkin's method to equal width wave equation, Appl. Math. Comput., 160:1 (2005) 65-76.
- [27] K. R. Raslan, Collocation method using quartic B-spline for the equal width (EW) equation, Appl. Math. Comput., 168:2 (2005) 795-805.
- [28] D. Irk, B. Saka and I. Dağ, A Cubic Spline Collocation Method for the Equal Width Equation, Hadronic Journal Supplement, (2003) 201-214.
- [29] B. Saka, A finite element method for equal width equation, Appl. Math. Comput., 175 (2006) 730-747.
- [30] I. Dağ, D. Irk and A. Boz, Simulation of EW Wave Generation via Quadratic B-Spline Finite Element Method, Int. J. Math. Stat., 1:7 (2007) 46-59.
- [31] S. Hamdi, W. E. Enright, W. E. Schiesser, J.J. Gottlieb and Abd Alaal, Exact solutions of the generalized equal width wave equation, in: Proceedings of the International Conference on Computational Science and Its Application, LNCS, 2668 (2003), 725-734.

- [32] K. R. Raslan, Collocation method using cubic B-spline for the generalized equal width equation, Int. J. Simulat. Pro. Model., 2:1/2 (2006) 37-44.
- [33] D. J. Evans and K. R. Raslan, Solitary waves for the generalized equal width(GEW) equation, Int. J. Comput. Math., 82:4 (2005) 445-455.
- [34] P. J. Olver, Euler operators and conservation laws of the BBM equations, Math. Proc. Camb. Phil. Soc., 85 (1989) 143-160.
- [35] A. R. Santarelli, Numerical Analysis of the regularized long-wave equation, Nuovo Cimento B., 46:1 (1978) 179-188.
- [36] S. I. Zaki, Solitary wave interactions for the modified equal width equation, Comput. Phys. Commun., 126:3 (2000) 219-231.
- [37] A. M. Wazwaz, The tanh and sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Comm. Nonlinear Sci. Numer. Simulat., 11:2 (2006) 148-160.
- [38] A. Esen, A lumped Galerkin method for the numerical solution of the modified equal width wave equation using quadratic B splines, Int. J. Comput. Math., 83:5-6 (2006) 449-459.
- [39] B. Saka, Algorithms for numerical solution of the modified equal width wave equation using collocation method, Math. Comput. Model., 45:9-10 (2007) 1096-1117.
- [40] J. Lu, He's variational iteration method for the modified equal width wave equation, Chaos, Solitons and Fractals 39:5 (2007) 2102-2109.
- [41] W. Rui, S. Xie, Y. Long and B. He, Integral bifurcation method and its application for solving the modified equal width wave equation and its variants, Rostock. Math. Kolloq., 62 (2007) 87-106.
- [42] A. Esen and S. Kutluay, Solitary wave solutions of the modified equal width wave equation, Comm. Nonlinear Sci. Numer. Simulat., 13:8 (2008) 1538-1546.
- [43] S. İslam, F. Haq and İ. A. Tirmizi, Collocation method using quartic B-spline for numerical solution of the modified equal width wave equation, J. Appl. Math. & Informatics, 28:3-4 (2010) 611-624.
- [44] S. T. Mohyud-Din, A. Yıldırım, M. E. Berberler and M. M. Hosseini, Numerical solution of modified equal width wave equation, World Appl. Sci. J., 8:7 (2010) 792-798.
- [45] S. G. Rubin and R. A. Graves, A Cubic spline approximation for problems in fluid mechanics, Nasa TR R-436, Washington, DC, 1975.
- [46] J. Caldwell and P. Smith, Solution of Burgers' equation with a large Reynolds number, Appl. Math. Modelling., 6 (1982) 381-386.

- [47] İ. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-plines, J. Comput. Appl. Math., 190 (2006) 532-547.
- [48] N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett., 15 (1965) 240-243.

ÖZGEÇMİŞ

23.09.1979 tarihinde Malatya'da doğdu. İlk öğrenimini Malatya'da, orta öğrenimini Eskişehir'de tamamladı. 2001 yılında Selçuk Üniversitesi Eğitim Fakültesi Matematik öğretmenliği bölümünden mezun oldu. 2001-2005 yılları arasında Malatya Akçadağ Anadolu Öğretmen lisesi'nde görev yaptı. 2006 yılında İnönü Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalında yüksek lisansını tamamladı. Halen Beydağı A. Kadir Eriş Anadolu lisesinde matematik öğretmeni olarak görev yapmaktadır. Evli ve iki çocuk babasıdır.