T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DÜZENLİ UZUN DALGA (RLW) DENKLEMİNİN SONLU FARK YÖNTEMLERİ İLE ÇÖZÜMLERİ

Şeyma YALVAÇ

YÜKSEK LİSANS TEZİ

MATEMATİK ANA BİLİM DALI

Ağustos 2016

Tezin Başlığı : DÜZENLİ UZUN DALGA (RLW) DENKLEMİNİN SONLU FARK YÖNTEMLERİ İLE ÇÖZÜMLERİ

Tezi Hazırlayan : Şeyma YALVAÇ Sınav Tarihi : 05.08.2016

Yukarıda adı geçen tez jürimizce değerlendirilerek Matematik Ana Bilim Dalında Yüksek Lisans Tezi olarak kabul edilmiştir.

Sınav Jüri Üyeleri

Tez Danışmanı:	Prof.Dr. Selçuk K	KUTLUAY	r _	
	İnönü Üniversitesi			
	Prof.Dr. Hüseyin	YILDIRI	M	
	Kahramanmaraş Üniversitesi	Sütçü	İmam	
	Yrd.Doç.Dr. Yusı	ıf UÇAR	_	
	İnönü Üniversitesi			

Prof.Dr. Alaattin ESEN Enstitü Müdürü

ONUR SÖZÜ

Yüksek Lisans Tezi olarak sunduğum "Düzenli Uzun Dalga (RLW) Denkleminin Sonlu Fark Yöntemleri ile Çözümleri" başlıklı bu çalışmanın bilimsel ahlâk ve geleneklere aykırı düşecek bir yardıma başvurmaksızın tarafımdan yazıldığını ve yararlandığım bütün kaynakların, hem metin içinde hem de kaynakçada yöntemine uygun biçimde gösterilenlerden oluştuğunu belirtir, bunu onurumla doğrularım.

Şeyma YALVAÇ

ÖZET

Yüksek Lisans Tezi

DÜZENLİ UZUN DALGA (RLW) DENKLEMİNİN SONLU FARK YÖNTEMLERİ İLE ÇÖZÜMLERİ

Şeyma YALVAÇ

İnönü Üniversitesi Fen Bilimleri Enstitüsü Matematik Ana Bilim Dalı

118+xv sayfa

2016

Danışman : Prof.Dr. Selçuk KUTLUAY

Bu yüksek lisans tezi beş bölümden oluşmaktadır. Birinci bölümde, dalga kavramı ve dalga denklemleri hakkında bilgi verildi. Ayrıca bu bölümde tezde göz önüne alınacak olan Düzenli Uzun Dalga (Regularized Long Wave \equiv RLW) denkleminin tarihsel gelişiminden bahsedildi.

İkinci bölümde, klasik sonlu fark yöntemleri ile birlikte von Neumann kararlılık analizi hakkında bazı temel kavramlar verildi.

Üçüncü bölümde, RLW denklemi tanıtıldıktan sonra denklemin literatür araştırması sunuldu. Ayrıca farklı başlangıç ve sınır şartları ile verilen RLW denklemi için tek soliter dalga hareketi, iki soliter dalga girişimi ve ardışık dalga oluşumu problemleri kısaca tanıtıldı.

Tezin esas kısmını oluşturan dördüncü bölümde ise RLW denkleminde görülen UU_x lineer olmayan terim yerine dört farklı lineer sonlu fark yaklaşımları yazılarak denklemin sayısal çözümleri elde edildi ve aynı zamanda ortaya çıkan fark şemalarının kararlılık analizleri incelendi. Ayrıca bu bölümde kullanılan yaklaşımların model problemlere uygulanmasıyla elde edilen sonuçlar tablolar halinde verildi ve literatürde mevcut diğer sonuçlarla karşılaştırıldı.

Son olarak beşinci bölümde, kullanılan dört farklı lineer sonlu fark yaklaşımından elde edilen sonuçlar kısaca değerlendirildi.

ANAHTAR KELİMELER: Düzenli Uzun Dalga (RLW) Denklemi, Tek Soliter Dalga Hareketi, İki Soliter Dalga Girişimi, Ardışık Dalga Oluşumu, Sonlu Fark Yöntemleri, von Neumann Kararlılık Analizi

ABSTRACT

M.Sc. Thesis

SOLUTIONS OF REGULARIZED LONG WAVE EQUATION WITH FINITE DIFFERENCE METHODS

Şeyma YALVAÇ

İnönü University Graduate School of Natural and Applied Sciences Department of Mathematics

118+xv pages

2016

Supervisor : Prof.Dr. Selçuk KUTLUAY

This master thesis consists of five chapters. In the first chapter, some information is given about wave concept and wave equations. Also in this chapter, historical development of Regularized Long Wave (RLW) equation is mentioned.

In the second chapter, some basic concepts are given about finite difference methods and von Neumann stability analysis.

In the third chapter, RLW equation is firstly introduced and then its literature survey is presented. In addition, the problems which are the motion of a single solitary wave, the interaction of two solitary waves and the undular bore are introduced for RLW equation given with different initial and boundary conditions.

The fourth chapter constitutes the main part of the thesis. In this chapter, the RLW equation is solved numerically as UU_x nonlinear term in RLW equation is replaced by four different linear finite difference approximations and the stability analysis of the obtained each finite difference scheme is also investigated. The results obtained by applying model problems of each approximation are given in the tables and compared with the other results in the literature.

Finally, in the fifth chapter, the results obtained by using four different linear finite difference approximations have been briefly evaluated.

KEY WORDS: Regularized Long Wave (RLW) Equation, The Motion of a Single Solitary Wave, The Interaction of Two Solitary Waves, The Undular Bore, Finite Difference Methods, von Neumann Stability Analysis

TEŞEKKÜR

Yüksek lisans çalışmamı yöneten ve tezin hazırlanması sürecinde bana yardımcı olan, her zaman yakın ilgi ve yardımlarını esirgemeyen çok kıymetli hocam Sayın Prof. Dr. Selçuk KUTLUAY'a, çalışmalarım sırasında karşılaştırdığım her türlü güçlüğün üstesinden gelme konusunda bana yol gösteren, bilgi ve görüşlerinden istifade ettiğim çok değerli hocalarım Doç. Dr. M. Kemal ÖZDEMİR, Yrd. Doç. Dr. Yusuf UÇAR ve Yrd. Doç. Dr. N. Murat YAĞMURLU'ya ayrıca yüksek lisans sürecinde üzerimde büyük emekleri olduğunu düşündüğüm bölüm başkanımız Sayın Prof. Dr. Sadık KELEŞ'e ve diğer bölüm hocalarıma ve bilhassa maddi manevi desteklerinden dolayı aileme teşekkürü bir borç bilirim.

İÇİNDEKİLER

	ÖZET	i
	ABSTRACT	iii
	TEŞEKKÜR	v
	İÇİNDEKİLER	vii
	ŞEKİLLER DİZİNİ	viii
	TABLOLAR DİZİNİ	ix
	SİMGELER VE KISALTMALAR	XV
1.	GİRİŞ	1
2. 2.1. 2.2. 2.2.1.	TEMEL KAVRAMLAR Sonlu Fark Yöntemleri Kararlılık Analizi Fourier Seri (von Neumann) Yöntemi	7 7 11 11
3. 3.1. 3.2. 3.2.1. 3.2.2. 3.2.3.	DÜZENLİ UZUN DALGA (RLW) DENKLEMİ Giriş Model Problemler Tek Soliter Dalga Hareketi İki Soliter Dalga Girişimi Ardışık Dalga Oluşumu.	13 13 17 17 18 18
4.	RLW DENKLEMİNİN SONLU FARK YAKLAŞIMLARIYLA NÜMERİK ÇÖZÜMLERİ	20
4.1. 4.1.1. 4.1.2.	Sonlu Fark Yaklaşımı-1 (SFY-1) Kararlılık Analizi Nümerik Sonuçlar	21 22 23
4.2. 4.2.1. 4.2.2.	Sonlu Fark Yaklaşımı-2 (SFY-2) Kararlılık Analizi Nümerik Sonuçlar Sonlu Fark Yaklaşımı 2 (SEV 2)	46 47 48
4.3.	онни ганк такнаşıнш-ә (эгт-ә <i>)</i>	00

4.3.1.	Kararlılık Analizi	67
4.3.2.	Nümerik Sonuçlar	70
4.4.	Sonlu Fark Yaklaşımı-4 (SFY-4)	89
4.4.1.	Kararlılık Analizi	90
4.4.2.	Nümerik Sonuçlar	91
5.	SONUÇ ve ÖNERİLER	111
	KAYNAKLAR	113
	ÖZGEÇMİŞ	118

şekiller dizini

Şekil 1.1	Basit bir dalga profili	4
Şekil 4.1	t=0ve $t=20$ zamanlarında soliter dalga profili	24
Şekil 4.2	t=20zamanında hata	24
Şekil 4.3	İki soliter dalganın girişimi	33
Şekil 4.4	t=400zamanında iki soliter dalganın girişimi	34
Şekil 4.5	d=2yüksek eğimi için ardışık dalga oluşumu	39
Şekil 4.6	d=5düşük eğimi için ardışık dalga oluşumu	39
Şekil 4.7	d=2yüksek eğimi ve $d=5$ düşük eğimi için öncü (ilk) dalganın	
	yüksekliği	40
Şekil 4.8	d=2yüksek eğimi için korunum sabitlerinin değişimi	40

TABLOLAR DİZİNİ

.

Tablo 4.1	SFY-1 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3 - 40 \le x \le 60$)	26
Tablo 4.2	SFY-1 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri için hesaplanan	20
	korunum sabitleri, hata normlari, dalganin konumu ve yuksekliği	~ -
T 11 ()	$(3c = 0.3, -40 \le x \le 60).$	27
Tablo 4.3	SFY-1 ile Problem 1 in $h = 0.125$ ve k nin farkli degerleri için	
	hesaplanan korunum sabitleri, hata normlari, dalganin konumu ve	20
	yuksekligi $(3c = 0.09, -80 \le x \le 120)$.	29
Tablo 4.4	SFY-1 ile Problem 1 in $k = 0.1$ ve h nin farkli degerleri için hesaplanan	
	korunum sabitleri, hata normlari, dalganin konumu ve yuksekligi	0.1
T.11. 4 F	$(3c = 0.09, -80 \le x \le 120)$.	31
1ablo 4.5	SFY-1 lie Problem 1 in n ve k nin tarkli degerleri için nesaplanan hata narmıları (2	
	nata normari $(3c = 0.3 \text{ için } -40 \le x \le 60, 3c = 0.09 \text{ için } -80 \le c \le 120)$	91
Table 16	$x \leq 120$)	31
14010 4.0	SF 1-1 në Froblem 1 ni $n = 0.125$ vë $k = 0.1$ için nësapianan korupum sabitlori ve bata pormlari $(2a - 0.2 - 40 \le a \le 60)$	20
Table 47	SEV 1 ile Problem 2'nin $h = 0.12$ vo k nun farklı değerleri için	32
14010 4.7	bosaplanan korunum sabitlari $(3c_1 - 0.6, 3c_2 - 0.3, r_1 - 177)$	
	$r_{2} = -147 - 200 \le r \le 400$	35
Table 4.8	$x_2 = -147, -200 \le x \le 400)$	00
14010 4.0	besaplanan korunum sabitleri $(3c_1 - 0.6, 3c_2 - 0.3, r_1177)$	
	$r_{2} = -147 - 200 \le r \le 400$	37
Tablo 49	SFY-1 ile Problem 2'nin $h = 0.12$ ve $k = 0.1$ icin hesaplanan	01
10010 1.0	korunum sabitleri $(3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177, x_1 = -147, 3c_2 = 0.3, x_3 = -177, x_4 = -147, 3c_5$	
	$-200 \le x \le 400$).	38
Tablo 4.10	SFY-1 ile Problem 3'ün $d = 2$, $h = 0.24$ ve k nin farkli değerleri icin	00
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	(-36 < x < 300)	41
Tablo 4.11	SFY-1 ile Problem 3'ün $d = 2, k = 0.1$ ve h nin farklı değerleri icin	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	42

Tablo 4.12	SFY-1 ile Problem 3'ün $d = 5, h = 0.24$ ve k nın farklı değerleri için boşanlanan korunum şabitleri, ilk dalganın konumu ve yükseldiği	
	$(-36 \le x \le 300)$.	43
Tablo 4.13	SFY-1 ile Problem 3'ün $d = 5$, $k = 0.1$ ve h nin farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	44
Tablo 4.14	SFY-1 ile Problem 3'ün $d = 2, h = 0.24$ ve $k = 0.1$ değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	45
Tablo 4.15	SFY-1 ile Problem 3'ün $d = 2$, $h = 0.24$ ve $k = 0.1$ değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le$	
	300)	45
Tablo 4.16	SFY-1 ile Problem 3'ün $d = 5$, $h = 0.24$ ve $k = 0.1$ değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300)$	46
Tablo 4.17	SFY-1 ile Problem 3'ün $d = 5, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitlerinin lineer artış oranları (–36 $\leq x \leq$	
	300)	46
Tablo 4.18	SFY-2 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, hata normları, dalganın konumu ve	
	yüksekliği $(3c = 0.3, -40 \le x \le 60)$.	49
Tablo 4.19	SFY-2 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri için hesaplanan	
	korunum sabitleri ve hata normlari; dalganin konumu ve yuksekliği $(2 - 0.2 - 40.4 - 40.4)$	۳1
T.11. 400	$(3c = 0.3, -40 \le x \le 60)$	51
1ablo 4.20	SFY-2 lie Problem I in $h = 0.125$ ve k nin farkli degerleri için	
	nesapianan korunum sabitieri, nata normari, daiganin konumu ve uüksekliği $(3c - 0.00 - 80 \le r \le 120)$	53
Tablo 4 21	SFV-2 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri için hesaplanan	55
10010 1.21	korunum sabitleri ve hata normları: dalganın konumu ve viiksekliği	
	$(3c = 0.09, -80 \le x \le 120)$	54
Tablo 4.22	SFY-2 ile Problem 1'in h ve k 'nın farklı değerleri için hesaplanan	-
	hata normları ($3c = 0.3$ için $-40 \le x \le 60$, $3c = 0.09$ için $-80 \le$	
	$x \leq 120$).	55
Tablo 4.23	SFY-2 ile Problem 1'in $h = 0.125$ ve $k = 0.1$ için hesaplanan	
	korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$)	56
Tablo 4.24	SFY-2 ile Problem 2'nin $h = 0.12$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri ($3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177,$	
	$x_2 = -147, -200 \le x \le 400$)	58

Tablo 4.25	SFY-2 ile Problem 2'nin $k = 0.1$ ve h nın farklı değerleri için hosanlanan korunum sabitleri (3 $c_1 = 0.6$, 3 $c_2 = 0.3$, $r_2 = -177$	
	$r_{2} = -147 - 200 < r < 400$	59
Tablo 4.26	SFY-2 ile Problem 2'nin $h = 0.12$ ve $k = 0.1$ icin hesaplanan	00
	korunum sabitleri $(3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177, x_2 = -147,$	
	-200 < x < 400)	60
Tablo 4.27	SFY-2 ile Problem 3'ün $d = 2, h = 0.24$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	61
Tablo 4.28	SFY-2 ile Problem 3'ün $d=2,k=0.1$ ve h nin farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	62
Tablo 4.29	SFY-2 ile Problem 3'ün $d=5,h=0.24$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	63
Tablo 4.30	SFY-2 ile Problem 3'ün $d = 5$, $k = 0.1$ ve h nin farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
T.11. 491	$(-36 \le x \le 300)$	64
Tablo 4.31	SFY-2 ile Problem 3 un $d = 2$, $h = 0.24$ ve $k = 0.1$ degerleri için	
	nesapianan korunum sabitieri, iik daiganin konumu ve yuksekiigi $(26 \le n \le 200)$	64
Table 4.32	$(-50 \le k \le 500)$	04
14010 4.02	besaplanan korunum sabitlerinin lineer artis oranlari ($-36 \le r \le$	
	300)	65
Tablo 4.33	SFY-2 ile Problem 3'ün $d = 5$, $h = 0.24$ ve $k = 0.1$ değerleri icin	00
100010 1000	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	(-36 < x < 300)	65
Tablo 4.34	SFY-2 ile Problem 3'ün $d = 5, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \leq x \leq$	
	300)	66
Tablo 4.35	SFY-3 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, hata normları, dalganın konumu ve	
	yüksekliği (3 $c = 0.3, -40 \le x \le 60$).	71
Tablo 4.36	SFY-3 ile Problem 1'in $k=0.1$ ve h nin farklı değerleri için hesaplanan	
	korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği	
	$(3c = 0.3, -40 \le x \le 60).$	73

SFY-3 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için hesaplanan korunum sabitleri hata normları dalganın konumu ve	
viiksekliği $(3c - 0.09) - 80 \le r \le 120)$	75
SFY-3 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri icin hesaplanan	10
korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği	
(3c = 0.09, -80 < x < 120).	76
SFY-3 ile Problem 1'in h ve k 'nın farklı değerleri için hesaplanan hata normları ($3c = 0.3$ için $-40 \le x \le 60$, $3c = 0.09$ için $-80 \le 1200$)	
$x \leq 120$)	((
SFY-3 lie Problem 1 lin $n = 0.125$ ve $\kappa = 0.1$ için nesapianan komunum sabitlari ve bata normları $(2a - 0.2 - 40 \le \pi \le 60)$	70
Korunum sabitien ve nata norman $(5c = 0.3, -40 \le x \le 00)$ SEV 3 ile Problem 2'nin $h = 0.12$ ve k nun farklı değerleri için	10
hesaplanan korunum sabitleri $(3c_1 - 0.6, 3c_2 - 0.3, r_1177)$	
$r_{2} = -147 -200 \le r \le 400)$	80
SFY-3 ile Problem 2'nin $k = 0.1$ ve h nin farkli değerleri icin	00
hesaplanan korunum sabitleri $(3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177)$	
$x_1 = -147, -200 < x < 400).$	81
SFY-3 ile Problem 2'nin $h = 0.12$ ve $k = 0.1$ için hesaplanan	
korunum sabitleri ($3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177, x_2 = -147,$	
$-200 \le x \le 400).$	82
SFY-3 ile Problem 3'ün $d=2,h=0.24$ ve k nın farklı değerleri için	
hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
$(-36 \le x \le 300).$	83
SFY-3 ile Problem 3'ün $d = 2, k = 0.1$ ve h nin farklı değerleri için	
hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	0.4
$(-36 \le x \le 300)$	84
SFY-3 lle Problem 3 un $d = 5$, $h = 0.24$ ve k nin farkli degerleri için	
$(-36 \le x \le 300)$	85
$(-50 \le x \le 500)$	80
hesaplanan korunum sahitleri ilk dalganın konumu ve yüksekliği	
$(-36 \le x \le 300)$.	86
SFY-3 ile Problem 3'ün $d = 2$, $h = 0.24$ ve $k = 0.1$ değerleri icin	00
hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
$(-36 \le x \le 300).$	87
SFY-3 ile Problem 3'ün $d = 2, h = 0.24$ ve $k = 0.1$ değerleri için	
hesaplanan korunum sabitlerinin lineer artış oranları (–36 $\leq x$ \leq	
300)	87
	SFY-3 ile Problem 1'in $h = 0.125$ ve k nm farkh değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$)

Tablo 4.50	SFY-3 ile Problem 3'ün $d = 5$, $h = 0.24$ ve $k = 0.1$ değerleri için hesaplanan korunum sabitleri ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300)$.	88
Tablo 4.51	SFY-3 ile Problem 3'ün $d = 5$, $h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le$	
	300)	88
Tablo 4.52	SFY-4 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve	
	yüksekliği $(3c = 0.3, -40 \le x \le 60)$	92
Tablo 4.53	SFY-4 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği	
	$(3c = 0.3, -40 \le x \le 60).$	94
Tablo 4.54	SFY-4 ile Problem 1'in $h = 0.125$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, hata normları, dalganın konumu ve	
	yüksekliği $(3c = 0.09, -80 \le x \le 120)$	96
Tablo 4.55	SFY-4 ile Problem 1'in $k = 0.1$ ve h nin farklı değerleri için hesaplanan	
	korunum sabitleri ve hata normlari; dalganin konumu ve yuksekligi $(2 - 0.00 - 0.00 - 0.00)$	07
Table 4 F6	$(3c = 0.09, -80 \le x \le 120)$.	97
1abio 4.50	SF 1-4 lie Problem 1 lii n ve k lim larkii degeneri için nesapianan hata normları (2a = 0.2 için $40 \le x \le 60, 2a = 0.00$ için $80 \le$	
	r < 120	98
Tablo 457	SFY-4 ile Problem 1'in $h = 0.125$ ve $k = 0.1$ icin hesaplanan	50
10010 1101	korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$)	99
Tablo 4.58	SFY-4 ile Problem 2'nin $h = 0.12$ ve k nin farkli değerleri için	
	hesaplanan korunum sabitleri ($3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177,$	
	$x_2 = -147, -200 \le x \le 400$).	101
Tablo 4.59	SFY-4 ile Problem 2'nin $k = 0.1$ ve h nın farklı değerleri için	
	hesaplanan korunum sabitleri ($3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177,$	
	$x_2 = -147, -200 \le x \le 400$)	102
Tablo 4.60	SFY-4 ile Problem 2'nin $h = 0.12$ ve $k = 0.1$ için hesaplanan	
	korunum sabitleri ($3c_1 = 0.6, 3c_2 = 0.3, x_1 = -177, x_2 = -147$	100
T 11 4 61	$, -200 \le x \le 400).$	103
Tablo 4.61	SFY-4 ile Problem 3'un $d = 2, h = 0.24$ ve k nin farkli degerleri için	
	nesapianan korunum sabitleri, lik dalganin konumu ve yuksekiigi $(-26 < \pi < 200)$	105
Tablo 4 69	$(-50 \le u \le 500)$ SEV_4 ile Problem 3'iin $d = 2$, $k = 0.1$ we h nin farkly deserber i.e.	109
10010 4.02	hesaplanan korunum sahitleri ilk dalganın konumu ve yüksekliği	
	(-36 < x < 300)	106
		-00

Tablo 4.63	SFY-4 ile Problem 3'ün $d = 5, h = 0.24$ ve k nın farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	107
Tablo 4.64	SFY-4 ile Problem 3'ün $d = 5, k = 0.1$ ve h nin farklı değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	108
Tablo 4.65	SFY-4 ile Problem 3'ün $d = 2, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	108
Tablo 4.66	SFY-4 ile Problem 3'ün $d = 2, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitlerinin lineer artış oranları (–36 $\leq x \leq$	
	300)	109
Tablo 4.67	SFY-4 ile Problem 3'ün $d = 5, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği	
	$(-36 \le x \le 300).$	109
Tablo 4.68	SFY-4 ile Problem 3'ün $d = 5, h = 0.24$ ve $k = 0.1$ değerleri için	
	hesaplanan korunum sabitlerinin lineer artış oranları (–36 $\leq x \leq$	
	300)	110

SİMGELER VE KISALTMALAR

Kısaltmalar	Açıklamalar
KdV	Korteweg de Vries
RLW	Regularized Long Wave
BBM	Benjamin Bona Mahony
EW	Equal Width
SFY	Sonlu Fark Yaklaşımı

1. GİRİŞ

Bir cismin periyodik hareketi veya konumunun periyodik değişimi olarak tanımlanabilen titreşim ve salınım hareketleri günlük hayatta birçok şekilde gözlemlenebilmektedir. Bunlara örnek olarak nabzımızın atışı, saat sarkacının sallanması, saatin tik takları, müzik aletinin tellerinin titremesi vb. verilebilir. Salınımlar için bilimsel yaklaşımlar, titreşen cisimlerin arasındaki fiziksel farkların ihmal edilmesi, bütün salınımlar için genel olan özelliklerin çıkarılması ve bu salınımları tanımlayacak matemetiksel kuralların bulunmasıyla başlar.

Salınım ve titreşim genellikle dalgaları oluşturur. Sudaki dalgalar kolaylıkla fiziksel olay olarak tanımlanırken radyo dalgaları sadece hayal edilebilir. Bu ise radyo dalgalarının fiziksel gerçekliğini göstermeyi zorlaştırır. Dalgalar teorisi, fiziksel özelliklerinden bağımsız olarak tüm dalgalarda ortak olan karakteristiklerle ilgili olduğu için bir örneği olarak sadece sudaki dalgaları anlamak yeterlidir. Ancak sudaki dalgalar gözle görüldüğünden daha karmaşık bir olaydır.

Dalgalar, salınımlarla yakından ilişkilidir. En basit periyodik dalga herhangi bir ortamda, ortamın komşu noktalarına salınım hareketlerinin ilerlemesidir. Bu tür dalgalar genellikle titreşen cisimlerden ortaya çıkar. Ses dalgalarının ses çatalı (diyapazon) tarafından oluşturulması buna örnek olarak verilebilir. Titreyen çatal salınım üretir ve havadaki parçacıkların salınımı daha uzaklara iletmesiyle ses dalgası oluşur.

Basit periyodik bir dalga bir ortamda ilerlerken ortamın parçacıkları salınır. Eğer

dalganın genliği küçükse salınımın genliği dalganın genliği ile orantılıdır. Büyük genliğe sahip dalgalar için durum tamamen farklıdır. Örneğin sudaki büyük dalga küçük olandan daha diktir. Beyaz köpükler (white caps) bu tür dalgaların üzerinde ortaya çıkabilir ve nihayetinde ters dönebilirler. Bu tür dalgalardaki parçacıkların hareketlerinin düzensiz ve kaotik olması yüksek dalgaların nonlineer doğasının en büyük göstergesidir.

Nonlineerliği anlamak için öncelikle lineerliği anlamalıyız. Herhangi bir lineer salınımın karakteristik özellikleri şunlardır:

- Lineer salınımın periyodu genliğinden bağımsızdır,
- İki lineer salınımın toplamı yine lineer bir salınımdır,
- Küçük genlikli salınımlar lineerdir.

Lineer dalgalar da benzer özelliklere sahiptir:

- Lineer dalgaların periyodu ve hızı genliğinden bağımsızdır,
- İki lineer dalganın toplamı yine lineer bir dalgadır,
- Küçük genlikli dalgalar lineerdir.

Büyük genlikli dalgalar nonlineer olabilir bu ise yukarıda verilen kuralların uygulanamayacağı anlamına gelir.

Nonlineerlik büyük genlikli dalgaların şekilerinin bozulmasına neden olur. Ornek olarak türbülanstaki ve birçok kompleks olaydaki dalgaların üstünde beyaz köpük oluşumu verilebilir. Nonlineerliğin yanı sıra başka bir bozulma kaynağı daha vardır. Şöyle ki, bilindiği gibi farklı dalga genişliğine sahip dalgalar farklı hızlarda hareket eder, bu olay dalgaların dispersiyonu olarak bilinir ve dalgaların bozulmasına sebep olan bir etkidir. Dispersiyon suya bir taş atıldığında dalgaların hareketinde gözlenebilir. Açıkca uzun dalgalar kısa dalgalardan daha hızlı hareket ederler. Sudaki bir tepenin, diğer bir değişle soliter atımın (solitary pulse) veya dalga parçasının genellikle hızla bozulduğu gözlenebilir. Yaklaşık 100 yıl önce soliter dalgaları tanımlayan matematiksel denklemler çözülmüştür. Soliter dalgaların, nonlineerlik ve dispersiyon etkisi arasındaki hassas bir dengeyle oluştuğu farkedilmiştir. Dispersiyon tepeyi yassılaştırırken (düzleştirirken), nonlineerlik dikleştirme eğilimindedir. Soliter dalga bu iki tehlikeli ve tahrip edici güç arasındadır.

1967'den sonra soliter dalgaların parçacıklara özgü özelliklere sahip olduğu gerçeği ortaya çıkmıştır. Aslında su yüzeyindeki soliter dalga terimsel olarak soliton diye adlandırılan partikül benzeri dalgaların büyük ailesinin bir üyesidir. 20.yy'da solitonların bir çok fiziksel ortamda varlığı keşfedilmiş ve çalışılmaya başlanmıştır. Solitonlar biyoloji, okyanus bilimi, meteroloji, katı hal fiziği, elektronik, temek parçacık fiziği ve kozmoloji gibi çeşitli bilim alanlarında çalışılmaktadır [1].

Dalga başka bir ifade ile yukarı aşağı veya ileri geri hareketlerdir. Aynı zamanda dalga enerjiyi bir yerden başka bir yere taşıyan bozulmadır. Bir dalganın en önemli karakteristikleri o dalganın boyu genliği ve frekansıdır. Şekil 1.1 den görüldüğü gibi dalganın boyu ardışık tepeleri veya ardışık çukur kısımları arasındaki mesafeye denir. Genlik dalganın yüzey seviyesinden yükseldiği ve alçaldığı mesafe olarak tanımlanır. Frekans ise birim zamandaki salınımların sayısıdır. En basit dalga yayılma denklemi

$$u_{tt} = c^2 u_{xx}$$

ile verilir. Burada u(x,t) dalganın genliğini, c ise dalganın hızını temsil eder. Bu

Şekil 1.1. Basit bir dalga profili [3].

denklem

$$u(x,t) = f(x - ct) + g(x + ct)$$

olarak verilen d'Alembert çözümüne sahiptir. Burada f ve g sırasıyla dalganın sağa ve sola yayılımını gösteren keyfi fonksiyonlardır ve dalga özelliklerini değiştirmeden yayılır. Bu fonksiyonlar genellikle önceden belirlenen u(x,0) ve $u_t(x,0)$ başlangıç değerleri kullanılarak belirlenir. Bu genel dalga denklemi lineer olduğu için süperpozisyon ilkelerini sağlar. g = 0 olarak alındığında dalga c = 1 hızıyla u(x,t) = f(x-t) çözümüyle $u_t + u_x = 0$ denklemindeki gibi yalnızca sağa doğru yayılır.

Diğer taraftan ilerleyen dalgalar dalganın yayılma yönünde hareket eden ortamdaki dalgalardır. İlerleyen dalgalar dalgaların u(x,t) = f(x - ct) formunda ifade edilmesi ile nonlineer diferansiyel denklemlerin çalışmalarında ortaya çıkmıştır. Burada c < 0ise dalga negatif x yönünde, c > 0 ise pozitif x yönünde yayılım hareketi gösterir. Eğer u(x,t) çözümü yalnızca kısmi diferansiyel denklemin iki koordinatı arasındaki farka bağlıysa çözüm tam şeklini korur ve buna soliter dalga denir [2].

Soliter dalgalar ilk olarak 1834'te John Scott Russell [4] tarafından bir kanal gezintisi sırasında keşfedilmiştir. Russell, kanalda ilerleyen kayığın durmasıyla kayığın ucunda biriken su kütlesinin uzun süre hareketine devam ettiğini ve hareketi boyunca şeklini kaybetmediğini gözlemlemiştir. Bu su kütlesine çevrimli dalga adını vermiştir. Russell laboratuvar deneyleriyle araştırmalarına devam etmiş ve

$$v^2 = g(h+a)$$

bağıntısını elde etmiştir. Burada v soliter dalga hızı, a dalganın genliği, h suyun derinliği ve g yerçekimi ivmesidir. Yani soliter dalga hızı yer çekimine, suyun derinliğine ve dalganın genliğine bağlıdır.

Soliter dalgaların keşfinden sonra bu alanda başka çalışmalarda yapılmaya başlanmıştır. Korteweg ve de Vries [5], sığ su yüzeyindeki soliter dalgaları modellemek için

$$u_t + uu_x + \mu u_{xxx} = 0$$

denklemini tanımlamışlardır. Bu denklem Korteweg de Vries (KdV) denklemi diye adlandırılmaktadır. Bu denklemde uu_x terimi nonlineerliği u_{xxx} terimi ise dispersif etkiyi temsil etmektedir.

1965'te Zabusky ve Kruskal [6], hareketleri sırasında etkileşime giren ve etkileşimden şeklini ve genliğini koruyarak çıkan soliter dalgaları keşfetmiş ve bunları soliton olarak adlandırmışlardır. Soliton, soliter dalganın özel bir halidir ve parçacık benzeri hareket gösterir.

Düzenli uzun dalga (RLW) denklemi ardışık dalgaların gelişimini modellemek için ilk defa Peregrine [7] tarafından önerilmiştir. Daha sonra Benjamin, Bona ve Mahony [8] tarafından RLW denkleminin KdV denklemi ile benzerliği gösterilmiştir. Bu yüzden

$$u_t + u_x + uu_x - \mu u_{xxt} = 0$$

şeklindeki RLW denklemine Benjamin-Bona-Mahony (BBM) denklemi de denilmektedir.

KdV denklemine alternatif olarak gösterilen denklemlerden biri Morrison [9] tarafından önerilen

$$u_t + uu_x - \mu u_{xxt} = 0$$

ile verilen eşit genişlikli dalga (EW) denklemidir.

RLW denklemi ile EW denklemi $U_{RLW} \rightarrow U_{EW} + 1$ bağıntısı altında birbirine dönüşebilir ama sınır şartlarının farklı olmasından dolayı denklemlerin çözümlerinin birbirine dönüşmesi söz konusu değildir [10].

Bu tezde RLW denkleminde görülen uu_x lineer olmayan terimi yerine sonlu fark yaklaşımları üzerine temellenen dört farklı lineerleştirme tekniği kullanılarak tezde göz önüne alınan model problemlerin nümerik çözümleri elde edildi.

2. TEMEL KAVRAMLAR

2.1 Sonlu Fark Yöntemleri

Sonlu fark yöntemleri, uygulamalı bilimlerde karşılaşılan lineer veya lineer olmayan diferansiyel denklemden oluşan başlangıç veya sınır değer problemlerin çözümünde yaygın olarak kullanılan bir nümerik yöntemdir. Bu yöntemler uygulanırken öncelikle problemin çözüm bölgesi düzgün geometrik kafeslere bölünür ve her bir kafesin düğüm noktalarında problemin yaklaşık çözümü hesaplanır. Sonra diferansiyel denklemdeki türevler yerine Taylor serisi yardımıyla elde edilen uygun sonlu fark yaklaşımları yazılır. Böylece diferansiyel deklemin çözümü problemi fark denklemlerinden oluşan lineer veya lineer olmayan cebirsel denklem sisteminin çözümü problemine dönüşmüş olur. Fark denkleminde çözüm bölgesi içine düşmeyen hayali noktalar ortaya çıkabilir. Bu noktaları yok etmek için problemin sınır şartları yerine uygun sonlu fark yaklaşımları yazılır. Son olarak cebirsel denklem sistemi direkt veya iteratif yöntemlerden biri yardımıyla çözülerek göz önüne alınan problemin istenilen düğüm noktalarında yaklaşık çözümü bulunur [11].

U, x ve t bağımsız değişkenlerine bağlı bir fonksiyon olsun. x - t düzlemi, x ekseni doğrultusunda $\Delta x = h$ konum adım uzunluğunda, t ekseni doğrultusunda $\Delta t = k$ zaman adım uzunluğunda kenarlara sahip eşit dikdörtgenlere bölünür. (x_m, t_n) olarak ifade edilen bir düğüm noktası için

$$x_m = m\Delta x = mh, \quad m = 0, 1, 2, ..., N$$

$$t_n = n\Delta t = nk, \quad n = 0, 1, 2, \dots$$

şeklindedir. Temsili bir ${\cal P}(mh,nk)$ düğüm noktası üzerindeU fonksiyonunun değeri

$$U_P = U(mh, nk) = U_m^n$$

ile gösterilir.

Ufonksiyonu ve türevleri sürekli ise yukarıdaki notasyonlar kullanılarak Taylor seri açılımından

$$U_{m+2}^{n} = U_{m}^{n} + 2h\frac{\partial U}{\partial x} + 2h^{2}\frac{\partial^{2}U}{\partial x^{2}} + \frac{4}{3}h^{3}\frac{\partial^{3}U}{\partial x^{3}} + \dots$$
(2.1.1)

$$U_{m+1}^n = U_m^n + h\frac{\partial U}{\partial x} + \frac{1}{2}h^2\frac{\partial^2 U}{\partial x^2} + \frac{1}{6}h^3\frac{\partial^3 U}{\partial x^3} + \dots$$
(2.1.2)

$$U_{m-1}^{n} = U_{m}^{n} - h\frac{\partial U}{\partial x} + \frac{1}{2}h^{2}\frac{\partial^{2}U}{\partial x^{2}} - \frac{1}{6}h^{3}\frac{\partial^{3}U}{\partial x^{3}} + \dots$$
(2.1.3)

$$U_{m-2}^{n} = U_{m}^{n} - 2h\frac{\partial U}{\partial x} + 2h^{2}\frac{\partial^{2}U}{\partial x^{2}} - \frac{4}{3}h^{3}\frac{\partial^{3}U}{\partial x^{3}} + \dots$$
(2.1.4)

eşitlikleri yazabilir. (2.1.2) ve (2.1.3) eşitliklerinden $\frac{\partial U}{\partial x}$ 'in çekilmesiyle sırasıyla

$$\frac{\partial U}{\partial x} = \frac{U_{m+1}^n - U_m^n}{h} + O(h) \tag{2.1.5}$$

$$\frac{\partial U}{\partial x} = \frac{U_m^n - U_{m-1}^n}{h} + O(h) \tag{2.1.6}$$

x değişkenine göre 1.
mertebeden 2-nokta ileri ve 2-nokta geri fark yaklaşımları elde edilir. (2.1.2) ve (2.1.3) eşitliklerinin taraf tarafa çıkarılması ve $\frac{\partial U}{\partial x}$ 'in çekilmesiyle

$$\frac{\partial U}{\partial x} = \frac{U_{m+1}^n - U_{m-1}^n}{2h} + O(h^2)$$
(2.1.7)

x değişkenine göre 1.mertebeden 3-nokta merkezi fark yaklaşımı bulunur.

Daha fazla nokta içeren türev yaklaşımları da vardır. Şöyle ki,

$$\frac{\partial U}{\partial x} = aU_{m-2}^{n} + bU_{m-1}^{n} + cU_{m}^{n} + dU_{m+1}^{n} + eU_{m+2}^{n}$$

eşitliğindeki U değerleri yerine (2.1.1), (2.1.2), (2.1.3) ve (2.1.4) Taylor seri açılımları yazılır ve düzenlenirse

$$a+b+c+d+e=0$$

$$h(-2a-b+d+2e) = 1$$

$$\frac{h^2}{2}(4a + b + d + 4e) = 0$$

$$\frac{h^3}{6}(-8a - b + d + 8e) = 0$$

$$\frac{h^4}{24}(16a + b + d + 16e) = 0$$

denklem sistemi elde edilir. Bu denklem sistemi çözülür ve bilinmeyenler yukarıdaki yaklaşımda yerine yazılırsa

$$\frac{\partial U}{\partial x} = \frac{U_{m-2}^n - 8U_{m-1}^n + 8U_{m+1}^n - U_{m+2}^n}{12h} + O(h^4)$$
(2.1.8)

x değişkenine göre 1.
mertebeden 5-nokta merkezi sonlu fark yaklaşımı bulunur.

Benzer şekilde yine Taylor seri açılımı kullanılır ve gerekli düzenlemeler yapılırsa x değişkenine göre 2. mertebeden

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_m^n - 2U_{m+1}^n + U_{m+2}^n}{h^2} + O(h)$$
(2.1.9)

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{m-2}^n - 2U_{m-1}^n + U_m^n}{h^2} + O(h)$$
(2.1.10)

$$\frac{\partial^2 U}{\partial x^2} = \frac{U_{m-1}^n - 2U_m^n + U_{m+1}^n}{h^2} + O(h^2)$$
(2.1.11)

$$\frac{\partial^2 U}{\partial x^2} = \frac{-U_{m-2}^n + 16U_{m-1}^n - 30U_m^n + 16U_{m+1}^n - U_{m+2}^n}{12h^2} + O(h^4)$$
(2.1.12)

türev yaklaşımları elde edilir. (2.1.9), (2.1.10), (2.1.11) ve (2.1.12) ile verilen x değişkenine göre 2. mertebeden türev yaklaşımlarına sırasıyla 3-nokta ileri, 3-nokta geri, 3-nokta merkezi sonlu fark ve 5-nokta merkezi sonlu fark yaklaşımları denir.

tdeğişkenine göre 1. mertebeden ileri ve geri sonlu fark yaklaşımları ise

$$\frac{\partial U}{\partial t} = \frac{U_m^{n+1} - U_m^n}{k} + O(k) \tag{2.1.13}$$

$$\frac{\partial U}{\partial t} = \frac{U_m^n - U_m^{n-1}}{k} + O(k) \tag{2.1.14}$$

olarak bulunur. Yaklaşımlarda ki "O" sonsuz terimli bir ifadenin sonlu bir terimle kesildiğini gösterir. O(h) ve O(k) terimlerine kesme hatası denir ve hatanın sırasıyla h ve k ile orantılı olarak azaldığını gösterir.

Bir diferansiyel denklemi sonlu fark formunda ifade etmek için en çok kullanılan yöntemler;

- Açık (Explicit) Sonlu Fark Yöntemi,
- Kapalı (Implicit) Sonlu Fark Yöntemi,
- Crank-Nicolson Sonlu Fark Yöntemidir.

Bu yaklaşımlar standart veya klasik sonlu fark yöntemleri olarak bilinir. Bir örnek üzerinde sonlu fark yaklaşımlarını göstermek için, α pozitif parametre olmak üzere,

$$\frac{\partial U}{\partial t} = \alpha \frac{\partial^2 U}{\partial x^2} \tag{2.1.15}$$

diferansiyel denklemiyle ifade edilen ısı iletim denklemini ele alalım. Denklemin ağırlıklı averaj yaklaşımı, $0 \le \theta \le 1$ olmak üzere,

$$\frac{U_m^{n+1} - U_m^n}{k} = \frac{\alpha}{h^2} \left\{ \theta \left(U_{m+1}^{n+1} - 2U_m^{n+1} + U_{m-1}^{n+1} \right) + (1 - \theta) \left(U_{m+1}^n - 2U_m^n + U_{m-1}^n \right) \right\}$$

şeklindedir. Bu yaklaşım, ısı iletim denkleminin $\theta = 0$ için açık, $\theta = 1$ için kapalı ve $\theta = \frac{1}{2}$ için Crank-Nicolson sonlu fark yaklaşımlarını verir [12].

2.2 Kararlılık Analizi

Bir diferansiyel denklemin sonlu fark yöntemleri ile çözümünde kararlılık analizi önemli rol oynar. Diferansiyel denkleme karşılık gelen sonlu fark denkleminin çözümünün diferansiyel denklemin tam çözümüne yakınsaması için gerekli olan şartlara kararlılık şartları ve bunların bulunması işlemine de kararlılık analizi denir [13].

2.2.1 Fourier Seri (von Neumann) Yöntemi

Fourier seri yönteminde, t = 0 zamanı boyunca düğüm noktalarındaki başlangıç değerleri Fourier serileri ile ifade edilir. Kosinüs veya sinüs fonksiyonlarının toplamı şeklinde yazılan Fourier serileri

$$\sum A_s e^{is\pi x/L}$$

şeklinde üstel formda ifade edilebilir. Burada $i = \sqrt{-1}$, $a \le x \le b$ ve L, fonksiyonun tanımlı olduğu x aralığının uzunluğudur.

 $x = x_m = a + m \Delta x = a + m h \mbox{ düğüm noktasında serinin bir birleşimini ele alacak}$ olursak

$$A_s e^{is\pi x/L} = A_s e^{is\pi mh/Mh} = A_s e^{i\beta_s mh}$$

yazılabilir. Burada $\beta_s=s\pi/Mh$ ve Mh=Ldir.

t=0zamanı boyunca düğüm noktalarında ki başlangıç değerleri

$$U_m^0 = \sum_{s=0}^M A_s e^{i\beta_s mh} , \qquad m = 0(1)M$$

şeklinde ifade edilebilir. Burada (M + 1)_tane denklemden, (M + 1)_tane farklı A katsayısı tek türlü belirlenebilir. Böylece başlangıç düğüm değerlerinin üstel formda ifade edilebileceği gösterilmiş olur. Lineer fark denklemleri bağımsız çözümlerin toplamı şeklinde yazılabileceği için düğüm noktalarındaki başlangıç değeri $e^{i\beta mh}$ gibi yalnızca bir başlangıç değerinden elde etmek mümkündür. Ayrıca A_s katsayısı sabittir ve ihmal edilebilir. t değeri artarken üstel dağılıma bakılacak olursa

$$U_m^n = e^{i\beta x}e^{at} = e^{i\beta mh}e^{ank} = e^{i\beta mh}\xi^n$$

olarak alınabilir. Burada $\xi = e^{ak}$ güçlendirme faktörü veagenellikle karmaşık bir katsayıdır.

Lax-Richtmyer [12] tanımına göre başlangıç şartını sağlayan β 'nın bütün değerleri için $h \to 0$ ve $k \to 0$ olduğunda her $n \leq N$ değerleri için $|U_m^n|$ sınırlıysa sonlu fark yaklaşımı kararlıdır.

Fark denklemlerinin tam çözümü zamana göre üstel biçimde artmıyorsa kararlılık için gerek ve yeter şart

$$|\xi| \le 1$$

eşitsizliğinin sağlanmasıdır [12].

3. DÜZENLİ UZUN DALGA (RLW) DENKLEMİ

3.1 Giriş

İlk olarak Peregrine [7] tarafından ardışık dalgaların gelişimini modellemek için önerilen ve Benjamin vd. [8] tarafından daha yaygın olarak bilinen KdV denklemi ile benzerliği gösterilen düzenli uzun dalga (RLW) denklemi, U(x, t) dalga yüksekliği, ε ve μ pozitif parametreler olmak üzere,

$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} + \varepsilon U \frac{\partial U}{\partial x} - \mu \frac{\partial}{\partial t} (\frac{\partial^2 U}{\partial x^2}) = 0$$
(3.1.1)

şeklindedir. Sınır şartları $x \to \infty$ iken $U \to 0$ dır.

Denklemin ilk nümerik çözümlerini sonlu fark yöntemleri kullanarak Peregrine [7] yaptı. Eilbeck ve McGrurie [14], birinci mertebeden iki adımlı ve ikinci mertebeden iki adımlı ve üç adımlı sonlu fark yöntemleriyle RLW denkleminin nümerik çözümünü elde ettiler. Sonraki yıllarda ise daha doğru ve etkili olduğunu düşündükleri üç adımlı sonlu fark yöntemlerini kullandıkları daha geniş bir çalışma yaptılar [15]. Jain ve Iskandar [16], RLW denkleminin çözümü için invariyant gömme (invariant imbedding) ile yarı lineerleştirme yaklaşımının birleşimini lineer olmayan RLW denkleminin çözümlerini hesaplamak için kullandılar. Alexander ve Morris [17], kübik spline şekil fonksiyonlarını kullanarak Galerkin metoduyla denklemin nümerik çözümlerini verdiler. Gardner, Gardner'la yaptığı çalışmada [18], kübik spline fonksiyonları kullanarak, Dağ'la yaptığı çalışmada [19] ise kübik B-spline fonksiyonları kullanarak Galerkin metoduyla RLW denkleminin nümerik çözümlerini elde etti. Gardner vd. [20], kuadratik B-spline Galerkin sonlu elemanlar yöntemini kullanarak çözümler sundular. Gardner vd. [21], lineer konum-zaman sonlu elemanlarını şekil fonksiyonları olarak kullanıp en küçük kareler metoduyla RLW denkleminin nümerik çözümlerini elde ettiler. Gardner vd. [22], denklemin nümerik çözümü için kuintik B-spline kullanarak Petrov-Galerkin metoduyla calıştılar. Bhardwaj ve Shankar [23], yeni bir sonlu fark yöntemi geliştirmek amacıyla kuintik spline tekniğini ve parçalama (splitting) metodunu kullandılar. Dağ [24], çalışmasında kuadratik B-spline fonksiyonların birleşiminden oluşan bir yaklaşık çözümü en küçük kareler yönteminin içerisine kattı ve bir uygulamasını RLW denkleminin çözümü için sundu. Dağ ve Özer [25], birlikte yaptığı çalışmada kübik B-spline fonksiyonlarının kullanıldığı konum-zaman en küçük kareler sonlu eleman metoduna dayalı yeni bir algoritma vererek RLW denkleminin çözümünü elde ettiler. Doğan [26, 27], RLW denkleminin nümerik çözümünü araştırdığı farklı iki çalışmasında kuadratik B-spline sonlu elemanlarıyla Petrov-Galerkin metodunu ve lineer konum sonlu elemanlarıyla Galerkin metodunu kullandı. Saka [28], kübik ve kuintik B-spline fonksiyonları ile RLW denkleminin nümerik çözümlerini elde etti. Soliman ve Raslan [29], eleman şekil fonksiyonu olarak orta noktalarda kuadratik B-splineları kullanarak RLW denklemi için bir kolokasyon metod sundular. Dağ vd. [30], hem kuadratik hem kübik kolokasyon metodunu parçalama tekniğini kullanarak RLW denkleminin nümerik çözümünü elde ettiler. Ayrıca Dağ vd. [31, 32], RLW denkleminin çözümünü araştırmak için kübik B-spline kolokeysin ve kuintik B-spline Galerkin sonlu elemanlar vöntemlerini kullandılar. Soliman ve Hussein [33], septik B-spline şekil fonksiyonları kullanarak kolokasyon metoduyla RLW denkleminin nümerik çözümlerini elde ettiler. Ramos [34, 35], çalışmalarında önce dört farklı açık sonlu fark yöntemini ardından da sekiz

farklı sonlu fark yöntemini kullanarak denklemin nümerik çözümlerini araştırdılar. Kutluay ve Esen [36, 37], lineerleştirilmiş kapalı sonlu farklar metodu ve kuadratik B-spline sonlu elemanlara dayalı Lumped Galerkin metodu ile iki farklı makalede RLW denkleminin nümerik çözümlerini verdiler. Aydın [38], çalışmasında lineer sonlu konum elemanları kullanarak Galerkin metoduyla çözümler elde etti. Rafei vd. [39], RLW denkleminin nümerik çözümünü araştırdıkları çalışmalarında yeni bir yöntem olarak, He'nin homotopy pertürbasyon metodunu kullandılar. Aynı yöntemle Inc ve Yavuz [40] da çalışmalar yaptılar. Saka vd. [41], zaman integrasyonu için Crank-Nicolson formülasyonu ve konum integrasyonu için kuintic B-spline fonksiiyonlarına dayalı bir yöntem kullanarak RLW denklemin nümerik çözümlerini elde ettiler. Islam vd. [42], denklemin nümerik çözümleri için farklı türde radial baz fonksiyonları kullanarak meshfree kollokasyon metodu geliştirdiler. Hassan ve Saleh [43], denklemin nümerik çözümlerini Fourier zaman için leap-frog ve konum için pseudospectral birleşime davalı bir yöntem kullandılar. Keskin [44], çalışmasında iç iterasyon kullanarak üç noktalı ve beş noktalı sonlu fark yöntemleriyle denklemi çözdü. Cai [45], lineer ve lineer olmayan bazı açık yöntemler ile RLW denkleminin numerik çözümlerini çalıştı. Pozo vd. [46], meshless sonlu nokta yaklaşımını denklemin nümerik çözümü için çalışmalarında kullandılar. Mei ve Chen [47], extrapolasyon metoduyla nonlineerliği giderip, sonlu elemanlar metoduyla yeni bir Galerkin yöntemi geliştirerek denklemin nümerik çözümlerini elde ettiler. Yılmaz [48], calışmasında denklemin nümerik çözümü için kübik ve kuintik B-spline kolokasyon metotlarını kullandı. Hozman ve Lamac [49], RLW denkleminin nümerik çözümleri için çalışmalarında konum yarı ayrıklaştırması için süreksiz Galerkin metoduna ve zaman ayrıklaştırması için geri fark formülüne dayalı uygulamalara yer verdiler.

Al-Zahid vd. [50], Laplace Adomian decomposition method (ADM)'un yeni modifikasyonlarıyla denklemin nümerik çözümlerini elde ettiler. Fang ve Li [51], RLW denkleminin nümerik çözümleri için mixed covolume metot geliştirdiler. İduğ [52], çalışmasında RLW denkleminin nümerik çözümü için genişletilmiş kübik B-spline Galerkin sonlu elemanlar metodunu kullandı.

Bu tez çalışmasında ise farklı başlangıç ve sınır şartlarıyla ele alınan (3.1.1) RLW denkleminin nümerik çözümü için ilk önce denklemde görülen UU_x nonlineer terimi dört değişik sonlu fark yaklaşımı kullanılarak lineerleştirildi. Sonra denklemdeki zamana göre türev yerine de ileri sonlu fark yaklaşımı ve konuma göre türevler yerine uygun sonlu fark yaklaşımları kullanılarak lineer cebirsel denklem sistemleri elde edildi. Daha sonra elde edilen her bir lineer cebirsel denklem sistemi literatürde mevcut direkt yöntemlerden biri yardımıyla çözüldü. Cebirsel denklem sistemlerinden elde edilen çözümlerin ele alınan problemin çözümüne yakınsaması için kullanılan sonlu fark yaklaşımlarının kararlılık analizleri yapıldı ve tezde göz önüne alınan her bir model problem için Olver [53] tarafından

$$I_{1} = \int_{-\infty}^{+\infty} U dx \cong h \sum_{i=1}^{N} U_{i}^{j}$$

$$I_{2} = \int_{-\infty}^{+\infty} (U^{2} + \mu(U_{x})^{2}) dx \cong h \sum_{i=1}^{N} [(U_{i}^{j})^{2} + \mu((U_{x})_{i}^{j})^{2}] \qquad (3.1.2)$$

$$I_{3} = \int_{-\infty}^{+\infty} (U^{3} + 3U^{2}) dx \cong h \sum_{i=1}^{N} [(U_{i}^{j})^{2} + 3((U_{i}^{j})^{2}]$$

olarak tanımlanan sırasıyla kütle, momentum ve enerjiye karşılık gelen korunum

sabitleri hesaplandı. Yöntemin doğruluğunu göstermek için

$$L_{2} = \left\| U^{tam} - U^{num} \right\|_{2} = \sqrt{h \sum_{i=i}^{N} |U_{i}^{tam} - U_{i}^{num}|}$$

$$L_{\infty} = \left\| U^{tam} - U^{num} \right\|_{\infty} = \max_{i} \left| U_{i}^{tam} - U_{i}^{num} \right|$$
(3.1.3)

ile verilen hata normları hesaplandı. Burada L_2 ortalama hata normu olup tam çözüm ile nümerik çözüm arasındaki ortalama farkı, L_∞ ise maksimum hata normu olup tam çözümle nümerik çözüm arasındaki maksimum hatayı ölçer.

3.2 Model Problemler

Bu tez çalışmasında farklı başlangıç ve sınır şartlarıyla verilen (3.1.1) RLW denklemi için aşağıdaki üç model problem göz önüne alındı.

- Tek Soliter Dalga Hareketi (The Motion of a Single Solitary Wave)
- İki Soliter Dalganın Girişimi (The Interaction of Two Solitary Waves)
- Ardışık Dalga Oluşumu (The Undular Bore)

3.2.1 Tek Soliter Dalga Hareketi

(3.1.1) ile verilen RLW denklem
i $x \to \pm \infty$ iken $U \to 0$ sınır şartı ve

$$U(x,0) = 3c \left[\operatorname{sech}^2(p(x-x_0)) \right]$$
(3.2.1)

başlangıç şartıyla ele alındı. Bu problemin analitik çözümü, $v = 1 + \varepsilon c$ ve $p = \frac{1}{2}\sqrt{\frac{\varepsilon c}{\mu v}}$ olmak üzere

$$U(x,t) = 3c \left[\operatorname{sech}^{2}(p(x - vt - x_{0})) \right]$$
(3.2.2)

dir [7]. Bu problem v hızında, 3c dalga boyunda ve p genişliğinde soliter dalganın x_0 noktasından başlayan hareketini temsil etmektedir.

Bu problem için korunum sabitlerinin analitik değerleri

$$I_1 = \frac{6c}{p}, \qquad I_2 = \frac{12c^2}{p} + \frac{48pc^2\mu}{5}, \qquad I_3 = \frac{36c^2}{p}(1 + \frac{4c}{5}) \tag{3.2.3}$$

dir [36]. Tüm hesaplamalarda $\varepsilon = 1$, $\mu = 1$ ve $x_0 = 0$ olarak alındı.

3.2.2 İki Soliter Dalga Girişimi

(3.1.1) ile verilen RLW denklem
i $x \to \pm \infty$ iken $U \to 0$ sınır şartı ve

$$U(x,0) = \sum_{j=1}^{2} 3c_j \left[\operatorname{sech}^2(p_j(x-x_j)) \right]$$
(3.2.4)

başlangıç şartıyla ele alındı. Burada $p_j = \frac{1}{2} \sqrt{\frac{\varepsilon c_j}{\mu(1+\varepsilon c_j)}}, \ (j=1,2)$ dir.

Bu problem $3c_1$ yüksekliğinde, x_1 başlangıç noktasındaki dalga ve $3c_2$ yüksekliğinde, x_2 başlangıç noktasındaki dalganın birbirleriyle etkileşimlerini temsil eder. Yüksekliği fazla olan dalga daha hızlıdır. Bu yüzden iki soliter dalganın birbirinin içinden geçmesi için $c_1 < c_2$ olduğu zaman $x_2 < x_1$ olması gerekmektedir. Tüm hesaplamalarda $\varepsilon = 1$, $\mu = 1$ ve $x_0 = 0$ olarak alındı.

3.2.3 Ardışık Dalga Oluşumu

(3.1.1) ile verilen RLW denklem
i $x\to\infty$ iken $U\to0$ ve $x\to-\infty$ iken
 $U\to U_0$ sınır şartı ve

$$U(x,0) = \frac{U_0}{2} \left[1 - \tanh\left(\frac{x - x_0}{d}\right) \right]$$

başlangıç şartıyla ele alındı.
Burada U(x,0), t = 0 zamanındaki denge seviyesinin üstündeki su yüzeyinin yükselmesini gösterir. U_0 , $x = x_0$ ' da su seviyesindeki değişimin miktarını, d ise durgun su ile derin su arasındaki eğimi temsil eder. Bu problemde I_1 , I_2 ve I_3 değerleri sabit değillerdir, sırasıyla

$$M_{1} = \frac{d}{dt}I_{1} = \frac{d}{dt}\int_{-\infty}^{+\infty} Udx = U_{0} + \frac{1}{2}U_{0}^{2},$$

$$M_{2} = \frac{d}{dt}I_{2} = \frac{d}{dt}\int_{-\infty}^{+\infty} (U^{2} + \mu(U_{x})^{2})dx = U_{0}^{2} + \frac{2}{3}U_{0}^{3},$$

$$M_{1} = \frac{d}{dt}I_{1} = \frac{d}{dt}\int_{-\infty}^{+\infty} (U^{3} + 3U^{2})dx = 3U_{0}^{2} + 3U_{0}^{3} + \frac{3}{4}U_{0}^{4},$$
(3.2.5)

oranlarında lineer bir şekilde artarlar [53]. Tüm hesaplamalarda $\varepsilon = 1.5$, $\mu = 1/6$, $U_0 = 0.1$, $x_0 = 0$ ve d = 2, 5 alındı.

4. RLW DENKLEMİNİN SONLU FARK YAKLAŞIMLARIYLA NÜMERİK ÇÖZÜMLERİ

Bu bölümde (3.1.1) ile verilen RLW denkleminde görülen UU_x lineer olmayan terimi yerine

SFY-1:
$$UU_x \cong \frac{1}{2} \left(U_m^{n+1} \frac{U_{m+1}^n - U_{m-1}^n}{2h} + U_m^n \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right)$$

SFY-2:
$$UU_x \cong \frac{1}{2} \left[\left(\frac{U_{m+1}^{n+1} + U_m^{n+1} + U_{m-1}^{n+1}}{3} \right) \left(\frac{U_{m+1}^n - U_{m-1}^n}{2h} \right) + \left(\frac{U_{m+1}^n + U_m^n + U_{m-1}^n}{3} \right) \left(\frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right) \right]$$

SFY-3:
$$UU_x \cong \frac{1}{2} \left[U_m^{n+1} \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} \right) + U_m^n \left(\frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \right]$$

SFY-4:
$$UU_x \cong \frac{1}{2} \left[\left(\frac{U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_m^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1}}{5} \right) \times \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} \right) + \left(\frac{U_{m+2}^n + U_{m+1}^n + U_m^n + U_{m-1}^n + U_{m-2}^n}{5} \right) \times \left(\frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \right]$$

lineer sonlu fark yaklaşımları ve diğer türevler yerine uygun sonlu fark yaklaşımları kullanılarak (3.1.1) ile verilen

$$U_t + U_x + \varepsilon U U_x - \mu U_{xxt} = 0$$

RLW denkleminin nümerik çözümleri elde edildi.

4.1 Sonlu Fark Yaklaşımı-1 (SFY-1)

(3.1.1) ile verilen RLW denkleminde $U U_{\boldsymbol{x}}$ nonlineer terimi yerine

$$UU_x \cong \frac{1}{2} \left(U_m^{n+1} \frac{U_{m+1}^n - U_{m-1}^n}{2h} + U_m^n \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right)$$
(4.1.1)

eşitliğiyle verilen lineer sonlu fark yaklaşımı alındı [54]. Denklemde görülen U_t yerine

$$U_t \cong \frac{U_m^{n+1} - U_m^n}{k}$$

ileri sonlu fark yaklaşımı, $U_{\boldsymbol{x}}$ yerine

$$U_x \cong \frac{1}{2} \left(\frac{U_{m+1}^n - U_{m-1}^n}{2h} + \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right)$$

Crank-Nicolson merkezi sonlu fark yaklaşımı ve U_{xxt} yerine de

$$U_{xxt} \cong \frac{1}{k} \left(\frac{U_{m+1}^{n+1} - 2U_m^{n+1} + U_{m-1}^{n+1}}{h^2} - \frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right)$$

sonlu fark yaklaşımı yazılır ve gerekli düzenlemeler yapılırsa

$$\left(-\frac{1+\varepsilon U_m^n}{4h} - \frac{\mu}{kh^2} \right) U_{m-1}^{n+1} + \left(\frac{1}{k} + \varepsilon \frac{U_{m+1}^n - U_{m-1}^n}{4h} + \frac{2\mu}{kh^2} \right) U_m^{n+1}$$

$$+ \left(\frac{1+\varepsilon U_m^n}{4h} - \frac{\mu}{kh^2} \right) U_{m+1}^{n+1}$$

$$= \frac{U_m^n}{k} - \frac{U_{m+1}^n - U_{m-1}^n}{4h} - \frac{\mu}{k} \left(\frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right)$$

$$(4.1.2)$$

sonlu fark denklemi elde edilir.

4.1.1 Kararlılık Analizi

(4.1.1) sonlu fark yaklaşımının (3.1.1) ile verilen RLW denklemine uygulanmasıyla elde edilen sonlu fark şemasının kararlılık analizi von Neumann yöntemi kullanılarak incelendi.

 \hat{U} , U nun bir yerel sabiti olmak üzere (3.1.1) ile verilen RLW denkleminde görülen UU_x nonlineer terimindeki U yerine \hat{U} alınırsa (4.1.2) sonlu fark şeması

$$\frac{U_m^{n+1} - U_m^n}{k} + \frac{1}{2} \left(\frac{U_{m+1}^n - U_{m-1}^n}{2h} + \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right) \\
+ \frac{\varepsilon \hat{U}}{2} \left(\frac{U_{m+1}^n - U_{m-1}^n}{2h} + \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right) \\
- \frac{\mu}{k} \left(\frac{U_{m+1}^{n+1} - 2U_m^{n+1} + U_{m-1}^{n+1}}{h^2} - \frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right) \\
= 0$$

şeklini alır. Gerekli düzenlemeler yapılırsa

$$\left(-\frac{1+\varepsilon\hat{U}}{4h}-\frac{\mu}{kh^2}\right)U_{m-1}^{n+1}+\left(\frac{1}{k}+\frac{2\mu}{kh^2}\right)U_m^{n+1}+\left(\frac{1+\varepsilon\hat{U}}{4h}-\frac{\mu}{kh^2}\right)U_{m+1}^{n+1} \\
=\frac{U_m^n}{k}-\left(\frac{1+\varepsilon\hat{U}}{2}\right)\frac{U_{m+1}^n-U_{m-1}^n}{2h}-\frac{\mu}{k}\left(\frac{U_{m+1}^n-2U_m^n+U_{m-1}^n}{h^2}\right) \tag{4.1.3}$$

olur. Yaklaşımının kararlılık analizini von Neumann yöntemiyle incelemek için (4.1.3) yaklaşımında U_m^n yerine

$$U_m^n = e^{i\beta mh} \xi^n , \qquad i = \sqrt{-1}$$

yazılır ve gerekli düzenlemeler yapılırsa

$$e^{i\beta mh}\xi^{(n+1)}\left\{\frac{1}{k} + \left(\frac{1+\varepsilon\hat{U}}{4h}\right)\left(e^{i\beta h} - e^{-i\beta h}\right) - \frac{\mu}{kh^2}\left(e^{i\beta h} - 2 + e^{-i\beta h}\right)\right\}$$
$$= e^{i\beta mh}\xi^n\left\{\frac{1}{k} - \left(\frac{1+\varepsilon\hat{U}}{4h}\right)\left(e^{i\beta h} - e^{-i\beta h}\right) - \frac{\mu}{kh^2}\left(e^{i\beta h} - 2 + e^{-i\beta h}\right)\right\}$$

bulunur. Bu eşitlikten, $e^{i\beta h} = \cos\beta h + i\sin\beta h$ Euler formülünün kullanılmasıyla,

$$\xi = \frac{1 - i\left(k\frac{1 + \varepsilon\hat{U}}{2h}\right)\left(\sin\beta h\right) + \frac{4\mu}{h^2}\left(\sin^2\frac{\beta h}{2}\right)}{1 + i\left(k\frac{1 + \varepsilon\hat{U}}{2h}\right)\left(\sin\beta h\right) + \frac{4\mu}{h^2}\left(\sin^2\frac{\beta h}{2}\right)}$$

elde edilir. $A = 1 + \frac{4\mu}{h^2} \left(\sin^2 \frac{\beta h}{2} \right)$ ve $B = \left(k \frac{1 + \varepsilon \hat{U}}{2h} \right) \sin \beta h$ olmak üzere son eşitlik

$$\xi = \frac{A - iB}{A + iB}$$

olarak yazılabilir. Buradan

$$|\xi| = \frac{|A - iB|}{|A + iB|} = \frac{\sqrt{A^2 + B^2}}{\sqrt{A^2 + B^2}} = 1$$

bulunur. Açıkça $|\xi| \leq 1$ dir. Böylece (4.1.3) sonlu fark şeması kararlıdır.

4.1.2 Nümerik Sonuçlar

Bu bölümde (3.1.1) ile verilen RLW denkleminde UU_x nonlineer terim yerine (4.1.1) sonlu fark yaklaşımının yazılmasıyla bulunan (4.1.2) fark denkleminin üç model probleme uygulanmasıyla elde edilen nümerik sonuçlar verildi.

Problem 1: Tek Soliter Dalga Hareketi

Bu problemde 3c = 0.3 yüksekliğine sahip soliter dalganın, $-40 \le x \le 60$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi. Konum adım uzunluğu h = 0.125, zaman adım uzunluğu k = 0.1 iken dalganın t = 0 ve t = 20 zamanlarındaki grafiği Şekil 4.1 de verildi. t = 20 zamanında nümerik çözümle analitik çözüm arasındaki hata dağılım grafiği Şekil 4.2 de verildi. Şekil 4.1 den t = 20 zamanında dalganın şeklinde gözle görülür bir değişikliğin meydana gelmediği, Şekil 4.2 de ise dalganın genliğinin en yüksek olduğu x konumu civarında hata dağılımlarının büyüdüğü görülmektedir.

Şekil 4.1. t=0ve t=20zamanlarında soliter dalga profili.

Şekil 4.2. t=20zamanında hata.

Tablo 4.1 de 3c = 0.3 yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 olmak üzere k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konumları verildi. Tablodan hesaplanan korunum sabitlerinin (3.2.3) den elde edilen $I_1 = 3.9799497, I_2 = 0.81046249, I_3 = 2.579007$ analitik değeriyle uyumlu olduğu görülmektedir. I_1, I_2 ve I_3 deki mutlak değişim h = 0.125 iken k = 0.1 için sırasıyla $\Delta I_1 = 3.548 \times 10^{-5}, \Delta I_2 = 6.403 \times 10^{-8}$ ve $\Delta I_3 = 3.256 \times 10^{-7}; k = 0.05$ için $\Delta I_1 = 3.550 \times 10^{-5}, \Delta I_2 = 3.611 \times 10^{-8}$ ve $\Delta I_3 = 1.972 \times 10^{-7}; k = 0.01$ için $\Delta I_1 = 3.351 \times 10^{-5}, \Delta I_2 = 2.877 \times 10^{-8}$ ve $\Delta I_3 = 1.628 \times 10^{-7}$ dir. Açıkça h = 0.125 iken k nın küçülmesiyle I_1 deki mutlak değişim bir miktar artarken I_2 ve I_3 deki mutlak değişimin azaldığı görülür. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.72252 \times 10^{-3}, L_{\infty} = 0.21643 \times 10^{-3}; k = 0.05$ iken $L_2 = 0.56789 \times 10^{-3}, L_{\infty} = 0.1700 \times 10^{-3}$ ve k = 0.01 iken $L_2 = 0.51841 \times 10^{-3}, L_{\infty} = 0.15519 \times 10^{-3}$ dir. Burada k zaman adını küçülürken hata normlarının da azaldığı görülmektedir.

Tablo 4.2 de 3c = 0.3 yüksekliğine sahip soliter dalganın ilerleyişinin k = 0.1olmak üzere h = 0.1, 0.05 ve 0.01 için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodan korunum sabitlerinin hesaplanan değerleri (3.2.3) den elde edilen $I_1 = 3.9799497, I_2 = 0.81046249, I_3 = 2.579007$ analitik değerleriyle uyum içerisindedirler. Ayrıca korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 4.392 \times 10^{-5}$, $\Delta I_2 = 3.662 \times 10^{-8}$ ve $\Delta I_3 = 1.814 \times 10^{-7}$; h = 0.05 için $\Delta I_1 = 6.532 \times 10^{-5}$, $\Delta I_2 = 1.145 \times 10^{-8}$ ve $\Delta I_3 = 5.348 \times 10^{-8}$; h = 0.01 için $\Delta I_1 = 8.820 \times 10^{-5}$, $\Delta I_2 = 5.086 \times 10^{-9}$ ve $\Delta I_3 = 2.763 \times 10^{-8}$ dir.

Tablo 4.1: SFY-1 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

\overline{k}	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104575977	2.579007420	0.15135	0.05277	4.375	0.29999
	8	3.9799709	0.8104575882	2.579007372	0.30059	0.09995	8.750	0.29997
0.1	12	3.9799839	0.8104575740	2.579007299	0.44608	0.14229	13.250	0.29994
	16	3.9799865	0.8104575564	2.579007211	0.58686	0.18088	17.625	0.29994
	20	3.9799617	0.8104575367	2.579007111	0.72252	0.21643	22.000	0.29993
		$\Delta I_1 = 3.54$	18×10^{-5} , ΔI_2 :	$= 6.403 \times 10^{-8}$	3 , $\Delta I_3 = 3$.	$.256 \times 10^{-7}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104575991	2.579007427	0.11909	0.04156	4.375	0.29999
	8	3.9799709	0.8104575938	2.579007398	0.23647	0.07864	8.750	0.29997
0.05	12	3.9799839	0.8104575858	2.579007354	0.35084	0.11192	13.250	0.29995
	16	3.9799865	0.8104575759	2.579007300	0.46141	0.14219	17.625	0.29995
	20	3.9799617	0.8104575647	2.579007240	0.56789	0.17004	22.000	0.29994
		$\Delta I_1 = 3.55$	50×10^{-5} , ΔI_2 :	$= 3.611 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.972 \times 10^{-7}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104575995	2.579007429	0.10877	0.03797	4.375	0.29999
	8	3.9799709	0.8104575953	2.579007404	0.21596	0.07182	8.750	0.29997
0.01	12	3.9799839	0.8104575889	2.579007368	0.32036	0.10219	13.250	0.29995
	16	3.9799865	0.8104575810	2.579007324	0.42127	0.12980	17.625	0.29996
	20	3.9799617	0.8104575720	2.579007274	0.51841	0.15519	22.000	0.29995
		$\Delta I_1 = 3.35$	51×10^{-5} , ΔI_2 =	$= 2.877 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.628 \times 10^{-7}$		
Anal	itik:	$I_1 = 3.97994$	$197, \overline{I_2} = 0.81040$	$624\overline{9}, I_3 = \overline{2.57}$	9007			

Tablo 4.2: SFY-1 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799263	0.8104593621	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799536	0.8104593604	2.579007428	0.11244	0.03918	4.40	0.30000
	8	3.9799730	0.8104593550	2.579007401	0.22334	0.07422	8.80	0.29999
0.1	12	3.9799879	0.8104593469	2.579007361	0.33146	0.10572	13.20	0.29997
	16	3.9799828	0.8104593368	2.579007311	0.43611	0.13443	17.60	0.29996
	20	3.9799702	0.8104593255	2.579007255	0.53700	0.16088	22.00	0.29995
		$\Delta I_1 = 4.39$	2×10^{-5} , ΔI_2	$= 3.662 \times 10^{-8}$	3 , $\Delta I_3 = 1$	$.814 \times 10^{-7}$		
	0	3.9799265	0.8104617110	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799552	0.8104617108	2.579007435	0.06067	0.02104	4.40	0.30000
	8	3.9799777	0.8104617091	2.579007427	0.12055	0.03990	8.80	0.29999
0.05	12	3.9799974	0.8104617065	2.579007415	0.17892	0.05691	13.20	0.29999
	16	3.9800080	0.8104617032	2.579007401	0.23542	0.07243	17.60	0.29998
	20	3.9799918	0.8104616996	2.579007383	0.28996	0.08678	22.00	0.29997
		$\Delta I_1 = 6.53$	2×10^{-5} , ΔI_2	$= 1.145 \times 10^{-8}$	3 , $\Delta I_3 = 5$	$.348 \times 10^{-8}$		
	0	3.9799266	0.8104624628	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799565	0.8104624638	2.579007436	0.04424	0.01523	4.40	0.30000
	8	3.9799820	0.8104624629	2.579007432	0.08797	0.02892	8.80	0.29999
0.01	12	3.9800065	0.8104624615	2.579007426	0.13059	0.04129	13.20	0.29999
	16	3.9800234	0.8104624597	2.579007419	0.17180	0.05259	17.60	0.29999
	20	3.9800148	0.8104624577	2.579007409	0.21161	0.06306	22.00	0.29998
		$\Delta I_1 = 8.82$	20×10^{-5} , ΔI_2	$= 5.086 \times 10^{-9}$	$^{\prime}, \Delta I_3 = 2$	$.763 \times 10^{-8}$		
Anal	itik:	$I_1 = 3.97994$	97, $I_2 = 0.8104$	$6249, I_3 = 2.57$	9007			

k=0.1iken hnın küçülmesiyle I_1 deki mutlak değişimin bir miktar arttığı, I_2 ve I_3 deki mutlak değişimin ise azaldığı görülür. t=20zamanında hata normlarının k=0.1için h=0.1iken $L_2=0.53700\times 10^{-3}, L_\infty=0.16088\times 10^{-3}; h=0.05$ iken $L_2=0.28996\times 10^{-3}, L_\infty=0.08678\times 10^{-3}$ ve h=0.01iken $L_2=0.21161\times 10^{-3}, L_\infty=0.06306\times 10^{-3}$ değerlerini alarak küçüldüğü görülür.

Tablo 4.1 ve Tablo 4.2 den t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.0 konumundadır. Buna göre nümerik çözümden elde edilen hızı v = konum/zaman = 22/20 = 1.1 teorik hızıyla $v = 1 + \varepsilon c = 1.1$ aynı hesaplanmıştır. Ayrıca h = 0.125 iken k değerinin küçülmesiyle veya k = 0.1 iken h değerinin küçülmesiyle t = 20 zamanında dalganın yüksekliği başlangıç değerine daha yakın değerler almıştır.

İkinci olarak 3c = 0.09 yüksekliğine sahip soliter dalganın, $-80 \le x \le 120$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi. Burada dalganın genliği küçülünce dalga genişleyeceği için sınır şartlarını sağlamayı devam ettireceği daha geniş bir aralık seçildi.

Tablo 4.3 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 iken k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tabloda verilen korunum sabitlerinin değerlerinin dalganın hareketi boyunca hemen hemen sabit kaldığı ve (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle uyumlu olduğu görülmektedir. Tablodan korunum sabitlerindeki mutlak değişim h = 0.125 iken k = 0.1 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 1.569 \times 10^{-10}$ ve $\Delta I_3 = 7.257 \times 10^{-10}$; k = 0.05 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 9.384 \times 10^{-11}$ ve $\Delta I_3 = 4.540 \times 10^{-10}$; k = 0.01 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 7.690 \times 10^{-11}$ ve $\Delta I_3 = 3.802 \times 10^{-10}$ dir. Yani h = 0.125 iken k'nın farklı değerleri için I_1 , I_2 ve I_3 deki mutlak değişimler birbirlerine yakın değerler almıştır. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.05366 \times 10^{-3}$, $L_{\infty} = 01420 \times 10^{-3}$; k = 0.05 iken $L_2 = 0.04341 \times 10^{-3}$, $L_{\infty} = 0.01149 \times 10^{-3}$ ve k = 0.01 iken $L_2 = 0.04013 \times 10^{-3}$, $L_{\infty} = 0.01062 \times 10^{-3}$ şeklindedir.

Tablo 4.4 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca k = 0.1ve h = 0.1, 0.05 ve 0.01 değerleri için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik çözümle

Tablo 4.3: SFY-1 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

-k	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.01078	0.00302	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.02154	0.00594	8.250	0.09000
0.1	12	2.1094086	0.1273016387	0.388805990	0.03229	0.00878	12.375	0.09000
	16	2.1094093	0.1273016386	0.388805990	0.04300	0.01153	16.500	0.09000
	20	2.1094098	0.1273016386	0.388805990	0.05366	0.01420	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , $\Delta I_2 =$	$= 1.569 \times 10^{-1}$	0 , $\Delta I_3 = 7$	7.257×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00872	0.00244	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.01743	0.00481	8.250	0.09000
0.05	12	2.1094086	0.1273016387	0.388805990	0.02612	0.00710	12.375	0.09000
	16	2.1094093	0.1273016387	0.388805990	0.03478	0.00933	16.500	0.09000
	20	2.1094098	0.1273016387	0.388805990	0.04341	0.01149	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , $\Delta I_2 =$	$= 9.384 \times 10^{-1}$	1 , $\Delta I_{3} = 4$	4.540×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00806	0.00226	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.01611	0.00444	8.250	0.09000
0.01	12	2.1094086	0.1273016387	0.388805990	0.02415	0.00657	12.375	0.09000
	16	2.1094093	0.1273016387	0.388805990	0.03216	0.00862	16.500	0.09000
	20	2.1094098	0.1273016387	0.388805990	0.04013	0.01062	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , $\Delta I_2 =$	$= 7.690 \times 10^{-1}$	1 , $\Delta I_{3} = 3$	3.802×10^{-1}	.0	
Anal	itik: <i>I</i>	$\overline{1}_1 = 2,10940$	$74997, I_2 = 0.12$	273017186, I ₃ =	= 0.3888059	9904		

elde edilen değerleri (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle uyumludur. Korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 5.339 \times 10^{-6}$, $\Delta I_2 = 8.677 \times 10^{-11}$ ve $\Delta I_3 = 3.944 \times 10^{-10}$; h = 0.05 için $\Delta I_1 = 6.642 \times 10^{-6}$, $\Delta I_2 = 2.381 \times 10^{-11}$ ve $\Delta I_3 = 1.052 \times 10^{-10}$; h = 0.01 için $\Delta I_1 = 8.037 \times 10^{-6}$, $\Delta I_2 = 7.321 \times 10^{-12}$ ve $\Delta I_3 = 4.778 \times 10^{-11}$ olarak bulunur. Buradan k = 0.1 iken h'nın farklı değerleri için I_1 , I_2 ve I_3 de oldukça küçük değişimler olmuştur. t = 20 zamanında k = 0.1için h = 0.1 iken $L_2 = 0.03927 \times 10^{-3}$, $L_{\infty} = 0.01039 \times 10^{-3}$; h = 0.05 iken $L_2 =$ 0.02010×10^{-3} , $L_{\infty} = 0.00531 \times 10^{-3}$ ve h = 0.01 iken $L_2 = 0.01400 \times 10^{-3}$, $L_{\infty} =$ 0.00368×10^{-3} değerlerini alan oldukça küçük hata normları elde edilir.

Tablo 4.3 den t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 20.625 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 20.625/20 = 1.13125 dir. Tablo 4.4 den t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.60 konumunda olduğu için nümerik çözümden elde edilen hızı v =konum/zaman= 22.60/20 = 1.13 'dir. Dalganın hızının nümerik değerleri $v = 1 + \varepsilon c = 1.03$ analitik değeriyle uyumludur. Ayrıca h ve k nın farklı değerleri için t = 20 zamanında dalganın yüksekliği başlangıç değeriyle hemem hemen aynı değerleri aldığı görülür.

Tablo 4.5 de c = 0.1 ve c = 0.03 genlikli dalgalar için farklı konum ve zaman adımları için hesaplanan hata normları karşılaştırıldı. Tabloda h = 0.125 iken kküçüldüğünde ve k = 0.1 iken h küçüldüğünde hata normlarının azaldığı görülmektedir.

Tablo 4.6 da 3c = 0.3, $-40 \le x \le 60$, h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer

Tablo 4.4: SFY-1 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016675	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094066	0.1273016675	0.388805990	0.00789	0.00221	4.10	0.09000
0.1	8	2.1094078	0.1273016675	0.388805990	0.01577	0.00435	8.20	0.09000
	12	2.1094089	0.1273016675	0.388805990	0.02363	0.00642	12.40	0.09000
	16	2.1094097	0.1273016674	0.388805990	0.03147	0.00843	16.50	0.09000
	20	2.1094103	0.1273016674	0.388805990	0.03927	0.01039	20.60	0.09000
		$\Delta I_1 = 5.33$	9×10^{-6} , $\Delta I_2 =$	$= 8.677 \times 10^{-1}$	1 , $\Delta I_3 = 3$	3.944×10^{-1}	.0	
	0	2.1094050	0.1273017058	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094067	0.1273017058	0.388805990	0.00404	0.00113	4.10	0.09000
0.05	8	2.1094081	0.1273017058	0.388805990	0.00807	0.00222	8.25	0.09000
	12	2.1094094	0.1273017058	0.388805990	0.01210	0.00328	12.35	0.09000
	16	2.1094106	0.1273017058	0.388805990	0.01611	0.00431	16.50	0.09000
	20	2.1094116	0.1273017058	0.388805990	0.02010	0.00531	20.60	0.09000
		$\Delta I_1 = 6.64$	2×10^{-6} , $\Delta I_2 =$	$= 2.381 \times 10^{-1}$	1 , $\Delta I_3 = 1$	1.052×10^{-1}	.0	
	0	2.1094050	0.1273017181	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094068	0.1273017181	0.388805990	0.00281	0.00078	4.12	0.09000
0.01	8	2.1094084	0.1273017181	0.388805990	0.00562	0.00154	8.24	0.09000
	12	2.1094100	0.1273017181	0.388805990	0.00842	0.00228	12.36	0.09000
	16	2.1094116	0.1273017181	0.388805990	0.01122	0.00299	16.48	0.09000
	20	2.1094131	0.1273017181	0.388805990	0.01400	0.00368	20.60	0.09000
		$\Delta I_1 = 8.03$	57×10^{-6} , ΔI_2	$= 7.321 \times 10^{-1}$	2 , $\Delta I_3 = 4$	1.778×10^{-1}	.1	
Anal	itik: <i>I</i>	$\overline{1}_1 = 2,10940$	$74997, I_2 = 0.12$	$\overline{273017186}, I_3 =$	= 0.3888059	9904		

Tablo 4.5: SFY-1 ile Problem 1'in h ve k'nın farklı değerleri için hesaplanan hata normları (3c = 0.3 için $-40 \le x \le 60$, 3c = 0.09 için $-80 \le x \le 120$).

·		<i>c</i> =	= 0.1	c = 0.03		
h	k	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	
	0.1	0.72252	0.21643	0.05366	0.01420	
0.125	0.05	0.56789	0.17004	0.04341	0.01149	
	0.01	0.51841	0.15519	0.04013	0.01062	
0.1		0.53700	0.16088	0.03927	0.01039	
0.05	0.1	0.28996	0.08678	0.02010	0.00531	
0.01		0.21161	0.06306	0.01400	0.00368	

Tablo 4.6: SFY-1 ile Problem 1'in h = 0.125 ve k = 0.1 için hesaplanan korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$).

t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0	3.9799262	0.8104576	2.5790074	0.00000	0.00000
4	3.9799529	0.8104576	2.5790074	0.15135	0.05277
8	3.9799709	0.8104576	2.5790074	0.30059	0.09995
12	3.9799839	0.8104576	2.5790073	0.44608	0.14229
16	3.9799865	0.8104576	2.5790072	0.58686	0.18088
20	3.9799617	0.8104575	2.5790071	0.72252	0.21643
20[19](h = 0.1)	3.97989	0.810462	2.57901	0.217	0.084
20[20](h = 0.1)	3.97989	0.810467	2.57902	0.220	0.086
20[21]	3.98203	0.808650	2.57302	4.688	1.755
20[25]	3.961597	0.804185	2.558292	0.0184	1.5664
20[26]	3.97986	0.811164	2.58133	0.511	0.198
20[27]	3.98206	0.810399	2.57880	0.227	0.081
20[28]	3.980016	0.8104624	2.579006	0.22050	0.08448
20[31]	3.979883	0.81027618	2.57839258	0.30	0.116
20[36](h = 0.1)	3.97997	0.810459	2.57901	0.55	0.21
20[37]	3.97988	0.810465	2.57901	0.219	0.086
20[38]	3.98206	0.811164	2.58133	0.511	0.198
20[38]	3.97986	0.810399	2.57880	0.227	0.081
20[44]	3.97988	0.81046	2.57902	0.52171	0.19828
20[44]	3.98005	0.81047	2.57902	0.03689	0.01824
20[46]	3.979950	0.810521	2.579202	0.702	0.268
20[47]	3.97972	0.81026	2.57873	0.266856	0.091465
20[48]	3.9799000	0.8104646	2.5790160	0.04921	0.02020
20[48]	3.9798834	0.8104651	2.5790160	0.01171	0.01268

çalışmalarda elde edilen değerler verildi. Tablodan, SFY-1 ile diğer çalışmalarda verilen sonuçlara yakın sonuçların elde edildiği görülmektedir.

Problem 2: İki Soliter Dalga Girişimi

Bu problemde tepe noktası $x_1 = -177$ konumunda, $3c_1 = 0.6$ yüksekliğinde ve tepe noktası $x_2 = -147$ konumunda, $3c_2 = 0.3$ yüksekliğinde iki soliter dalganın $-200 \le x \le 400$ aralığındaki girişimi t = 400 zamanına kadar gözlendi. Konum adım uzunluğu h = 0.12, zaman adım uzunluğu k = 0.1 olarak alındığında dalgaların

Şekil 4.3. Iki soliter dalganın girişimi.

belirli zamanlardaki davranışı Şekil 4.3 de sunuldu. Şekilden t = 0 zamanında küçük dalganın gerisinde harekete başlayan büyük dalganın t = 100 zamanında küçük dalgayı içine almaya başladığı görülür. t = 200 zamanı civarında iç içe geçen dalgalar t = 300 zamanında ayrılmaya başlayıp t = 400 zamanında büyük dalganın küçük dalgayı geçip eski şekillerini koruyarak tamamen ayrıldıkları gözlenir. t = 400zamanında büyük dalganın tepe noktasının $x_1 = 311.44$ konumunda $3c_1 = 0.5993$ genliğine, küçük dalganın ise tepe noktası $x_2 = 281.44$ konumunda $3c_2 = 0.2996$ genliğine sahip olduğu hesaplandı. Dalgaların girişimi sonucu şekilleri değişmeyip, yüksekliklerinde küçük miktarda bir azalma meydana gelmiştir. Ayrıca Şekil 4.4 e bakıldığında t = 400 zamanında dalgaların gerisinde genliği 0.3×10^{-3} den daha küçük kuyruk dalgalar bıraktıkları görüldü.

Şekil 4.4. t = 400 zamanında iki soliter dalganın girişimi.

Tablo 4.7 de h = 0.12 iken k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre h = 0.12 sabit k = 0.1 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 4.491 \times 10^{-6}$ ve $\Delta I_3 = 2.409 \times 10^{-5}$; k = 0.05 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 2.358 \times 10^{-6}$ ve $\Delta I_3 = 1.372 \times 10^{-5}$ ve k = 0.01 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 1.794 \times 10^{-6}$ ve $\Delta I_3 = 1.095 \times 10^{-5}$ değerlerini alan korunum sabitlerinin mutlak değişimlerinden ΔI_1 , k değerinin küçülmesiyle değişmezken, ΔI_2 ve ΔI_3 bir miktar küçülmüştür.

Tablo 4.8 de k = 0.1 iken h = 0.12, 0.06 ve 0.03 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre k = 0.1 sabit h = 0.12 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 4.491 \times 10^{-6}$ ve $\Delta I_3 = 2.409 \times 10^{-5}$ olarak bulunan korunum sabitlerindeki mutlak değişim, h = 0.06 için $\Delta I_1 = 6.777 \times 10^{-3}$, $\Delta I_2 = 1.186 \times 10^{-6}$

Tablo 4.7: SFY-1 ile Problem 2'nin h = 0.12 ve k nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3$, $x_1 = -177$, $x_2 = -147$, $-200 \le x \le 400$).

			k = 0.1			k = 0.05			k = 0.01	
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3
	0	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329
	40	9.86135520	3.2447245	10.778247	9.86135520	3.2447300	10.778273	9.86135519	3.2447317	10.778282
	80	9.86163224	3.2446832	10.778029	9.86163224	3.2447023	10.778121	9.86163224	3.2447084	10.778150
	120	9.86165749	3.2445747	10.777448	9.86165749	3.2446302	10.777715	9.86165749	3.2446479	10.777800
h = 0.12	160	9.86165997	3.2443749	10.776360	9.86165996	3.2444984	10.776955	9.86165996	3.2445379	10.777146
	200	9.86166028	3.2442394	10.775612	9.86166027	3.2444097	10.776435	9.86166026	3.2444642	10.776698
	240	9.86166025	3.2443700	10.776333	9.86166024	3.2444955	10.776939	9.86166024	3.2445356	10.777132
	280	9.86166017	3.2445700	10.777423	9.86166017	3.2446275	10.777699	9.86166017	3.2446457	10.777787
	320	9.86166015	3.2446793	10.778008	9.86166015	3.2447001	10.778108	9.86166015	3.2447066	10.778139
	360	9.86166021	3.2447214	10.778231	9.86166021	3.2447283	10.778264	9.86166021	3.2447303	10.778274
	400	9.86166027	3.2447357	10.778305	9.86166027	3.2447378	10.778316	9.86166026	3.2447384	10.778318
		ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 3.439 \times 1$	0^{-3}
		ΔI_2	$= 4.491 \times 1$	0^{-6}	ΔI_2	$= 2.358 \times 1$	0^{-6}	ΔI_2	$= 1.794 \times 1$	0^{-6}
		ΔI_3	$= 2.409 \times 1$	0^{-5}	ΔI_3	$= 1.372 \times 1$	0^{-5}	ΔI_3	$= 1.095 \times 1$	0^{-5}

ve $\Delta I_3 = 6.184 \times 10^{-6}$, ayrıca h = 0.03 için $\Delta I_1 = 1.343 \times 10^{-2}$, $\Delta I_2 = 1.566 \times 10^{-7}$ ve $\Delta I_3 = 1.348 \times 10^{-6}$ değerlerini almıştır. Zaman adım uzunluğu k sabit, konum zaman uzunluğu h ın küçülmesiyle I_1 in mutlak değişim artarken I_2 ve I_3 ün mutlak değişimleri azalmaktadır.

Tablo 4.9 da h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi.

Problem 3: Ardışık Dalga Oluşumu

Bu problemde d = 2 yüksek eğim ve d = 5 düşük eğim için elde edilen ardışık dalgaların oluşumu $-36 \le x \le 300$ aralığında, t = 250 zamanına kadar gözlendi. Konum adım uzunluğu h = 0.24 ve zaman adım uzunluğu k = 0.1 olarak alındığında t = 0, 100, 150 ve 250 zamanlarında d = 2 ve d = 5 eğimleri için ardışık dalgaların görünümü sırasıyla Şekil 4.5 ve Şekil 4.6 da verildi. Şekillerden d = 2 yüksek eğimi için ardışık dalga oluşumunun daha hızlı başladığı ve t = 250 zamanında daha fazla dalga oluştuğu görülmektedir. Oluşan ardışık dalgalardan öncü (ilk) dalganın simülasyon boyunca yüksekliğinin zamana göre grafiği Şekil 4.7 de verildi. Şekilden d = 2 için öncü dalganın yüksekliği başlarda daha büyük olmasına rağmen zaman ilerledikçe d =2 ve d = 5 eğimleriyle elde edilen öncü dalgaların yükseklikleri birbirine yaklaşmaya başladığı görülür. Şekil 4.8 de d = 2 için I_1, I_2 ve I_3 korunum sabitlerinin simülasyon boyunca aldığı değerlerin grafiği verildi. d = 5 için de korunum sabitlerinin benzer bir grafiği elde edilir. Şekilden, korunum sabitlerinin değerlerinin sabit olmadığı ve lineer bir şekilde arttığı görülür.

Tablo 4.10 da d = 2, h = 0.24 olduğunda k = 0.1, 0.05 ve 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte

Tablo 4.8: SFY-1 ile Problem 2'nin k = 0.1 ve h nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3, x_1 = -177, x_2 = -147, -200 \le x \le 400$).

			h = 0.12			h = 0.06			h = 0.03	
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3
	0	9.85822123	3.2447402	10.778329	9.85822732	3.2447773	10.778329	9.85823035	3.2447868	10.778329
	40	9.86135520	3.2447245	10.778247	9.86298721	3.2447692	10.778289	9.86434962	3.2447806	10.778299
	80	9.86163224	3.2446832	10.778029	9.86439670	3.2447452	10.778168	9.86766297	3.2447611	10.778204
	120	9.86165749	3.2445747	10.777448	9.86482153	3.2446819	10.777849	9.86948182	3.2447091	10.777950
k = 0.1	160	9.86165997	3.2443749	10.776360	9.86494967	3.2445636	10.777246	9.87048019	3.2446112	10.777469
	200	9.86166028	3.2442394	10.775612	9.86498832	3.2444826	10.776830	9.87102811	3.2445439	10.777136
	240	9.86166025	3.2443700	10.776333	9.86499989	3.2445610	10.777233	9.87132870	3.2446092	10.777458
	280	9.86166017	3.2445700	10.777423	9.86500331	3.2446797	10.777838	9.87149361	3.2447074	10.777942
	320	9.86166015	3.2446793	10.778008	9.86500433	3.2447436	10.778160	9.87158412	3.2447600	10.778199
	360	9.86166021	3.2447214	10.778231	9.86500468	3.2447680	10.778283	9.87163384	3.2447799	10.778296
	400	9.86166027	3.2447357	10.778305	9.86500482	3.2447761	10.778323	9.87166115	3.2447866	10.778328
		ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 6.777 \times 10^{-10}$	$)^{-3}$	ΔI_1	$= 1.343 \times 10^{-1}$	0^{-2}
		ΔI_2	$= 4.491 \times 1$	0^{-6}	ΔI_2	$= 1.186 \times 10^{-10}$	0^{-6}	ΔI_2	$= 1.566 \times 10^{-10}$	0^{-7}
		ΔI_3	$= 2.409 \times 1$	0^{-5}	ΔI_3	$= 6.184 \times 10^{-10}$	$)^{-6}$	ΔI_3	$= 1.348 \times 10^{-1}$	0^{-6}

37

Tablo 4.9: SFY-1 ile Problem 2	2'nin $h = 0.12$ ve $k = 0.1$ i	için hesaplanan korunu	m sabitleri ($3c_1 = 0$	$.6, \ 3c_2 = 0.3,$
$x_1 = -177, x_1 = -147, -200 \le$	$x \le 400$).			

t	I_1	I_2	I_3		$I_1[27]$	$I_2[27]$	$I_{3}[27]$	$I_1[37]$	$I_{2}[37]$	$I_{3}[37]$
0	9.85822123	3.2447402	10.778329		9.8586	3.2449	10.7788	9.85825	3.24481	10.77833
40	9.86135520	3.2447245	10.778247		9.8642	3.2456	10.7809	9.85833	3.24482	10.77836
80	9.86163224	3.2446832	10.778029		9.8683	3.2475	10.7872	9.85832	3.24482	10.77834
120	9.86165749	3.2445747	10.777448		9.8719	3.2491	10.7928	9.85833	3.24486	10.77843
160	9.86165997	3.2443749	10.776360		9.8751	3.2506	10.7979	9.85833	3.24491	10.77852
200	9.86166028	3.2442394	10.775612		9.8886	3.2523	10.8036	9.85830	3.24492	10.77851
240	9.86166025	3.2443700	10.776333		9.8825	3.2544	10.8109	9.85830	3.24489	10.77846
280	9.86166017	3.2445700	10.777423		9.8854	3.2557	10.8156	9.85829	3.24484	10.77834
320	9.86166015	3.2446793	10.778008		9.8883	3.2569	10.8197	9.85832	3.24482	10.77833
360	9.86166021	3.2447214	10.778231		9.8907	3.2576	10.8220	9.85829	3.24479	10.77823
400	9.86166027	3.2447357	10.778305		9.8930	3.2585	10.8251	9.85830	3.24478	10.77819
			-	t	$I_1[38]$	$I_{2}[38]$	$I_{3}[38]$	$I_1[47](h = 0.25)$	$I_2[47](h=0.25)$	$I_3[47](h=0.25)$
				0	9.8586	3.2449	10.7788	9.8583	3.2328	10.7623
				40	9.8642	3.2456	10.7809	9.8575	3.2362	10.7738
				$\begin{array}{c} 40\\ 80 \end{array}$	9.8642 9.8683	$3.2456 \\ 3.2475$	$\frac{10.7809}{10.7872}$	9.8575 9.8574	3.2362 3.2362	10.7738 10.7727
				40 80 120	9.8642 9.8683 9.8719	3.2456 3.2475 3.2492	10.7809 10.7872 10.7928	9.8575 9.8574 9.8573	3.2362 3.2362 3.2367	10.7738 10.7727 10.7707
				40 80 120 160	9.8642 9.8683 9.8719 9.8751	3.2456 3.2475 3.2492 3.2506	10.7809 10.7872 10.7928 10.7979	9.8575 9.8574 9.8573 9.8573	3.2362 3.2362 3.2367 3.2377	10.7738 10.7727 10.7707 10.7675
				40 80 120 160 200	9.8642 9.8683 9.8719 9.8751 9.8886	3.2456 3.2475 3.2492 3.2506 3.2523	10.7809 10.7872 10.7928 10.7979 10.8036	9.8575 9.8574 9.8573 9.8573 9.8574	3.2362 3.2362 3.2367 3.2377 3.2384	10.7738 10.7727 10.7707 10.7675 10.7654
				$ \begin{array}{r} 40 \\ 80 \\ 120 \\ 160 \\ 200 \\ 240 \end{array} $	9.8642 9.8683 9.8719 9.8751 9.8886 9.8825	3.2456 3.2475 3.2492 3.2506 3.2523 3.2544	$\begin{array}{c} 10.7809 \\ 10.7872 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \end{array}$	9.8575 9.8574 9.8573 9.8573 9.8574 9.8572	3.2362 3.2362 3.2367 3.2377 3.2384 3.2376	$\begin{array}{c} 10.7738 \\ 10.7727 \\ 10.7707 \\ 10.7675 \\ 10.7654 \\ 10.7671 \end{array}$
				40 80 120 160 200 240 280	$\begin{array}{c} 9.8642 \\ 9.8683 \\ 9.8719 \\ 9.8751 \\ 9.8886 \\ 9.8825 \\ 9.8854 \end{array}$	3.2456 3.2475 3.2492 3.2506 3.2523 3.2544 3.2557	$\begin{array}{c} 10.7809 \\ 10.7872 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \end{array}$	9.8575 9.8574 9.8573 9.8573 9.8573 9.8574 9.8572 9.8570	3.2362 3.2362 3.2367 3.2377 3.2384 3.2376 3.2364	$\begin{array}{c} 10.7738 \\ 10.7727 \\ 10.7707 \\ 10.7675 \\ 10.7654 \\ 10.7671 \\ 10.7695 \end{array}$
				$ \begin{array}{c} 40\\ 80\\ 120\\ 160\\ 200\\ 240\\ 280\\ 320\\ \end{array} $	9.8642 9.8683 9.8719 9.8751 9.8886 9.8825 9.8854 9.8883	3.2456 3.2475 3.2492 3.2506 3.2523 3.2544 3.2557 3.2569	$10.7809 \\ 10.7872 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \\ 10.8197 $	9.8575 9.8574 9.8573 9.8573 9.8574 9.8572 9.8570 9.8567	3.2362 3.2362 3.2367 3.2377 3.2384 3.2376 3.2364 3.2357	$\begin{array}{c} 10.7738 \\ 10.7727 \\ 10.7707 \\ 10.7675 \\ 10.7654 \\ 10.7671 \\ 10.7695 \\ 10.7706 \end{array}$
				$ \begin{array}{c} 40\\ 80\\ 120\\ 160\\ 200\\ 240\\ 280\\ 320\\ 360\\ \end{array} $	$\begin{array}{c} 9.8642 \\ 9.8683 \\ 9.8719 \\ 9.8751 \\ 9.8886 \\ 9.8825 \\ 9.8854 \\ 9.8883 \\ 9.8907 \end{array}$	3.2456 3.2475 3.2492 3.2506 3.2523 3.2544 3.2557 3.2569 3.2576	$\begin{array}{c} 10.7809 \\ 10.7872 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \\ 10.8197 \\ 10.8220 \end{array}$	9.8575 9.8574 9.8573 9.8573 9.8574 9.8572 9.8570 9.8567 9.8565	3.2362 3.2362 3.2367 3.2377 3.2384 3.2376 3.2364 3.2357 3.2353	$\begin{array}{c} 10.7738 \\ 10.7727 \\ 10.7707 \\ 10.7675 \\ 10.7654 \\ 10.7671 \\ 10.7695 \\ 10.7706 \\ 10.7706 \end{array}$

 $\frac{38}{8}$

Şekil 4.5. d=2yüksek eğimi için ardışık dalga oluşumu.

Şekil 4.6. d=5düşük eğimi için ardışık dalga oluşumu.

Şekil 4.7: d=2yüksek eğimi ved=5düşük eğimi için öncü (ilk) dalganın yüksekliği.

Şekil 4.8. d = 2 yüksek eğimi için korunum sabitlerinin değişimi.

Tablo 4.10: SFY-1 ile Problem 3'ün d = 2, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899155	2.786171	48.96	0.139634
	100	14.338000	1.449263	4.491475	102.48	0.158705
0.1	150	19.713000	1.999386	6.196736	156.72	0.170627
	200	25.088000	2.549514	7.901980	211.20	0.177691
	250	30.462999	3.099644	9.607216	265.68	0.182178
		$M_1 = 0.107$	74999951 ,	$M_2 = 0.011$	0022 , M_{2}	$a_3 = 0.0341057$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899148	2.786140	48.96	0.139644
	100	14.338000	1.449245	4.491400	102.72	0.158741
0.05	150	19.713000	1.999355	6.196610	156.72	0.170607
	200	25.088000	2.549470	7.901801	211.20	0.177715
	250	30.462999	3.099587	9.606983	265.68	0.182180
		$M_1 = 0.107$	74999976 ,	$M_2 = 0.011$	$0020 , M_{2}$	$a_3 = 0.0341048$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899145	2.786130	48.96	0.139648
	100	14.338000	1.449239	4.491376	102.72	0.158756
0.01	150	19.713000	1.999345	6.196570	156.72	0.170599
	200	25.088000	2.549456	7.901743	211.20	0.177721
	250	30.463000	3.099569	9.606909	265.68	0.182178
		$M_1 = 0.107$	74999985,	$M_2 = 0.011$	0020 , M_{2}	$a_3 = 0.0341045$

öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.11 de d = 2, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 2 iken h ve k nın farklı değerleri için korunum sabitlerinin lineer değişim oranları (3.2.5) eşitlikleri ile bulunan $M_1 = 0.1050$, $M_2 = 0.0106$ ve $M_3 = 0.03307$ analitik değerleriyle uyumlu olduğu görülür.

Tablo 4.12 de d = 5, h = 0.24 ve k = 0.1, 0.05, 0.01 değerleri için I_1 , I_2 ve

Tablo 4.11: SFY-1 ile Problem 3'ün d = 2, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899155	2.786171	48.96	0.139634
	100	14.338000	1.449263	4.491475	102.48	0.158705
0.24	150	19.713000	1.999386	6.196736	156.72	0.170627
	200	25.088000	2.549514	7.901980	211.20	0.177691
	250	30.462999	3.099644	9.607216	265.68	0.182178
		$M_1 = 0.107$	74999951 , .	$M_2 = 0.011$	$0023 , M_{\odot}$	$_{3} = 0.0341057$
	0	3.594000	0.349678	1.082640	-35.88	0.100000
	50	8.969000	0.899706	2.787793	48.96	0.139719
	100	14.344000	1.449746	4.492760	102.72	0.159125
0.12	150	19.719000	1.999791	6.197639	156.84	0.170811
	200	25.094000	2.549838	7.902485	211.32	0.177820
	250	30.468999	3.099886	9.607317	265.80	0.182217
		$M_1 = 0.107$	74999966 , .	$M_2 = 0.011$	$0008, M_{\odot}$	$_{3} = 0.0340987$
	0	3.597000	0.349978	1.083570	-35.94	0.100000
	50	8.972000	0.899993	2.788661	48.96	0.139710
	100	14.347000	1.450015	4.493540	102.72	0.159176
0.06	150	19.722000	2.000040	6.198319	156.90	0.170888
	200	25.097000	2.550066	7.903060	211.32	0.177887
	250	30.472000	3.100092	9.607786	265.80	0.182213
		$M_1 = 0.107$	74999987 , .	$M_2 = 0.011$	$0005, M_{\odot}$	$_{3} = 0.0340969$

Tablo 4.12: SFY-1 ile Problem 3'ün d = 5, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883929	2.739097	48.24	0.110733
	100	14.338000	1.433984	4.444556	102.24	0.137055
0.1	150	19.713000	1.984080	6.149895	156.24	0.157523
	200	25.088000	2.534199	7.855169	210.48	0.170396
	250	30.463000	3.084325	9.560418	264.96	0.177656
		$M_1 = 0.107$	7499999608	$1, M_2 = 0.$	01100166	$M_3 = 0.0341075$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883928	2.739090	48.24	0.110698
	100	14.338000	1.433977	4.444527	102.24	0.137058
0.05	150	19.713000	1.984063	6.149827	156.24	0.157542
	200	25.088000	2.534170	7.855051	210.48	0.170412
	250	30.463000	3.084284	9.560247	264.96	0.177706
		$M_1 = 0.107$	7499999608	$5, M_2 = 0.$	01100149	$, M_3 = 0.0341069$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883927	2.739088	48.24	0.110686
	100	14.338000	1.433975	4.444518	102.24	0.137059
0.01	150	19.713000	1.984058	6.149804	156.24	0.157547
	200	25.088000	2.534161	7.855013	210.48	0.170416
	250	30.463000	3.084270	9.560192	264.96	0.177721
		$M_1 = 0.107$	7499999608	$6, M_2 = 0.$	01100144	$M_3 = 0.0341066$

 I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.13 de d = 5, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 5olduğunda h ve k nın farklı değerleri için korunum sabitlerinin lineer değişimi analitik değerleriyle oldukça uyumlu olduğu görülür.

Tablo 4.14 de $d=2,\,h=0.24$ ve k=0.1için hesaplanan korunum sabitleri, öncü

Tablo 4.13: SFY-1 ile Problem 3'ün d = 5, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883929	2.739097	48.24	0.110733
	100	14.338000	1.433984	4.444556	102.24	0.137055
0.24	150	19.713000	1.984080	6.149895	156.24	0.157523
	200	25.088000	2.534199	7.855169	210.48	0.170396
	250	30.463000	3.084325	9.560418	264.96	0.177656
		$M_1 = 0.107$	7499999608	$1, M_2 = 0.$.01100166	$, M_3 = 0.0341075$
	0	3.594000	0.334511	1.033530	-35.88	0.100000
	50	8.969000	0.884518	2.740904	48.36	0.110419
	100	14.344000	1.434537	4.446197	102.24	0.137023
0.12	150	19.719000	1.984573	6.151237	156.36	0.157666
	200	25.094000	2.534616	7.856142	210.60	0.170542
	250	30.469000	3.084663	9.560997	264.96	0.177990
		$M_1 = 0.107$	7499999317	$3, M_2 = 0.$.01100061	$, M_3 = 0.0341024$
	0	3.597000	0.334811	1.036320	-35.94	0.100000
	50	8.972000	0.884815	2.741821	48.42	0.110342
	100	14.347000	1.434825	4.447071	102.30	0.137027
0.06	150	19.722000	1.984845	6.152032	156.36	0.157737
	200	25.097000	2.534869	7.856840	210.60	0.170605
	250	30.472000	3.084894	9.561592	265.02	0.178000
		$M_1 = 0.107$	7499998706	$0, M_2 = 0.$.01100033	$, M_3 = 0.0341011$

Tablo 4.14: SFY-1 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

t	I_1	I_2	I_3	x	U
0	3.588000	0.349077	1.080780	-35.76	0.100000
50	8.963000	0.899155	2.786171	48.96	0.139634
100	14.338000	1.449263	4.491475	102.48	0.158705
150	19.713000	1.999386	6.196736	156.72	0.170627
200	25.088000	2.549514	7.901980	211.20	0.177691
250	30.462999	3.099644	9.607216	265.68	0.182178
250[28]	30.48699	3.10148	9.61202	265.92	0.1819803
250[31]				265.92	0.182
250[36]	30.46299	3.09887	9.60482	265.68	0.18158
250[37]	30.4869971	3.10123	9.61118	265.92	0.18177
250[42]				265.92	0.1820388184

Tablo 4.15: SFY-1 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

	M_1	M_2	M_3
SFY-1	0.1074999951	0.0110022	0.0341057
[28]	0.1075	0.010999	0.034095
[36]	0.107500	0.010992	0.034096
[37]	0.1075	0.010999	0.034092

dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri, diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Ayrıca Tablo 4.15 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı.

Tablo 4.16 da d = 5, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri, bu değerleri aldığı x konum değerleri verildi ve diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Ek olarak Tablo 4.17 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı. Sonuç olarak bu problemin SFY-1

Tablo 4.16: SFY-1 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

t	I_1	I_2	I_3	x	U
0	3.588000	0.333911	1.033530	-35.76	0.100000
50	8.963000	0.883929	2.739097	48.24	0.110733
100	14.338000	1.433984	4.444556	102.24	0.137055
150	19.713000	1.984080	6.149895	156.24	0.157523
200	25.088000	2.534199	7.855169	210.48	0.170396
250	30.463000	3.084325	9.560418	264.96	0.177656
250[28]	30.48704	3.08631	9.56594	264.96	0.1787177
250[31]				264.96	0.178
250[36]	30.46305	3.08376	9.55868	264.96	0.17710
250[37]	30.4869998	3.08613	9.56533	264.96	0.17767
250[42]				264.96	0.1779322071

Tablo 4.17: SFY-1 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

	M_1	M_2	M_3
SFY-1	0.1074999996	0.01100165	0.0341075
[28]	0.1075	0.011	0.034099
[36]	0.107500	0.010992	0.034101
[37]	0.1075	0.010999	0.034097

ile elde edilen sonuçlarının literatürdeki farklı çalışmalarla elde edilen sonuçlarıyla uyum içinde olduğu görülür.

4.2 Sonlu Fark Yaklaşımı-2 (SFY-2)

(3.1.1) ile verilen RLW denkleminde UU_x nonlineer terim yerine

$$UU_{x} \cong \frac{1}{2} \left[\left(\frac{U_{m+1}^{n+1} + U_{m}^{n+1} + U_{m-1}^{n+1}}{3} \right) \left(\frac{U_{m+1}^{n} - U_{m-1}^{n}}{2h} \right) + \left(\frac{U_{m+1}^{n} + U_{m}^{n} + U_{m-1}^{n}}{3} \right) \left(\frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right) \right]$$
(4.2.1)

eşitliğiyle verilen lineer sonlu fark yaklaşımı alındı. Denklemde görülen U_t yerine

$$U_t \cong \frac{U_m^{n+1} - U_m^n}{k}$$

ileri sonlu fark yaklaşımı, $U_{\boldsymbol{x}}$ yerine

$$U_x \cong \frac{1}{2} \left(\frac{U_{m+1}^n - U_{m-1}^n}{2h} + \frac{U_{m+1}^{n+1} - U_{m-1}^{n+1}}{2h} \right)$$

Crank-Nicolson merkezi sonlu fark yaklaşımı ve U_{xxt} türevi yerine

$$U_{xxt} \cong \frac{1}{k} \left(\frac{U_{m+1}^{n+1} - 2U_m^{n+1} + U_{m-1}^{n+1}}{h^2} - \frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right)$$

sonlu fark yaklaşımları yazılır ve düzenlenirse

$$\left(-\frac{1}{4h} - \varepsilon \frac{U_{m+1}^n + U_m^n + U_{m-1}^n}{12h} + \varepsilon \frac{U_{m+1}^n - U_{m-1}^n}{12h} - \frac{\mu}{kh^2} \right) U_{m-1}^{n+1}$$

$$+ \left(\frac{1}{k} + \varepsilon \frac{U_{m+1}^n - U_{m-1}^n}{12h} + \frac{2\mu}{kh^2} \right) U_m^{n+1}$$

$$+ \left(\frac{1}{4h} + \varepsilon \frac{U_{m+1}^n + U_m^n + U_{m-1}^n}{12h} + \varepsilon \frac{U_{m+1}^n - U_{m-1}^n}{12h} - \frac{\mu}{kh^2} \right) U_{m+1}^{n+1}$$

$$= \frac{U_m^n}{k} - \frac{U_{m+1}^n - U_{m-1}^n}{4h} - \frac{\mu}{k} \left(\frac{U_{m+1}^n - 2U_m^n + U_{m-1}^n}{h^2} \right)$$

$$(4.2.2)$$

sonlu fark denklemi elde edilir.

4.2.1 Kararlılık Analizi

(4.2.1) sonlu fark yaklaşımının (3.1.1) RLW denklemine uygulanmasıyla elde edilen fark şemasının kararlılık analizini von Neumann yöntemiyle incelemek için (3.1.1) RLW denkleminde görülen UU_x nonlineer terimindeki U yerine U nun bir yerel sabiti olan \hat{U} alınır. Böylece SFY-1 ile yazılan (4.1.3) fark şemasının aynısı elde edilir. Sonuç olarak yöntem kararlıdır.

4.2.2 Nümerik Sonuçlar

Bu bölümde (3.1.1) ile verilen RLW denkleminde UU_x nonlineer terim yerine (4.2.1) sonlu fark yaklaşımının yazılmasıyla elde edilen (4.2.2) fark denkleminin üç model probleme uygulanmasıyla elde edilen nümerik sonuçlar verildi.

Problem 1: Tek Soliter Dalga Hareketi

Bu problemde 3c = 0.3 yüksekliğine sahip soliter dalganın, $-40 \le x \le 60$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi.

3c = 0.3yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 olmak üzere k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri Tablo 4.18 de verildi. Tabloya göre verilen korunum sabitlerinin değerleri, (3.2.3) den elde edilen $I_1 = 3.9799497$, $I_2 = 0.81046249$, $I_3 = 2.579007$ analitik değerleriyle uyumludur. h = 0.125 iken I_1 , I_2 ve I_3 deki mutlak değişim k = 0.1için sırasıyla $\Delta I_1 = 3.548 \times 10^{-5}$, $\Delta I_2 = 1.861 \times 10^{-8}$ ve $\Delta I_3 = 1.929 \times 10^{-7}$; k = 0.05için $\Delta I_1 = 3.550 \times 10^{-5}$, $\Delta I_2 = 1.368 \times 10^{-9}$ ve $\Delta I_3 = 8.797 \times 10^{-8}$; k = 0.01için $\Delta I_1 = 3.351 \times 10^{-5}$, $\Delta I_2 = 6.163 \times 10^{-9}$ ve $\Delta I_3 = 6.109 \times 10^{-8}$ olarak bulunur. Buradan h = 0.125iken k'nın küçülmesiyle I_1 de önemli bir ölçüde değişim olmadığı, I_2 ve I_3 deki mutlak değişimin ise azalmaktada olduğu görülür. t = 20 zamanında hata normları h = 0.125için k = 0.1iken $L_2 = 0.73701 \times 10^{-3}$, $L_{\infty} = 0.21956 \times 10^{-3}$; k = 0.05iken $L_2 = 0.58278 \times 10^{-3}$, $L_{\infty} = 0.17334 \times 10^{-3}$ ve k = 0.01iken $L_2 = 0.53347 \times 10^{-3}$, $L_{\infty} = 0.15855 \times 10^{-3}$ değerlerini alarak küçülmektedir.

Tablo 4.19 da 3c = 0.3 yüksekliğindeki soliter dalganın ilerleyişinin k = 0.1 olmak üzere h = 0.1, 0.05 ve 0.01 için belirli zamanlardaki korunum sabitlerinin ve hata

Tablo 4.18: SFY-2 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

\overline{k}	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104576001	2.579007427	0.15552	0.05458	4.375	0.29999
	8	3.9799709	0.8104575975	2.579007398	0.30847	0.10268	8.750	0.29996
0.1	12	3.9799839	0.8104575934	2.579007355	0.45694	0.14543	13.250	0.29994
	16	3.9799865	0.8104575882	2.579007303	0.59990	0.18412	17.625	0.29993
	20	3.9799617	0.8104575822	2.579007244	0.73701	0.21956	22.000	0.29992
		$\Delta I_1 = 3.54$	18×10^{-5} , ΔI_2 :	$= 1.861 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.929 \times 10^{-7}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104576011	2.579007432	0.12337	0.04340	4.375	0.29999
	8	3.9799709	0.8104576015	2.579007419	0.24456	0.08142	8.750	0.29997
0.05	12	3.9799839	0.8104576019	2.579007400	0.36197	0.11517	13.250	0.29995
	16	3.9799865	0.8104576021	2.579007376	0.47479	0.14556	17.625	0.29995
	20	3.9799617	0.8104576021	2.579007349	0.58278	0.17334	22.000	0.29994
		$\Delta I_1 = 3.55$	50×10^{-5} , $\Delta I_2 =$	$= 1.368 \times 10^{-9}$	$\Delta I_3 = 8.$	$.797 \times 10^{-8}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799529	0.8104576014	2.579007434	0.11309	0.03983	4.375	0.29999
	8	3.9799709	0.8104576025	2.579007425	0.22413	0.07464	8.750	0.29997
0.01	12	3.9799839	0.8104576039	2.579007411	0.33162	0.10548	13.250	0.29995
	16	3.9799865	0.8104576055	2.579007395	0.43480	0.13322	17.625	0.29995
	20	3.9799617	0.8104576069	2.579007376	0.53347	0.15855	22.000	0.29994
		$\Delta I_1 = 3.35$	51×10^{-5} , ΔI_2 =	$= 6.163 \times 10^{-9}$	$\Delta I_3 = 6$	$.109 \times 10^{-8}$		
Anal	itik:	$I_1 = 3.97994$	97, $\overline{I_2} = 0.8104$	$6249, I_3 = 2.57$	79007			

normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik değerleri (3.2.3) den elde edilen $I_1 = 3.9799497$, $I_2 = 0.81046249$, $I_3 = 2.579007$ analitik değerleriyle uyumlu olduğu görülür. Korunum sabitlerinin mutlak değişimi ise k = 0.1 iken h = 0.1 için $\Delta I_1 = 4.392 \times 10^{-5}$, $\Delta I_2 = 1.556 \times 10^{-8}$ ve $\Delta I_3 = 1.197 \times 10^{-7}$; h = 0.05 için $\Delta I_1 = 6.532 \times 10^{-5}$, $\Delta I_2 = 8.856 \times 10^{-9}$ ve $\Delta I_3 = 4.584 \times 10^{-8}$; h = 0.01 için $\Delta I_1 = 8.820 \times 10^{-5}$, $\Delta I_2 = 5.016 \times 10^{-9}$ ve $\Delta I_3 = 2.743 \times 10^{-8}$ olarak elde edilir. Buradan k = 0.1 iken h'nın küçülmesiyle I_1 deki mutlak değişim bir miktar artmakta, I_2 ve I_3 deki mutlak değişimin ise azalmaktadır. t = 20 zamanında k = 0.1 iken hata normları h = 0.1 için $L_2 = 0.54615 \times 10^{-3}$, $L_{\infty} = 0.16287 \times 10^{-3}$; h = 0.05 için $L_2 = 0.29213 \times 10^{-3}$, $L_{\infty} = 0.08724 \times 10^{-3}$ ve h = 0.01 için $L_2 = 0.21169 \times 10^{-3}$, $L_{\infty} = 0.06308 \times 10^{-3}$ değerlerini almıştır.

Tablo 4.18 ve Tablo 4.19 a göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.0 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 22/20 = 1.1, teorik hızıyla $v = 1 + \varepsilon c = 1.1$ aynı hesaplanmıştır. Ayrıca h = 0.125 iken k değerlerinin küçülmesiyle veya k = 0.1 iken h değerlerinin küçülmesiyle t = 20 zamanında dalganın yüksekliği başlangıç değerine daha yakın değerler almıştır.

Ayrıca 3c = 0.09 yüksekliğine sahip soliter dalganın, $-80 \le x \le 120$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi. Burada dalganın genliği küçülünce dalga genişleyeceği için sınır şartlarını sağlamayı devam ettireceği daha geniş bir aralık seçildi.

Tablo 4.20 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 iken k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin ve

Tablo 4.19: SFY-2 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799263	0.8104593621	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799536	0.8104593615	2.579007431	0.11508	0.04033	4.40	0.30000
	8	3.9799730	0.8104593593	2.579007413	0.22832	0.07595	8.80	0.29998
0.1	12	3.9799879	0.8104593558	2.579007387	0.33832	0.10770	13.20	0.29997
	16	3.9799828	0.8104593515	2.579007354	0.44435	0.13648	17.60	0.29996
	20	3.9799702	0.8104593465	2.579007317	0.54615	0.16287	22.00	0.29994
		$\Delta I_1 = 4.39$	2×10^{-5} , ΔI_2 :	$= 1.556 \times 10^{-8}$	$\Delta I_3 = 1$	197×10^{-7}		
	0	3.9799265	0.8104617110	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799552	0.8104617109	2.579007435	0.06130	0.02132	4.40	0.30000
	8	3.9799777	0.8104617096	2.579007428	0.12174	0.04032	8.80	0.29999
0.05	12	3.9799974	0.8104617076	2.579007418	0.18056	0.05738	13.20	0.29999
	16	3.9800080	0.8104617051	2.579007406	0.23738	0.07291	17.60	0.29998
	20	3.9799918	0.8104617022	2.579007391	0.29213	0.08724	22.00	0.29997
		$\Delta I_1 = 6.53$	$\Delta 2 \times 10^{-5}$, $\Delta I_2 =$	$= 8.856 \times 10^{-9}$	$, \Delta I_3 = 4$	584×10^{-8}		
	0	3.9799266	0.8104624628	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799565	0.8104624638	2.579007436	0.04427	0.01524	4.40	0.30000
	8	3.9799820	0.8104624629	2.579007432	0.08801	0.02894	8.80	0.29999
0.01	12	3.9800065	0.8104624615	2.579007426	0.13065	0.04130	13.20	0.29999
	16	3.9800234	0.8104624598	2.579007419	0.17188	0.05261	17.60	0.29999
	20	3.9800148	0.8104624578	2.579007409	0.21169	0.06308	22.00	0.29998
		$\Delta I_1 = 8.82$	20×10^{-5} , ΔI_2	$= 5.016 \times 10^{-9}$	$, \Delta I_3 = 2$	743×10^{-8}		
Anal	itik:	$I_1 = 3.97994$	97, $I_2 = 0.8104$	$6249, I_3 = 2.57$	9007			

hata normlarının aldığı değerleri ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodan korunum sabitlerinin değerlerinin dalganın hareketi boyunca hemen hemen sabit kaldığı ve (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle uyumlu olduğu görülmektedir. h = 0.125 iken korunum sabitlerindeki mutlak değişim k = 0.1 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 4.640 \times 10^{-11}$ ve $\Delta I_3 = 4.000 \times 10^{-10}$; k = 0.05 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 2.907 \times 10^{-12}$ ve $\Delta I_3 = 1.864 \times 10^{-10}$; k = 0.01 için $\Delta I_1 = 4.825 \times 10^{-6}$, $\Delta I_2 = 7.748 \times 10^{-12}$ ve $\Delta I_3 = 1.312 \times 10^{-10}$ olarak elde edilir. h = 0.125 iken k'nın farklı değerleri için I_1 , I_2 ve I_3 değerlerinde önemli bir ölçüde değişiklik olmamıştır. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.05429 \times 10^{-3}$, $L_{\infty} = 01438 \times 10^{-3}$; k = 0.05 iken $L_2 = 0.04404 \times 10^{-3}$, $L_{\infty} = 0.01167 \times 10^{-3}$ ve k = 0.01 iken $L_2 = 0.04076 \times 10^{-3}$, $L_{\infty} = 0.01081 \times 10^{-3}$ olarak bulunur.

Tablo 4.21 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca k = 0.1 için h = 0.1, 0.05 ve 0.01 değerleri için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerleri ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodan korunum sabitlerinin nümerik değerleri (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle uyumlu olduğu görülür. Ayrıca korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 5.339 \times 10^{-6}$, $\Delta I_2 = 3.544 \times 10^{-11}$ ve $\Delta I_3 = 2.432 \times 10^{-10}$; h = 0.05 için $\Delta I_1 = 6.642 \times 10^{-6}$, $\Delta I_2 = 1.748 \times 10^{-11}$ ve $\Delta I_3 = 8.648 \times 10^{-11}$; h = 0.01 için $\Delta I_1 = 8.037 \times 10^{-6}$, $\Delta I_2 = 7.044 \times 10^{-12}$ ve $\Delta I_3 = 4.695 \times 10^{-11}$ olarak bulunur. k = 0.1 iken h nın farklı değerleri için I_1 , I_2 ve I_3 korunum sabitlerinde önemli ölçüde bir değişiklik olmadığı görülür. t = 20

Tablo 4.20: SFY-2 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

\overline{k}	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.01091	0.00306	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.02180	0.00603	8.250	0.09000
0.1	12	2.1094086	0.1273016387	0.388805990	0.03267	0.00890	12.375	0.09000
	16	2.1094093	0.1273016387	0.388805990	0.04350	0.01169	16.500	0.09000
	20	2.1094098	0.1273016387	0.388805990	0.05429	0.01438	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , $\Delta I_2 =$	$= 4.640 \times 10^{-1}$	1 , $\Delta I_3 = 4$	4.000×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00885	0.00249	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.01769	0.00490	8.250	0.09000
0.05	12	2.1094086	0.1273016387	0.388805990	0.02651	0.00723	12.375	0.09000
	16	2.1094093	0.1273016387	0.388805990	0.03529	0.00949	16.500	0.09000
	20	2.1094098	0.1273016387	0.388805990	0.04404	0.01167	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , $\Delta I_2 =$	$= 2.907 \times 10^{-1}$	12 , $\Delta I_3 = 1$	1.864×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00819	0.00231	4.125	0.09000
	8	2.1094077	0.1273016387	0.388805990	0.01637	0.00454	8.250	0.09000
0.01	12	2.1094086	0.1273016387	0.388805990	0.02453	0.00669	12.375	0.09000
	16	2.1094093	0.1273016387	0.388805990	0.03267	0.00878	16.500	0.09000
	20	2.1094098	0.1273016388	0.388805990	0.04076	0.01081	20.625	0.09000
		$\Delta I_1 = 4.82$	25×10^{-6} , ΔI_2	$= 7.748 \times 10^{-1}$	$^{12}, \Delta I_3 = 1$	1.312×10^{-1}	.0	
Anal	itik: <i>I</i>	1 = 2,10940	$74997, I_2 = 0.12$	273017186, I ₃ =	= 0.3888059	9904		

Tablo 4.21: SFY-2 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016675	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094066	0.1273016675	0.388805990	0.00797	0.00224	4.10	0.09000
0.1	8	2.1094078	0.1273016675	0.388805990	0.01593	0.00440	8.20	0.09000
	12	2.1094089	0.1273016675	0.388805990	0.02387	0.00650	12.40	0.09000
	16	2.1094097	0.1273016675	0.388805990	0.03179	0.00854	16.50	0.09000
	20	2.1094103	0.1273016675	0.388805990	0.03967	0.01051	20.60	0.09000
		$\Delta I_1 = 5.33$	39×10^{-6} , ΔI_2	$= 3.544 \times 10^{-1}$	$^{11}, \Delta I_3 = 2$	2.432×10^{-1}	10	
	0	2.1094050	0.1273017058	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094067	0.1273017058	0.388805990	0.00406	0.00113	4.10	0.09000
0.05	8	2.1094081	0.1273017058	0.388805990	0.00811	0.00223	8.25	0.09000
	12	2.1094094	0.1273017058	0.388805990	0.01216	0.00330	12.35	0.09000
	16	2.1094106	0.1273017058	0.388805990	0.01618	0.00434	16.50	0.09000
	20	2.1094116	0.1273017058	0.388805990	0.02020	0.00534	20.60	0.09000
		$\Delta I_1 = 6.64$	2×10^{-6} , ΔI_2	$= 1.748 \times 10^{-1}$	1 , $\Delta I_3 = 8$	8.648×10^{-1}	1	
	0	2.1094050	0.1273017181	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094068	0.1273017181	0.388805990	0.00281	0.00078	4.12	0.09000
0.01	8	2.1094084	0.1273017181	0.388805990	0.00562	0.00154	8.24	0.09000
	12	2.1094100	0.1273017181	0.388805990	0.00843	0.00228	12.36	0.09000
	16	2.1094116	0.1273017181	0.388805990	0.01122	0.00299	16.48	0.09000
	20	2.1094131	0.1273017181	0.388805990	0.01400	0.00368	20.60	0.09000
		$\Delta I_1 = 8.03$	57×10^{-6} , ΔI_2	$= 7.044 \times 10^{-1}$	$\Delta I_3 = 4$	4.695×10^{-1}	1	
Anal	itik: <i>I</i>	$\bar{1}_1 = 2,10940$	$74997, I_2 = 0.12$	273017186, I ₃ =	= 0.3888059	9904		

zamanında hata normları k = 0.1 için h = 0.1 iken $L_2 = 0.03967 \times 10^{-3}$, $L_{\infty} = 0.01051 \times 10^{-3}$; h = 0.05 iken $L_2 = 0.02020 \times 10^{-3}$, $L_{\infty} = 0.00534 \times 10^{-3}$ ve h = 0.01 iken $L_2 = 0.01400 \times 10^{-3}$, $L_{\infty} = 0.00368 \times 10^{-3}$ şeklinde oldukça küçük değerler almıştır.

Tablo 4.20 ye göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 20.625 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 20.625/20 = 1.13125 dir. Tablo 4.21 e göre ise t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.60 konumunda olduğu için
		<i>c</i> =	= 0.1	c = 0.03		
h	k	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$	
	0.1	0.73701	0.21956	0.05429	0.01438	
0.125	0.05	0.58278	0.17334	0.04404	0.01167	
	0.01	0.53347	0.15855	0.04076	0.01081	
0.1		0.54615	0.16287	0.03967	0.01051	
0.05	0.1	0.29213	0.08724	0.02020	0.00534	
0.01		0.21169	0.06308	0.01400	0.00368	

Tablo 4.22: SFY-2 ile Problem 1'in h ve k'nın farklı değerleri için hesaplanan hata normları (3c = 0.3 için $-40 \le x \le 60$, 3c = 0.09 için $-80 \le x \le 120$).

nümerik çözümden elde edilen hızı v =konum/zaman= 22.60/20 = 1.13 'dir. Dalganın hızının nümerik değerleri $v = 1 + \varepsilon c = 1.03$ analitik değeriyle uyumludur. Ayrıca h ve k nın farklı değerleri için t = 20 zamanında dalganın yüksekliği başlangıç değeriyle hemem hemen aynı değerleri aldığı görülür.

Tablo 4.22 de c = 0.1 ve c = 0.03 genlikli dalgalar için farklı konum ve zaman adımları için hesaplanan hata normları karşılaştırıldı. Tablodan küçülen h ve kdeğerleriyle hata normlarının azaldığı görülmektedir.

Tablo 4.23 de 3c = 0.3, $-40 \le x \le 60$, h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi.

Problem 2: İki Soliter Dalga Girişimi

Bu problemde tepe noktası $x_1 = -177$ konumunda, $3c_1 = 0.6$ yüksekliğinde ve tepe noktası $x_2 = -147$ konumunda, $3c_2 = 0.3$ yüksekliğinde iki soliter dalganın $-200 \le x \le 400$ aralığındaki girişimi t = 400 zamanına kadar gözlendi.

Tablo 4.24 de h = 0.12 iken k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre konum adım uzunluğu h = 0.12 olarak alındığında korunum sabitlerindeki değişim k = 0.1 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 =$

t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000
4	3.9799529	0.8104576001	2.579007427	0.15552	0.05458
8	3.9799709	0.8104575975	2.579007398	0.30847	0.10268
12	3.9799839	0.8104575934	2.579007355	0.45694	0.14543
16	3.9799865	0.8104575882	2.579007303	0.59990	0.18412
20	3.9799617	0.8104575822	2.579007244	0.73701	0.21956
20[19](h = 0.1)	3.97989	0.810462	2.57901	0.217	0.084
20[20](h = 0.1)	3.97989	0.810467	2.57902	0.220	0.086
20[21]	3.98203	0.808650	2.57302	4.688	1.755
20[25]	3.961597	0.804185	2.558292	0.0184	1.5664
20[26]	3.97986	0.811164	2.58133	0.511	0.198
20[27]	3.98206	0.810399	2.57880	0.227	0.081
20[28]	3.980016	0.8104624	2.579006	0.22050	0.08448
20[31]	3.979883	0.81027618	2.57839258	0.30	0.116
20[36](h = 0.1)	3.97997	0.810459	2.57901	0.55	0.21
20[37]	3.97988	0.810465	2.57901	0.219	0.086
20[38]	3.98206	0.811164	2.58133	0.511	0.198
20[38]	3.97986	0.810399	2.57880	0.227	0.081
20[44]	3.97988	0.81046	2.57902	0.52171	0.19828
20[44]	3.98005	0.81047	2.57902	0.03689	0.01824
20[46]	3.979950	0.810521	2.579202	0.702	0.268
20[47]	3.97972	0.81026	2.57873	0.266856	0.091465
20[48]	3.9799000	0.8104646	2.5790160	0.04921	0.02020
20[48]	3.9798834	0.8104651	2.5790160	0.01171	0.01268

Tablo 4.23: SFY-2 ile Problem 1'in h = 0.125 ve k = 0.1 için hesaplanan korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$).

 1.503×10^{-6} ve $\Delta I_3 = 1.434 \times 10^{-5}$; k = 0.05 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 1.559 \times 10^{-7}$ ve $\Delta I_3 = 5.507 \times 10^{-6}$ ve k = 0.01 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 5.681 \times 10^{-7}$ ve $\Delta I_3 = 3.220 \times 10^{-6}$ değerlerini alır. Görüldüğü gibi ΔI_1 , k değerinin küçülmesiyle değişmemiş, ΔI_2 ve ΔI_3 bir miktar küçülmüştür.

Tablo 4.25 de k = 0.1 iken h = 0.12, 0.06 ve 0.03 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre korunum sabitlerindeki değişim, zaman adım uzunluğu k = 0.1 iken h = 0.12 için $\Delta I_1 = 3.439 \times 10^{-3}$, $\Delta I_2 = 1.503 \times 10^{-6}$ ve $\Delta I_3 = 1.434 \times 10^{-5}$; h = 0.06 için $\Delta I_1 = 6.778 \times 10^{-3}$, $\Delta I_2 = 7.368 \times 10^{-7}$ ve $\Delta I_3 = 4.695 \times 10^{-6}$; h = 0.03 için $\Delta I_1 = 1.343 \times 10^{-2}$, $\Delta I_2 = 6.298 \times 10^{-8}$ ve $\Delta I_3 = 1.035 \times 10^{-6}$ şeklindedir. Buna göre k sabit, h ın küçülmesiyle I_1 deki mutlak değişimin arttığı, I_2 ve I_3 deki mutlak değişimlerin azaldığı söylenebilir.

Tablo 4.26 da h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi. Tabloda korunum sabitlerinin virgülden sonra aynı değerleri aldığı basamak sayısı dikkate alındığında SFY-2'nin iyi sonuçlar verdiği görülür.

Problem 3: Ardışık Dalga Oluşumu

Bu problemde d = 2 yüksek eğim ve d = 5 düşük eğim için elde edilen ardışık dalgaların oluşumu $-36 \le x \le 300$ aralığında, t = 250 zamanına kadar gözlendi.

Tablo 4.27 de d = 2, h = 0.24 olarak alınıp k = 0.1, 0.05 ve 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.28 de d = 2, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 2 iken

Tablo 4.24: SFY-2 ile Problem 2'nin h = 0.12 ve k nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3$, $x_1 = -177$, $x_2 = -147$, $-200 \le x \le 400$).

	k = 0.1				k = 0.05			k = 0.01		
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3
	0	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329
	40	9.86135529	3.2447339	10.778280	9.86135529	3.2447392	10.778306	9.86135529	3.2447408	10.778314
	80	9.86163235	3.2447169	10.778149	9.86163235	3.2447358	10.778240	9.86163235	3.2447418	10.778269
	120	9.86165760	3.2446725	10.777800	9.86165760	3.2447277	10.778066	9.86165760	3.2447454	10.778151
h = 0.12	160	9.86166002	3.2445916	10.777144	9.86166002	3.2447150	10.777739	9.86166001	3.2447545	10.777930
	200	9.86166025	3.2445372	10.776692	9.86166023	3.2447074	10.777515	9.86166023	3.2447619	10.777779
	240	9.86166018	3.2445897	10.777128	9.86166018	3.2447148	10.777733	9.86166017	3.2447547	10.777926
	280	9.86166013	3.2446707	10.777785	9.86166013	3.2447275	10.778060	9.86166013	3.2447455	10.778147
	320	9.86166021	3.2447154	10.778137	9.86166022	3.2447356	10.778235	9.86166022	3.2447419	10.778266
	360	9.86166040	3.2447328	10.778270	9.86166040	3.2447391	10.778302	9.86166040	3.2447410	10.778311
	400	9.86166052	3.2447387	10.778315	9.86166051	3.2447403	10.778324	9.86166051	3.2447407	10.778326
		ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 3.439 \times 1$	0^{-3}
		ΔI_2	$= 1.503 \times 1$	0^{-6}	ΔI_2	$= 1.559 \times 1$	0^{-7}	ΔI_2	$= 5.681 \times 1$	0^{-7}
		ΔI_3	$= 1.434 \times 1$	0^{-5}	ΔI_3	$= 5.507 \times 1$	0^{-6}	ΔI_3	$= 3.220 \times 1$	0^{-6}

Tablo 4.25: SFY-2 ile Problem 2'nin k = 0.1 ve h nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3$, $x_1 = -177$, $x_2 = -147$, $-200 \le x \le 400$).

	h = 0.12				h = 0.06			h = 0.03		
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3
	0	9.85822123	3.2447402	10.778329	9.85822732	3.2447773	10.778329	9.85823035	3.2447868	10.778329
	40	9.86135529	3.2447339	10.778280	9.86298732	3.2447714	10.778296	9.86434971	3.2447811	10.778301
	80	9.86163235	3.2447169	10.778149	9.86439688	3.2447535	10.778198	9.86766319	3.2447631	10.778211
	120	9.86165760	3.2446725	10.777800	9.86482174	3.2447061	10.777936	9.86948214	3.2447152	10.777972
k = 0.1	160	9.86166002	3.2445916	10.777144	9.86494988	3.2446176	10.777441	9.87048056	3.2446247	10.777517
	200	9.86166025	3.2445372	10.776692	9.86498851	3.2445570	10.777100	9.87102850	3.2445625	10.777203
	240	9.86166018	3.2445897	10.777128	9.86500007	3.2446157	10.777431	9.87132912	3.2446228	10.777508
	280	9.86166013	3.2446707	10.777785	9.86500350	3.2447045	10.777927	9.87149403	3.2447136	10.777964
	320	9.86166021	3.2447154	10.778137	9.86500455	3.2447523	10.778192	9.87158456	3.2447622	10.778207
	360	9.86166040	3.2447328	10.778270	9.86500493	3.2447705	10.778291	9.87163429	3.2447806	10.778298
	400	9.86166052	3.2447387	10.778315	9.86500507	3.2447766	10.778325	9.87166161	3.2447867	10.778328
		ΔI_1	$= 3.439 \times 1$	0^{-3}	ΔI_1	$= 6.778 \times 1$	0^{-3}	ΔI_1	$= 1.343 \times 1$	0^{-2}
		ΔI_2	$= 1.503 \times 1$	0^{-6}	ΔI_2	$= 7.368 \times 10^{-10}$	0^{-7}	ΔI_2	$= 6.298 \times 1$	0^{-8}
		ΔI_3	$= 1.434 \times 1$	0^{-5}	ΔI_3	$= 4.695 \times 1$	0^{-6}	ΔI_3	$= 1.035 \times 1$	0^{-6}

Tablo	• 4.26: SFY-2	2 ile Problem	2'nin $h = 0$.	12 ve k =	= 0.1 içir	ı hesaplan	an korunum	$\operatorname{sabitleri}$	$(3c_1 = 0.6)$	$5, 3c_2 =$	= 0.3,
$x_1 = $	$-177, x_2 = -$	$-147, -200 \le$	$x \le 400).$								
	т	7	7								

	t	I_1	I_2	I_3		$I_1[27]$	$I_{2}[27]$	$I_{3}[27]$	$I_{1}[37]$	$I_{2}[37]$	$I_{3}[37]$
	0	9.85822123	3.2447402	10.778329		9.8586	3.2449	10.7788	9.85825	3.24481	10.77833
	40	9.86135529	3.2447339	10.778280		9.8642	3.2456	10.7809	9.85833	3.24482	10.77836
	80	9.86163235	3.2447169	10.778149		9.8683	3.2475	10.7872	9.85832	3.24482	10.77834
	120	9.86165760	3.2446725	10.777800		9.8719	3.2491	10.7928	9.85833	3.24486	10.77843
	160	9.86166002	3.2445916	10.777144		9.8751	3.2506	10.7979	9.85833	3.24491	10.77852
	200	9.86166025	3.2445372	10.776692		9.8886	3.2523	10.8036	9.85830	3.24492	10.77851
	240	9.86166018	3.2445897	10.777128		9.8825	3.2544	10.8109	9.85830	3.24489	10.77846
	280	9.86166013	3.2446707	10.777785		9.8854	3.2557	10.8156	9.85829	3.24484	10.77834
	320	9.86166021	3.2447154	10.778137		9.8883	3.2569	10.8197	9.85832	3.24482	10.77833
6	360	9.86166040	3.2447328	10.778270		9.8907	3.2576	10.8220	9.85829	3.24479	10.77823
0	400	9.86166052	3.2447387	10.778315		9.8930	3.2585	10.8251	9.85830	3.24478	10.77819
				-	t	$I_1[38]$	$I_{2}[38]$	$I_{3}[38]$	$I_1[47](h = 0.25)$	$I_2[47](h = 0.25)$	$I_3[47](h=0.25)$
					0	9.8586	3.2449	10.7788	9.8583	3.2328	10.7623
					40	9.8642	3.2456	10.7809	9.8575	3.2362	10.7738
					80	9.8683	3.2475	10.7872	9.8574	3.2362	10.7727
					120	9.8719	3.2492	10.7928	9.8573	3.2367	10.7707
					160	9.8751	3.2506	10.7979	9.8573	3.2377	10.7675
					200	9.8886	3.2523	10.8036	9.8574	3.2384	10.7654
					240	9.8825	3.2544	10.8109	9.8572	3.2376	10.7671
					280	9.8854	3.2557	10.8156	9.8570	3.2364	10.7695
					320	9.8883	3.2569	10.8197	9.8567	3.2357	10.7706
					360	9.8907	3.2576	10.8220	9.8565	3.2353	10.7706
					400	9.8930	3.2585	10.8251	9.8563	3.2351	10.7703

Tablo 4.27: SFY-2 ile Problem 3'ün d = 2, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899083	2.785949	48.96	0.139475
	100	14.338000	1.449093	4.490948	102.48	0.158441
0.1	150	19.713000	1.999105	6.195863	156.72	0.170292
	200	25.088000	2.549117	7.900746	211.20	0.177319
	250	30.462999	3.099130	9.605615	265.68	0.181779
		$M_1 = 0.107$	74999951, I	$M_2 = 0.0110$	0002112, 1	$M_3 = 0.0340993411$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899075	2.785917	48.96	0.139485
	100	14.338000	1.449074	4.490871	102.72	0.158479
0.05	150	19.713000	1.999073	6.195734	156.72	0.170271
	200	25.088000	2.549072	7.900563	211.20	0.177340
	250	30.462999	3.099071	9.605377	265.68	0.181779
		$M_1 = 0.107$	74999975 ,	$M_2 = 0.010$	9999777	$M_3 = 0.0340983880$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899073	2.785907	48.96	0.139488
	100	14.338000	1.449068	4.490846	102.72	0.158493
0.01	150	19.713000	1.999063	6.195693	156.72	0.170262
	200	25.088000	2.549058	7.900504	211.20	0.177345
	250	30.463000	3.099052	9.605300	265.68	0.181776
		$M_1 = 0.107$	74999984,	$M_2 = 0.010$	9999026	$M_3 = 0.0340980816$

h ve k nın farklı değerleri için korunum sabitlerinin lineer değişim oranları, (3.2.5) den elde edilen $M_1 = 0.1050, M_2 = 0.0106$ ve $M_3 = 0.03307$ analitik değerleriyle uyumlu değerler almıştır.

Tablo 4.28: SFY-2 ile Problem 3'ün d = 2, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899083	2.785949	48.96	0.139475
	100	14.338000	1.449093	4.490948	102.48	0.158441
0.24	150	19.713000	1.999105	6.195863	156.72	0.170292
	200	25.088000	2.549117	7.900746	211.20	0.177319
	250	30.462999	3.099130	9.605615	265.68	0.181779
		$M_1 = 0.107$	74999951,	$M_2 = 0.011$	0002112	$M_3 = 0.0340993411$
	0	3.594000	0.349678	1.082640	-35.88	0.100000
	50	8.969000	0.899687	2.787736	48.96	0.139677
	100	14.344000	1.449702	4.492624	102.72	0.159056
0.12	150	19.719000	1.999718	6.197413	156.84	0.170723
	200	25.094000	2.549735	7.902165	211.32	0.177722
	250	30.468999	3.099752	9.606902	265.80	0.182112
		$M_1 = 0.107$	74999966,	$M_2 = 0.011$	0002975,	$M_3 = 0.0340970471$
	0	3.597000	0.349978	1.083570	-35.94	0.100000
	50	8.972000	0.899988	2.788647	48.96	0.139699
	100	14.347000	1.450004	4.493506	102.72	0.159158
0.06	150	19.722000	2.000021	6.198262	156.90	0.170866
	200	25.097000	2.550040	7.902979	211.32	0.177862
	250	30.472000	3.100058	9.607681	265.80	0.182186
		$M_1 = 0.107$	74999987,	$M_2 = 0.011$	0003217	$M_3 = 0.0340964443$

Tablo 4.29: SFY-2 ile Problem 3'ün d = 5, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883913	2.739046	48.24	0.110694
	100	14.338000	1.433918	4.444351	102.24	0.136904
0.1	150	19.713000	1.983927	6.149419	156.24	0.157266
	200	25.088000	2.533939	7.854359	210.48	0.170064
	250	30.463000	3.083951	9.559251	264.96	0.177284
		$M_1 = 0.107$	74999996,	$M_2 = 0.011$	0001595	$M_3 = 0.0341028840$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883911	2.739039	48.24	0.110658
	100	14.338000	1.433911	4.444321	102.24	0.136907
0.05	150	19.713000	1.983910	6.149349	156.24	0.157283
	200	25.088000	2.533909	7.854238	210.48	0.170078
	250	30.463000	3.083908	9.559077	264.96	0.177332
		$M_1 = 0.107$	74999996, <i>N</i>	$M_2 = 0.0109$	9999887, 1	$M_3 = 0.03410218650$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883911	2.739037	48.24	0.110647
	100	14.338000	1.433908	4.444312	102.24	0.136907
0.01	150	19.713000	1.983904	6.149326	156.24	0.157288
	200	25.088000	2.533900	7.854200	210.48	0.170081
	250	30.463000	3.083895	9.559021	264.96	0.177345
		$M_1 = 0.107$	74999996, 1	$M_2 = 0.0109$	9999337, 1	$M_3 = 0.0341019622$

genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Yani d = 5 olduğunda h ve k nın farklı değerleri için korunum sabitlerinin lineer değişimi analitik değerleriyle uyumlu olduğu görülür.

Tablo 4.31 de d = 2, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri, diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Ayrıca Tablo 4.32 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı.

Tablo 4.30: SFY-2 ile Problem 3'ün d = 5, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

h	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883913	2.739046	48.24	0.110694
	100	14.338000	1.433918	4.444351	102.24	0.136904
0.24	150	19.713000	1.983927	6.149419	156.24	0.157266
	200	25.088000	2.533939	7.854359	210.48	0.170064
	250	30.463000	3.083951	9.559251	264.96	0.177284
		$M_1 = 0.107$	74999996,	$M_2 = 0.011$	0001595	$M_3 = 0.0341028840$
	0	3.594000	0.334511	1.035390	-35.88	0.100000
	50	8.969000	0.884513	2.740892	48.36	0.110408
	100	14.344000	1.434521	4.446145	102.24	0.136984
0.12	150	19.719000	1.984533	6.151114	156.36	0.157599
	200	25.094000	2.534549	7.855932	210.60	0.170455
	250	30.469000	3.084566	9.560695	264.96	0.177892
		$M_1 = 0.107$	74999993,	$M_2 = 0.011$	0002186	$M_3 = 0.0341012191$
	0	3.597000	0.334811	1.036320	-35.94	0.100000
	50	8.972000	0.884814	2.741818	48.42	0.110340
	100	14.347000	1.434821	4.447057	102.30	0.137017
0.06	150	19.722000	1.984835	6.152001	156.36	0.157719
	200	25.097000	2.534852	7.856787	210.60	0.170582
	250	30.472000	3.084870	9.561515	265.02	0.177975
		$M_1 = 0.107$	74999987,	$M_2 = 0.011$	0002348	$M_3 = 0.0341007808$

Tablo 4.31: SFY-2 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

		, 0			0 (
t	I_1	I_2	I_3	x	U
0	3.588000	0.349077	1.080780	-35.76	0.100000
50	8.963000	0.899083	2.785949	48.96	0.139475
100	14.338000	1.449093	4.490948	102.48	0.158441
150	19.713000	1.999105	6.195863	156.72	0.170292
200	25.088000	2.549117	7.900746	211.20	0.177319
250	30.462999	3.099130	9.605615	265.68	0.181779
250[28]	30.48699	3.10148	9.61202	265.92	0.1819803
250[31]				265.92	0.182
250[36]	30.46299	3.09887	9.60482	265.68	0.18158
250[37]	30.4869971	3.10123	9.61118	265.92	0.18177
250[42]				265.92	0.1820388184

Tablo 4.32: SFY-2 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

		3	\[
	M_1	M_2	M_3
SFY-2	0.1074999951	0.0110021	0.0340993
[28]	0.1075	0.010999	0.034095
[36]	0.107500	0.010992	0.034096
[37]	0.1075	0.010999	0.034092

Tablo 4.33: SFY-2 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$

t	I_1	I_2	I_3	x	U
0	3.588000	0.333911	1.033530	-35.76	0.100000
50	8.963000	0.883913	2.739046	48.24	0.110694
100	14.338000	1.433918	4.444351	102.24	0.136904
150	19.713000	1.983927	6.149419	156.24	0.157266
200	25.088000	2.533939	7.854359	210.48	0.170064
250	30.463000	3.083951	9.559251	264.96	0.177284
250[28]	30.48704	3.08631	9.56594	264.96	0.1787177
250[31]				264.96	0.182
250[36]	30.46305	3.08376	9.55868	264.96	0.17710
250[37]	30.4869998	3.08613	9.56533	264.96	0.17767
250[42]				264.96	0.1779322071

Tablo 4.33 de d = 5, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri, bu değerleri aldığı x konum değerleri verildi ve diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Ek olarak Tablo 4.34 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı. Sonuç olarak bu problemin SFY-2 ile elde edilen sonuçlarının literatürdeki farklı çalışmalarla elde edilen sonuçlarıyla uyum içinde olduğu görülür.

Tablo 4.34: SFY-2 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$)

	M_1	M_2	M_3
SFY-2	0.1074999996	0.0110001594	0.0341028840
[28]	0.1075	0.011	0.034099
[36]	0.107500	0.010992	0.034101
[37]	0.1075	0.010999	0.034097

4.3 Sonlu Fark Yaklaşımı-3 (SFY-3)

3.1.1 denkleminde UU_x nonlineer terim yerine

$$UU_{x} \cong \frac{1}{2} \left[U_{m}^{n+1} \left(\frac{-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n}}{12h} \right) + U_{m}^{n} \left(\frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \right]$$
(4.3.1)

sonlu fark yaklaşımı, $U_{\boldsymbol{x}}$ türevi yerine

$$U_x \simeq \frac{1}{2} \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} + \frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right)$$

 U_t türevi yerine

$$U_t \cong \frac{U_m^{n+1} - U_m^n}{k}$$

ve U_{xxt} türevi yerine

$$U_{xxt} \cong \frac{1}{k} \left(\frac{-U_{m+2}^{n+1} + 16U_{m+1}^{n+1} - 30U_m^{n+1} + 16U_{m-1}^{n+1} - U_{m-2}^{n+1}}{12h^2} - \frac{-U_{m+2}^n + 16U_{m+1}^n - 30U_m^n + 16U_{m-1}^n - U_{m-2}^n}{12h^2} \right)$$

sonlu fark yaklaşımları yazılır ve düzenlenirse

$$\left(\frac{1+\varepsilon U_m^n}{24h} + \frac{\mu}{12kh^2}\right) U_{m-2}^{n+1} + \left(-\frac{1+\varepsilon U_m^n}{3h} - \frac{4\mu}{3kh^2}\right) U_{m-1}^{n+1} + \left(\frac{1}{k} + \varepsilon \frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{24h} + \frac{5\mu}{2kh^2}\right) U_m^{n+1} + \left(\frac{1+\varepsilon U_m^n}{3h} - \frac{4\mu}{3kh^2}\right) U_{m+1}^{n+1} + \left(-\frac{1+\varepsilon U_m^n}{24h} + \frac{\mu}{12kh^2}\right) U_{m+2}^{n+1} = \frac{U_m^n}{k} - \frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{24h} - \frac{\mu}{k} \left(\frac{-U_{m+2}^n + 16U_{m+1}^n - 30U_m^n + 16U_{m-1}^n - U_{m-2}^n}{12h^2}\right)$$
(4.3.2)

sonlu fark denklemi elde edilir.

4.3.1 Kararlılık Analizi

(4.3.1) sonlu fark yaklaşımının (3.1.1) ile verilen RLW denklemine uygulanmasıyla elde edilen sonlu fark şemasının kararlılık analizi von Neumann yöntemi kullanılarak incelendi.

 \hat{U} , U nun bir yerel sabiti olmak üzere (3.1.1) ile verilen RLW denkleminde görülen UU_x nonlineer terimindeki U yerine \hat{U} alınırsa (4.3.2) sonlu fark şeması

$$\begin{aligned} \frac{U_m^{n+1} - U_m^n}{k} \\ &+ \frac{1}{2} \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} + \frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \\ &+ \frac{\varepsilon \hat{U}}{2} \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} + \frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \\ &- \frac{\mu}{k} \left(\frac{-U_{m+2}^{n+1} + 16U_{m+1}^{n+1} - 30U_m^{n+1} + 16U_{m-1}^{n+1} - U_{m-2}^{n+1}}{12h^2} \right) \\ &- \frac{-U_{m+2}^n + 16U_{m+1}^n - 30U_m^n + 16U_{m-1}^n - U_{m-2}^n}{12h^2} \right) = 0 \end{aligned}$$

olur. Gerekli düzenlemeler yapılırsa

$$\begin{pmatrix} \frac{1+\varepsilon\hat{U}}{24h} + \frac{\mu}{12kh^2} \end{pmatrix} U_{m-2}^{n+1} + \left(-\frac{1+\varepsilon\hat{U}}{3h} - \frac{4\mu}{3kh^2} \right) U_{m-1}^{n+1} \\ + \left(\frac{1}{k} + \frac{5\mu}{2kh^2} \right) U_m^{n+1} + \left(\frac{1+\varepsilon\hat{U}}{3h} - \frac{4\mu}{3kh^2} \right) U_{m+1}^{n+1} + \left(-\frac{1+\varepsilon\hat{U}}{24h} + \frac{\mu}{12kh^2} \right) U_{m+2}^{n+1} \\ = \frac{U_m^n}{k} - \left(\frac{1+\varepsilon\hat{U}}{2} \right) \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} \right) \\ - \frac{\mu}{k} \left(\frac{-U_{m+2}^n + 16U_{m+1}^n - 30U_m^n + 16U_{m-1}^n - U_{m-2}^n}{12h^2} \right)$$
(4.3.3)

şekline gelir. Bu sonlu fark yaklaşımının kararlılık analizi von Neumann yöntemiyle incelemek için (4.3.3) yaklaşımında U_m^n yerine

$$U_m^n = e^{i\beta mh}\xi^n \ , \qquad i = \sqrt{-1}$$

yazılır ve düzenlenirse

$$\begin{split} &\left(\frac{1+\varepsilon\hat{U}}{24h}+\frac{\mu}{12kh^2}\right)e^{i\beta(m-2)h}\xi^{(n+1)}+\left(-\frac{1+\varepsilon\hat{U}}{3h}-\frac{4\mu}{3kh^2}\right)e^{i\beta(m-1)h}\xi^{(n+1)} \\ &+\left(\frac{1}{k}+\frac{5\mu}{2kh^2}\right)e^{i\beta mh}\xi^{(n+1)}+\left(\frac{1+\varepsilon\hat{U}}{3h}-\frac{4\mu}{3kh^2}\right)e^{i\beta(m+1)h}\xi^{(n+1)} \\ &+\left(-\frac{1+\varepsilon\hat{U}}{24h}+\frac{\mu}{12kh^2}\right)e^{i\beta(m+2)h}\xi^{(n+1)} \\ &=\frac{e^{i\beta mh}\xi^n}{k}-\left(\frac{1+\varepsilon\hat{U}}{2}\right)\left(\frac{-e^{i\beta(m+2)h}\xi^n+8e^{i\beta(m+1)h}\xi^n-8e^{i\beta(m-1)h}\xi^n+e^{i\beta(m-2)h}\xi^n}{12h}\right) \\ &-\frac{\mu}{k}\left(\frac{-e^{i\beta(m+2)h}\xi^n+16e^{i\beta(m+1)h}\xi^n-30e^{i\beta mh}\xi^n+16Ue^{i\beta(m-1)h}\xi^n-e^{i\beta(m-2)h}\xi^n}{12h^2}\right) \end{split}$$

$$\begin{split} e^{i\beta mh}\xi^{(n+1)} \bigg\{ \left(\frac{1+\varepsilon\hat{U}}{24h} + \frac{\mu}{12kh^2} \right) e^{-2i\beta h} + \left(-\frac{1+\varepsilon\hat{U}}{3h} - \frac{4\mu}{3kh^2} \right) e^{-i\beta h} \\ &+ \left(\frac{1}{k} + \frac{5\mu}{2kh^2} \right) + \left(\frac{1+\varepsilon\hat{U}}{3h} - \frac{4\mu}{3kh^2} \right) e^{i\beta h} + \left(-\frac{1+\varepsilon\hat{U}}{24h} + \frac{\mu}{12kh^2} \right) e^{2i\beta h} \bigg\} \\ &= e^{i\beta mh}\xi^n \bigg\{ \frac{1}{k} - \left(\frac{1+\varepsilon\hat{U}}{24h} \right) \left(-e^{2i\beta h} + 8e^{i\beta h} - 8e^{-i\beta h} + e^{-2i\beta h} \right) \\ &- \frac{\mu}{12kh^2} (-e^{2i\beta h} + 16e^{i\beta h} - 30 + 16e^{-i\beta h} - e^{-2i\beta h}) \bigg\} \end{split}$$

$$\implies$$

 \implies

$$e^{i\beta mh}\xi^{(n+1)} \left\{ \frac{1}{k} + \left(\frac{1+\varepsilon\hat{U}}{24h}\right) \left(e^{-2i\beta h} - 8e^{-i\beta h} + 8e^{i\beta h} - e^{2i\beta h}\right) \\ - \left(\frac{\mu}{12kh^2}\right) \left(-e^{-2i\beta h} + 16e^{-i\beta h} - 30 + 16e^{i\beta h} - e^{2i\beta h}\right) \right\} \\ = e^{i\beta mh}\xi^n \left\{ \frac{1}{k} - \left(\frac{1+\varepsilon\hat{U}}{24h}\right) \left(e^{-2i\beta h} - 8e^{-i\beta h} + 8e^{i\beta h} - e^{2i\beta h}\right) \\ - \left(\frac{\mu}{12kh^2}\right) \left(-e^{-2i\beta h} + 16e^{-i\beta h} - 30 + 16e^{i\beta h} - e^{2i\beta h}\right) \right\}$$

elde edilir ve $e^{i\beta h}=\cos\beta+hi\sin\beta h$ Euler formülünün kullanılmasıyla

$$\xi = \frac{1 - i\left(k\frac{1 + \varepsilon\hat{U}}{12h}\right)(\sin 2\beta h) + \frac{\mu}{6h^2}(-\cos 2\beta h + 32\cos\beta h - 30)}{1 + i\left(k\frac{1 + \varepsilon\hat{U}}{12h}\right)(\sin 2\beta h) + \frac{\mu}{6h^2}(-\cos 2\beta h + 32\cos\beta h - 30)}$$

yazılabilir. $A = 1 + \frac{\mu}{6h^2} (-\cos 2\beta h + 32\cos \beta h - 30)$ ve $B = \left(k\frac{1+\varepsilon \hat{U}}{12h}\right) (\sin 2\beta h)$ olmak üzere

$$\xi = \frac{A - iB}{A + iB}$$

şeklinde yazılabilir. Buradan

$$|\xi| = \frac{|A - iB|}{|A + iB|} = \frac{\sqrt{A^2 + B^2}}{\sqrt{A^2 + B^2}} = 1$$

elde edilir. Sonuç olarak $|\xi| \leq 1$ olduğu için yöntem kararlıdır denilir.

4.3.2 Nümerik Sonuçlar

Bu bölümde (3.1.1) ile verilen RLW denkleminde UU_x nonlineer terim yerine (4.3.1) sonlu fark yaklaşımının yazılmasıyla elde edilen (4.3.2) fark denkleminin üç model probleme uygulanmasıyla elde edilen nümerik sonuçlar verildi.

Problem 1: Tek Soliter Dalga Hareketi

Bu problemde 3c = 0.3 yüksekliğine sahip soliter dalganın, $-40 \le x \le 60$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi.

Tablo 4.35 de 3c = 0.3 yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 olmak üzere farklı k değerleri için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodaki korunum sabitlerinin değerleri, (3.2.3) den elde edilen $I_1 = 3.9799497$, $I_2 = 0.81046249$, $I_3 = 2.579007$ analitik değerleriyle uyumludur. Korunum sabitlerindeki mutlak değişim h = 0.125 iken k = 0.1 için $\Delta I_1 = 3.955 \times 10^{-5}$, $\Delta I_2 = 3.840 \times 10^{-9}$ ve $\Delta I_3 = 2.836 \times 10^{-8}$; k = 0.05 için $\Delta I_1 = 3.957 \times 10^{-5}$, $\Delta I_2 = 5.496 \times 10^{-10}$ ve $\Delta I_3 = 1.637 \times 10^{-9}$; k = 0.01 için $\Delta I_1 = 3.957 \times 10^{-5}$, $\Delta I_2 = 3.908 \times 10^{-10}$ ve $\Delta I_3 = 3.156 \times 10^{-10}$ olarak bulunur. Buradan h = 0.125 iken k'nın küçülmesiyle I_1 de önemli ölçüde bir mutlak değişim olmazken I_2 ve I_3 deki mutlak değişimin azalmaktada olduğu görülür. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.20751 \times 10^{-3}$, $L_{\infty} = 0.06214 \times 10^{-3}$; k = 0.05 iken $L_2 = 0.00879 \times 10^{-3}$ olarak oldukça küçük değerler almıştır.

Tablo 4.36 da 3c = 0.3 ve k = 0.1 olmak üzere h = 0.1, 0.05 ve 0.01 için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte

Tablo 4.35: SFY-3 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

k	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U			
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000			
	4	3.9799534	0.8104576008	2.579007436	0.04344	0.01502	4.375	0.29999			
	8	3.9799723	0.8104576003	2.579007432	0.08628	0.02850	8.750	0.29998			
0.1	12	3.9799864	0.8104575995	2.579007426	0.12803	0.04069	13.250	0.29997			
	16	3.9799900	0.8104575984	2.579007418	0.16844	0.05183	17.625	0.29998			
	20	3.9799658	0.8104575969	2.579007408	0.20751	0.06214	22.000	0.29998			
		$\Delta I_1 = 3.95$	55×10^{-5} , $\Delta I_2 =$	$= 3.840 \times 10^{-9}$	$\Delta I_3 = 2$	836×10^{-8}					
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000			
	4	3.9799534	0.8104576010	2.579007437	0.01182	0.00377	4.375	0.30000			
	8	3.9799723	0.8104576012	2.579007437	0.02329	0.00716	8.750	0.29998			
0.05	12	3.9799864	0.8104576013	2.579007437	0.03407	0.01021	13.250	0.29998			
	16	3.9799900	0.8104576013	2.579007437	0.04418	0.01301	17.625	0.29999			
	20	3.9799658	0.8104576013	2.579007435	0.05398	0.01559	22.000	0.30000			
		$\Delta I_1 = 3.95$	57×10^{-5} , ΔI_2 =	$= 5.496 \times 10^{-1}$	10 , $\Delta I_3 = 1$	1.637×10^{-9}					
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000			
	4	3.9799534	0.8104576010	2.579007437	0.00472	0.00017	4.375	0.30000			
	8	3.9799723	0.8104576011	2.579007438	0.00890	0.00032	8.750	0.29998			
0.01	12	3.9799864	0.8104576012	2.579007438	0.01176	0.00061	13.250	0.29998			
	16	3.9799900	0.8104576012	2.579007438	0.01337	0.00233	17.625	0.30000			
	20	3.9799658	0.8104576012	2.579007437	0.01482	0.00879	22.000	0.30000			
	$\Delta I_1 = 3.957 \times 10^{-5}$, $\Delta I_2 = 3.908 \times 10^{-10}$, $\Delta I_3 = 3.156 \times 10^{-10}$										
Anali	itik:	$I_1 = 3.97994$	97, $I_2 = 0.8104$	$\overline{6249, I_3} = 2.57$	9007						

dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik çözümle elde edilen değerleri (3.2.3) den elde edilen $I_1 = 3.9799497$, $I_2 = 0.81046249$, $I_3 = 2.579007$ analitik değerleriyle uyumludur. Korunum sabitlerinin mutlak değişimi. k = 0.1 iken h = 0.1 için $\Delta I_1 = 4.809 \times 10^{-5}$, $\Delta I_2 = 4.686 \times 10^{-9}$ ve $\Delta I_3 = 2.808 \times 10^{-8}$; h = 0.05 için $\Delta I_1 = 6.874 \times 10^{-5}$, $\Delta I_2 = 5.644 \times 10^{-9}$ ve $\Delta I_3 = 2.749 \times 10^{-8}$; h = 0.01 için $\Delta I_1 = 8.921 \times 10^{-5}$, $\Delta I_2 = 5.073 \times 10^{-9}$ ve $\Delta I_3 = 2.748 \times 10^{-8}$ olarak elde edilir. Burada zaman adım uzunluğu k = 0.1 iken konum adım uzunluğu h'nin değişmesiyle korunum sabitlerinde önemli ölçüde bir değişikliğin olmadığı görülür. t = 20 zamanında hata normlarının k = 0.1 için h = 0.1 iken $L_2 = 0.20750 \times 10^{-3}$, $L_{\infty} = 0.06209 \times 10^{-3}$; h = 0.05 iken $L_2 = 0.20783 \times 10^{-3}$, $L_{\infty} = 0.06207 \times 10^{-3}$ ve h = 0.01 iken $L_2 = 0.20837 \times 10^{-3}$, $L_{\infty} = 0.06207 \times 10^{-3}$ şeklinde birbirine yakın değerler aldığı görülür.

Tablo 4.35 ve Tablo 4.36 ya göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.0 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 22/20 = 1.1, teorik hızıyla $v = 1 + \varepsilon c = 1.1$ aynı hesaplanmıştır. Ayrıca h = 0.125 iken k değerlerinin küçülmesiyle veya k = 0.1 iken h değerlerinin küçülmesiyle t = 20 zamanında dalganın yüksekliği başlangıç değerine çok yakın değerler almıştır.

İkinci olarak 3c = 0.09 yüksekliğine sahip soliter dalganın, $-80 \le x \le 120$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi. Burada dalganın genliği küçülünce dalga genişleyeceği için sınır şartlarını sağlamayı devam ettireceği daha geniş bir aralık seçildi.

Tablo 4.37 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca h = 0.125 seçildiğinde k = 0.1, 0.05 ve 0.01 değerleri için belirli zamanlarda korunum

Tablo 4.36: SFY-3 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U		
	0	3.9799263	0.8104593621	2.579007437	0.00000	0.00000	0.00	0.30000		
	4	3.9799541	0.8104593621	2.579007436	0.04344	0.01500	4.40	0.30000		
	8	3.9799743	0.8104593615	2.579007432	0.08629	0.02848	8.80	0.30000		
0.1	12	3.9799903	0.8104593604	2.579007426	0.12804	0.04066	13.20	0.29999		
	16	3.9799961	0.8104593591	2.579007418	0.16845	0.05178	17.60	0.29999		
	20	3.9799744	0.8104593574	2.579007409	0.20750	0.06209	22.00	0.29998		
		$\Delta I_1 = 4.80$	0.9×10^{-5} , ΔI_2	$= 4.686 \times 10^{-9}$	$A_1, \Delta I_3 = 2$	$.808 \times 10^{-8}$				
	0	3.9799265	0.8104617110	2.579007437	0.00000	0.00000	0.00	0.30000		
	4	3.9799554	0.8104617111	2.579007436	0.04349	0.01499	4.40	0.30000		
	8	3.9799785	0.8104617103	2.579007432	0.08643	0.02847	8.80	0.30000		
0.05	12	3.9799990	0.8104617090	2.579007426	0.12827	0.04064	13.20	0.29999		
	16	3.9800105	0.8104617073	2.579007419	0.16873	0.05177	17.60	0.29999		
	20	3.9799952	0.8104617054	2.579007409	0.20783	0.06207	22.00	0.29998		
		$\Delta I_1 = 6.87$	4×10^{-5} , ΔI_2	$= 5.644 \times 10^{-9}$	$\Delta I_3 = 2$	$.749 \times 10^{-8}$				
	0	3.9799266	0.8104624628	2.579007437	0.00000	0.00000	0.00	0.30000		
	4	3.9799566	0.8104624638	2.579007436	0.04356	0.01499	4.40	0.30000		
	8	3.9799822	0.8104624629	2.579007432	0.08662	0.02847	8.80	0.30000		
0.01	12	3.9800069	0.8104624615	2.579007426	0.12859	0.04064	13.20	0.29999		
	16	3.9800240	0.8104624597	2.579007419	0.16917	0.05177	17.60	0.29999		
	20	3.9800159	0.8104624577	2.579007409	0.20837	0.06207	22.00	0.29998		
	$\Delta I_1 = 8.921 \times 10^{-5}$, $\Delta I_2 = 5.073 \times 10^{-9}$, $\Delta I_3 = 2.748 \times 10^{-8}$									
Anal	itik:	$I_1 = 3.97994$	97, $\overline{I_2} = 0.8104$	$6249, I_3 = 2.57$	9007					

sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodan korunum sabitlerinin değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablodan korunum sabitlerinin değerlerinin dalganın hareketi boyunca hemen hemen sabit kaldığı ve (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle uyumlu olduğu görülmektedir. Tabloya göre korunum sabitlerindeki mutlak değişim h = 0.125 iken k = 0.1 için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 1.015 \times 10^{-11}$ ve $\Delta I_3 = 5.335 \times 10^{-11}$; k = 0.05 için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 7.597 \times 10^{-14}$ ve $\Delta I_3 = 3.502 \times 10^{-12}$; k = 0.01 için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 7.303 \times 10^{-12}$ ve $\Delta I_3 = 2.222 \times 10^{-11}$, dir. Korunum sabitlerinin mutlak değişimleri oldukça küçük değerler almıştır. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.01370 \times 10^{-3}$, $L_{\infty} = 0.0362 \times 10^{-3}$; k = 0.05 iken $L_2 = 0.00348 \times 10^{-3}$, $L_{\infty} = 0.00091 \times 10^{-3}$ ve k = 0.01 iken $L_2 = 0.00064 \times 10^{-3}$, $L_{\infty} = 0.00004 \times 10^{-3}$ şeklinde çok küçük değerler almıştır.

Tablo 4.38 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca k = 0.1 ve h = 0.1, 0.05 ve 0.01 değerleri için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerleri ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik değerleri (3.2.3) den elde edilen $I_1 = 2.1094074997$, $I_2 = 0.1273017186$, $I_3 = 0.3888059904$ analitik değerleriyle oldukça uyumludur. Korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 5.590 \times 10^{-6}$, $\Delta I_2 = 1.072 \times 10^{-11}$ ve $\Delta I_3 = 5.209 \times 10^{-11}$; h = 0.05 için $\Delta I_1 = 6.848 \times 10^{-6}$, $\Delta I_2 = 1.276 \times 10^{-11}$ ve $\Delta I_3 = 5.516 \times 10^{-11}$; h = 0.01 için $\Delta I_1 = 8.098 \times 10^{-6}$, $\Delta I_2 = 4.345 \times 10^{-11}$ ve $\Delta I_3 = 1.593 \times 10^{-10}$ olarak bulunur. Buradan k = 0.1 iken h'nın farklı değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin mutlak değişimleri oldukça küçük değerleri almıştır. t = 20 zamanında hata normları k = 0.1 için h = 0.1 iken $L_2 = 0.01370 \times 10^{-3}$, $L_{\infty} = 0.00362 \times 10^{-3}$;

Tablo 4.37: SFY-3 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

-k	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00275	0.00077	4.125	0.09000
	8	2.1094078	0.1273016387	0.388805990	0.00550	0.00151	8.250	0.09000
0.1	12	2.1094088	0.1273016387	0.388805990	0.00825	0.00224	12.375	0.09000
	16	2.1094095	0.1273016387	0.388805990	0.01098	0.00294	16.500	0.09000
	20	2.1094101	0.1273016387	0.388805990	0.01370	0.00362	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 1.015 \times 10^{-1}$	$\Delta I_3 = 5$	5.335×10^{-1}	1	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00071	0.00019	4.125	0.09000
	8	2.1094078	0.1273016387	0.388805990	0.00141	0.00038	8.250	0.09000
0.05	12	2.1094088	0.1273016387	0.388805990	0.00212	0.00056	12.375	0.09000
	16	2.1094095	0.1273016387	0.388805990	0.00280	0.00074	16.500	0.09000
	20	2.1094101	0.1273016387	0.388805990	0.00348	0.00091	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 7.597 \times 10^{-1}$	4 , $\Delta I_{3} = 3$	3.502×10^{-1}	2	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00016	0.00001	4.125	0.09000
	8	2.1094078	0.1273016387	0.388805990	0.00034	0.00002	8.250	0.09000
0.01	12	2.1094088	0.1273016387	0.388805990	0.00048	0.00002	12.375	0.09000
	16	2.1094095	0.1273016388	0.388805990	0.00058	0.00003	16.500	0.09000
	20	2.1094101	0.1273016388	0.388805990	0.00064	0.00004	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 7.303 \times 10^{-1}$	12 , $\Delta I_3 = 2$	2.222×10^{-1}	1	
Anal	itik:1	1 = 2,10940	$74997, I_2 = 0.12$	273017186, I ₃ =	= 0.3888059	9904		

Tablo 4.38: SFY-3 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U		
	0	2.1094050	0.1273016675	0.388805990	0.00000	0.00000	0.00	0.09000		
	4	2.1094066	0.1273016675	0.388805990	0.00275	0.00077	4.10	0.09000		
0.1	8	2.1094079	0.1273016675	0.388805990	0.00550	0.00151	8.20	0.09000		
	12	2.1094090	0.1273016675	0.388805990	0.00825	0.00223	12.40	0.09000		
	16	2.1094099	0.1273016675	0.388805990	0.01098	0.00294	16.50	0.09000		
	20	2.1094106	0.1273016675	0.388805990	0.01370	0.00362	20.60	0.09000		
		$\Delta I_1 = 5.59$	00×10^{-6} , ΔI_2	$= 1.072 \times 10^{-1}$	$\Delta I_3 = 5$	5.209×10^{-1}	1			
	0	2.1094050	0.1273017058	0.388805990	0.00000	0.00000	0.00	0.09000		
	4	2.1094067	0.1273017058	0.388805990	0.00275	0.00077	4.10	0.09000		
0.05	8	2.1094082	0.1273017058	0.388805990	0.00551	0.00151	8.25	0.09000		
	12	2.1094095	0.1273017058	0.388805990	0.00826	0.00223	12.35	0.09000		
	16	2.1094108	0.1273017058	0.388805990	0.01099	0.00294	16.50	0.09000		
	20	2.1094119	0.1273017058	0.388805990	0.01372	0.00362	20.60	0.09000		
		$\Delta I_1 = 6.84$	18×10^{-6} , ΔI_2	$= 1.276 \times 10^{-1}$	$^{11}, \Delta I_3 = 5$	5.516×10^{-1}	1			
	0	2.1094050	0.1273017181	0.388805990	0.00000	0.00000	0.000	0.09000		
	4	2.1094068	0.1273017181	0.388805990	0.00276	0.00077	4.12	0.09000		
0.01	8	2.1094084	0.1273017181	0.388805990	0.00552	0.00151	8.24	0.09000		
	12	2.1094100	0.1273017181	0.388805990	0.00827	0.00223	12.36	0.09000		
	16	2.1094116	0.1273017181	0.388805990	0.01101	0.00294	16.48	0.09000		
	20	2.1094131	0.1273017181	0.388805990	0.01374	0.00362	20.60	0.09000		
	$\Delta I_1 = 8.098 \times 10^{-6}$, $\Delta I_2 = 4.345 \times 10^{-11}$, $\Delta I_3 = 1.593 \times 10^{-10}$									
Anal	itik: <i>I</i>	1 = 2,10940	$74997, I_2 = 0.12$	273017186, <i>I</i> ₃ =	= 0.3888059	9904				

h = 0.05 iken $L_2 = 0.01372 \times 10^{-3}$, $L_{\infty} = 0.00362 \times 10^{-3}$ ve h = 0.01 iken $L_2 = 0.01374 \times 10^{-3}$, $L_{\infty} = 0.00362 \times 10^{-3}$ değerlerini almıştır. Oldukça küçük değerler alan hata normları zaman adım uzunluğu k nın küçülürken birbirine yakın değerler almıştır.

Tablo 4.37 ye göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 20.625 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 20.625/20 = 1.13125 dir. Tablo 4.38 e göre ise t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.60 konumunda olduğu için

`				, ,		_ /		
			<i>c</i> =	= 0.1	c = 0.03			
	h	k	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	$L_{2} \times 10^{3}$	$L_{\infty} \times 10^3$		
		0.1	0.20751	0.06214	0.01370	0.00362		
	0.125	0.05	0.05398	0.01559	0.00348	0.00091		
		0.01	0.01482	0.00879	0.00064	0.00004		
	0.1		0.20750	0.06209	0.01370	0.00362		
	0.05	0.1	0.20783	0.06207	0.01372	0.00362		
	0.01		0.20837	0.06207	0.01374	0.00362		

Tablo 4.39: SFY-3 ile Problem 1'in h ve k'nın farklı değerleri için hesaplanan hata normları (3c = 0.3 için $-40 \le x \le 60$, 3c = 0.09 için $-80 \le x \le 120$).

nümerik çözümden elde edilen hızı v =konum/zaman= 22.60/20 = 1.13 'dir. Dalganın hızının nümerik değerleri $v = 1 + \varepsilon c = 1.03$ analitik değeriyle uyumludur. Ayrıca hve k'nın farklı değerleri için t = 20 zamanında dalganın yüksekliği başlangıç değeriyle hemem hemen aynı değerleri aldığı görülür.

Tablo 4.39 da c = 0.1 ve c = 0.03 genlikli dalgalar için farklı konum ve zaman adımları için hesaplanan hata normları karşılaştırıldı. Tabloda h = 0.125 iken kküçülürken hata normlarında düzgün bir azalış gözlenmektedir, diğer taraftan k = 0.1iken h küçülürken hata normları oldukça küçük değerler almasına rağmen düzenli bir azalış göstermemiştir.

Tablo 4.40 da 3c = 0.3, $-40 \le x \le 60$, h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi. Tablodan görüldüğü gibi SFY-3 ile bir çok çalışmadan daha iyi sonuçlar elde edilmiştir.

Problem 2: İki Soliter Dalga Girişimi

Bu problemde tepe noktası $x_1 = -177$ konumunda, $3c_1 = 0.6$ yüksekliğinde ve tepe noktası $x_2 = -147$ konumunda, $3c_2 = 0.3$ yüksekliğinde iki soliter dalganın $-200 \le x \le 400$ aralığındaki girişimi t = 400 zamanına kadar gözlendi.

t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000
4	3.9799534	0.8104576008	2.579007436	0.04344	0.01502
8	3.9799723	0.8104576003	2.579007432	0.08628	0.02850
12	3.9799864	0.8104575995	2.579007426	0.12803	0.04069
16	3.9799900	0.8104575984	2.579007418	0.16844	0.05183
20	3.9799658	0.8104575969	2.579007408	0.20751	0.06214
20[19](h = 0.1)	3.97989	0.810462	2.57901	0.217	0.084
20[20](h = 0.1)	3.97989	0.810467	2.57902	0.220	0.086
20[21]	3.98203	0.808650	2.57302	4.688	1.755
20[25]	3.961597	0.804185	2.558292	0.0184	1.5664
20[26]	3.97986	0.811164	2.58133	0.511	0.198
20[27]	3.98206	0.810399	2.57880	0.227	0.081
20[28]	3.980016	0.8104624	2.579006	0.22050	0.08448
20[31]	3.979883	0.81027618	2.57839258	0.30	0.116
20[36](h = 0.1)	3.97997	0.810459	2.57901	0.55	0.21
20[37]	3.97988	0.810465	2.57901	0.219	0.086
20[38]	3.98206	0.811164	2.58133	0.511	0.198
20[38]	3.97986	0.810399	2.57880	0.227	0.081
20[44]	3.97988	0.81046	2.57902	0.52171	0.19828
20[44]	3.98005	0.81047	2.57902	0.03689	0.01824
20[46]	3.979950	0.810521	2.579202	0.702	0.268
20[47]	3.97972	0.81026	2.57873	0.266856	0.091465
20[48]	3.9799000	0.8104646	2.5790160	0.04921	0.02020
20[48]	3.9798834	0.8104651	2.5790160	0.01171	0.01268

Tablo 4.40: SFY-3 ile Problem 1'in h = 0.125 ve k = 0.1 için hesaplanan korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$).

Tablo 4.41 de konum adım uzunluğu h = 0.12 iken zaman adım uzunluğu k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tablodan korunum sabitlerinin mutlak değişimi h = 0.12 iken k = 0.1 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 4.897 \times 10^{-7}$ ve $\Delta I_3 = 3.471 \times 10^{-6}$; k = 0.05 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 2.758 \times 10^{-7}$ ve $\Delta I_3 = 4.750 \times 10^{-7}$ ve k = 0.01 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 4.066 \times 10^{-7}$ ve $\Delta I_3 = 1.213 \times 10^{-6}$ değerlerini almıştır. h sabit iken k değerleri küçülürken korunum sabitlerinin mutlak değişimleri düzenli azalmamaktadır ama birbirine yakın oldukça küçük değerler almışlardır.

Tablo 4.42 da k = 0.1 iken h = 0.12, 0.06 ve 0.03 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre k = 0.1 sabit h = 0.12 için $\Delta I_1 =$ 3.510×10^{-3} , $\Delta I_2 = 4.897 \times 10^{-7}$ ve $\Delta I_3 = 3.471 \times 10^{-6}$ olarak bulunan korunum sabitlerindeki mutlak değişim, h = 0.06 için $\Delta I_1 = 6.906 \times 10^{-3}$, $\Delta I_2 = 3.894 \times 10^{-7}$ ve $\Delta I_3 = 2.378 \times 10^{-6}$, ayrıca h = 0.03 için $\Delta I_1 = 1.370 \times 10^{-2}$, $\Delta I_2 = 1.159 \times 10^{-7}$ ve $\Delta I_3 = 2.276 \times 10^{-7}$ değerlerini almıştır. Zaman adım uzunluğu k sabit, konum zaman uzunluğu h ın küçülmesiyle I_1 in mutlak değişim artarken I_2 ve I_3 ün mutlak değişimleri azalmaktadır.

Tablo 4.43 da h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi. Tabloya göre SFY-3'de diğer çalışmalara göre daha iyi sonuçlar elde edilmiştir.

Problem 3: Ardışık Dalga Oluşumu

Bu problemde d = 2 yüksek eğim ve d = 5 düşük eğim için elde edilen ardışık dalgaların oluşumu $-36 \le x \le 300$ aralığında, t = 250 zamanına kadar gözlendi.

Tablo 4.44 de d = 2, konum adım uzunluğu h = 0.24, zaman adım uzunluğu k = 0.1, 0.05 ve 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda

Tablo 4.41: SFY-3 ile Problem 2'nin h = 0.12 ve k nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3$, $x_1 = -177$, $x_2 = -147$, $-200 \le x \le 400$).

			k = 0.1			k = 0.05			k = 0.01		
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3	
	0	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	
	40	9.86151166	3.2447346	10.778300	9.86151165	3.2447393	10.778323	9.86151165	3.2447408	10.778330	
	80	9.86172508	3.2447178	10.778213	9.86172508	3.2447363	10.778301	9.86172508	3.2447421	10.778329	
	120	9.86173067	3.2446750	10.777980	9.86173066	3.2447296	10.778243	9.86173067	3.2447470	10.778327	
h = 0.12	160	9.86173084	3.2445971	10.777539	9.86173084	3.2447201	10.778132	9.86173084	3.2447594	10.778322	
	200	9.86173095	3.2445452	10.777234	9.86173094	3.2447152	10.778056	9.86173094	3.2447696	10.778319	
	240	9.86173091	3.2445956	10.777529	9.86173091	3.2447200	10.778130	9.86173091	3.2447597	10.778322	
	280	9.86173083	3.2446736	10.777972	9.86173083	3.2447295	10.778241	9.86173084	3.2447472	10.778327	
	320	9.86173080	3.2447169	10.778208	9.86173080	3.2447362	10.778300	9.86173081	3.2447422	10.778329	
	360	9.86173083	3.2447339	10.778296	9.86173082	3.2447393	10.778322	9.86173083	3.2447409	10.778330	
	400	9.86173087	3.2447397	10.778326	9.86173086	3.2447404	10.778330	9.86173087	3.2447406	10.778331	
		ΔI_1	$= 3.510 \times 1$	0^{-3}	ΔI_1	$= 3.510 \times 1$	0^{-3}	$\Delta I_1 = 3.510 \times 10^{-3}$			
		ΔI_2	$= 4.897 \times 1$	0^{-7}	ΔI_2	$\Delta I_2 = 2.758 \times 10^{-7}$			$\Delta I_2 = 4.066 \times 10^{-7}$		
	$\Delta I_3 = 3.471 \times 10^{-6}$			ΔI_3	$= 4.750 \times 1$	0^{-7}	$\Delta I_{3} = 1.213 \times 10^{-6}$				

Tablo 4.42: SFY-3 ile Problem 2'nin k = 0.1 ve h nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3$, $x_1 = -177$, $x_1 = -147$, $-200 \le x \le 400$).

			h = 0.12			h = 0.06			h = 0.03		
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3	
	0	9.85822123	3.2447402	10.778329	9.85822732	3.2447773	10.778329	9.85823035	3.2447868	10.778329	
	40	9.86151166	3.2447346	10.778300	9.86322996	3.2447716	10.778301	9.86456656	3.2447812	10.778302	
	80	9.86172508	3.2447178	10.778213	9.86469557	3.2447538	10.778214	9.86813464	3.2447633	10.778216	
	120	9.86173067	3.2446750	10.777980	9.86505214	3.2447069	10.777981	9.87006652	3.2447154	10.777983	
k = 0.1	160	9.86173084	3.2445971	10.777539	9.86512199	3.2446191	10.777540	9.87106074	3.2446252	10.777542	
	200	9.86173095	3.2445452	10.777234	9.86513232	3.2445591	10.777235	9.87154698	3.2445631	10.777238	
	240	9.86173091	3.2445956	10.777529	9.86513316	3.2446173	10.777531	9.87177240	3.2446233	10.777533	
	280	9.86173083	3.2446736	10.777972	9.86513304	3.2447053	10.777974	9.87187100	3.2447139	10.777976	
	320	9.86173080	3.2447169	10.778208	9.86513298	3.2447528	10.778209	9.87191138	3.2447624	10.778211	
	360	9.86173083	3.2447339	10.778296	9.86513301	3.2447709	10.778298	9.87192667	3.2447807	10.778300	
	400	9.86173087	3.2447397	10.778326	9.86513305	3.2447769	10.778327	9.87193188	3.2447869	10.778329	
		ΔI_1	$= 3.510 \times 1$	0^{-3}	ΔI_1	$= 6.906 \times 1$	0^{-3}	$\Delta I_1 = 1.370 \times 10^{-2}$			
		ΔI_2	$= 4.897 \times 1$	0^{-7}	ΔI_2	$\Delta I_2 = 3.894 \times 10^{-7}$			$\Delta I_2 = 1.159 \times 10^{-7}$		
	$\Delta I_3 = 3.471 \times 10^{-6}$			ΔI_3	$= 2.378 \times 1$	0^{-6}	$\Delta I_3 = 2.276 \times 10^{-7}$				

Tablo 4.	43: SFY-3	ile Problem	2'nin $h = 0.12$	ve $k = 0.1$ içi	n hesaplanan	korunum	sabitleri ($(3c_1 = 0.6,$	$3c_2 = 0.3,$
$x_1 = -1$	77, $x_2 = -$	$-147, -200 \leq$	$\leq x \leq 400$).						

t	I_1	I_2	I_3		$I_1[27]$	$I_{2}[27]$	$I_{3}[27]$	$I_{1}[37]$	$I_{2}[37]$	$I_{3}[37]$
0	9.85822123	3.2447402	10.778329		9.8586	3.2449	10.7788	9.85825	3.24481	10.77833
40	9.86151166	3.2447346	10.778300		9.8642	3.2456	10.7809	9.85833	3.24482	10.77836
80	9.86172508	3.2447178	10.778213		9.8683	3.2475	10.7872	9.85832	3.24482	10.77834
120	9.86173067	3.2446750	10.777980		9.8719	3.2491	10.7928	9.85833	3.24486	10.77843
160	9.86173084	3.2445971	10.777539		9.8751	3.2506	10.7979	9.85833	3.24491	10.77852
200	9.86173095	3.2445452	10.777234		9.8886	3.2523	10.8036	9.85830	3.24492	10.77851
240	9.86173091	3.2445956	10.777529		9.8825	3.2544	10.8109	9.85830	3.24489	10.77846
280	9.86173083	3.2446736	10.777972		9.8854	3.2557	10.8156	9.85829	3.24484	10.77834
320	9.86173080	3.2447169	10.778208		9.8883	3.2569	10.8197	9.85832	3.24482	10.77833
360	9.86173083	3.2447339	10.778296		9.8907	3.2576	10.8220	9.85829	3.24479	10.77823
400	9.86173087	3.2447397	10.778326		9.8930	3.2585	10.8251	9.85830	3.24478	10.77819
			-	t	$I_1[38]$	$I_{2}[38]$	$I_{3}[38]$	$I_1[47](h = 0.25)$	$I_2[47](h = 0.25)$	$I_3[47](h=0.25)$
				0	9.8586	3.2449	10.7788	9.8583	3.2328	10.7623
				40	9.8642	3.2456	10.7809	9.8575	3.2362	10.7738
				80	9.8683	2 9475	10.7879	0.0574	0.0000	
					0.0000	0.2470	10.7072	9.8574	3.2362	10.7727
				120	9.8719	3.2473 3.2492	10.7872 10.7928	9.8574 9.8573	3.2362 3.2367	10.7727 10.7707
				$\begin{array}{c} 120 \\ 160 \end{array}$	9.8719 9.8751	3.2473 3.2492 3.2506	$ \begin{array}{r} 10.7872 \\ 10.7928 \\ 10.7979 \end{array} $	9.8574 9.8573 9.8573	3.2362 3.2367 3.2377	10.7727 10.7707 10.7675
				120 160 200	9.8719 9.8751 9.8886	$\begin{array}{c} 3.2473 \\ 3.2492 \\ 3.2506 \\ 3.2523 \end{array}$	$ \begin{array}{r} 10.7928 \\ 10.7979 \\ 10.8036 \end{array} $	9.8574 9.8573 9.8573 9.8574	3.2362 3.2367 3.2377 3.2384	10.7727 10.7707 10.7675 10.7654
				120 160 200 240	9.8719 9.8751 9.8886 9.8825	3.2473 3.2492 3.2506 3.2523 3.2544	10.7972 10.7928 10.7979 10.8036 10.8109	9.8574 9.8573 9.8573 9.8574 9.8572	3.2362 3.2367 3.2377 3.2384 3.2376	10.7727 10.7707 10.7675 10.7654 10.7671
				120 160 200 240 280	9.8719 9.8751 9.8886 9.8825 9.8854	3.2473 3.2492 3.2506 3.2523 3.2544 3.2557	$\begin{array}{c} 10.7972 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \end{array}$	9.8574 9.8573 9.8573 9.8574 9.8572 9.8570	3.2362 3.2367 3.2377 3.2384 3.2376 3.2364	10.7727 10.7707 10.7675 10.7654 10.7671 10.7695
				120 160 200 240 280 320	9.8719 9.8751 9.8886 9.8825 9.8854 9.8883	3.2473 3.2492 3.2506 3.2523 3.2544 3.2557 3.2569	$\begin{array}{c} 10.7972 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \\ 10.8197 \end{array}$	9.8574 9.8573 9.8573 9.8574 9.8572 9.8570 9.8567	3.2362 3.2367 3.2377 3.2384 3.2376 3.2364 3.2357	10.7727 10.7707 10.7675 10.7654 10.7671 10.7695 10.7706
				120 160 200 240 280 320 360	9.8719 9.8751 9.8886 9.8825 9.8854 9.8883 9.8907	3.2473 3.2492 3.2506 3.2523 3.2544 3.2557 3.2569 3.2576	$\begin{array}{c} 10.7972 \\ 10.7928 \\ 10.7979 \\ 10.8036 \\ 10.8109 \\ 10.8156 \\ 10.8197 \\ 10.8220 \end{array}$	9.8574 9.8573 9.8573 9.8574 9.8572 9.8570 9.8567 9.8565	3.2362 3.2367 3.2377 3.2384 3.2376 3.2364 3.2357 3.2353	$ \begin{array}{r} 10.7727 \\ 10.7707 \\ 10.7675 \\ 10.7654 \\ 10.7671 \\ 10.7695 \\ 10.7706 \\ 10.7706 \\ 10.7706 \\ \end{array} $

Tablo 4.44: SFY-3 ile Problem 3'ün d = 2, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899082	2.785853	48.96	0.139697
	100	14.338000	1.449091	4.490704	102.72	0.159174
0.1	150	19.713000	1.999102	6.195452	156.96	0.170866
	200	25.088000	2.549113	7.900160	211.20	0.177597
	250	30.463001	3.099125	9.604854	265.92	0.182021
		$M_1 = 0.107$	75000027, 1	$M_2 = 0.0110$	0001946, 1	$M_3 = 0.0340962963$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899074	2.785919	48.96	0.139682
	100	14.338000	1.449071	4.490622	102.72	0.159171
0.05	150	19.713000	1.999068	6.195314	156.96	0.170882
	200	25.088000	2.549066	7.899964	211.44	0.177612
	250	30.463001	3.099063	9.604599	265.92	0.182057
		$M_1 = 0.107$	75000033,	$M_2 = 0.010$	9999466,	$M_3 = 0.0340952741$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.899071	2.785909	48.96	0.139677
	100	14.338000	1.449065	4.490596	102.72	0.159169
0.01	150	19.713000	1.999058	6.195269	156.96	0.170885
	200	25.088000	2.549050	7.899901	211.44	0.177630
	250	30.463001	3.099043	9.604516	265.92	0.182066
		$M_1 = 0.107$	75000035,	$M_2 = 0.010$	9998668	$M_3 = 0.0340949453$

aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.45 de d = 2, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi.

Tablo 4.46 da d = 5, h = 0.24 ve k = 0.1, 0.05, 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo

Tablo 4.45: SFY-3 ile Problem 3'ün d = 2, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U	
	0	3.588000	0.349077	1.080780	-35.76	0.100000	
	50	8.963000	0.899082	2.785853	48.96	0.139697	
	100	14.338000	1.449091	4.490704	102.72	0.159174	
0.24	150	19.713000	1.999102	6.195452	156.96	0.170866	
	200	25.088000	2.549113	7.900160	211.20	0.177597	
	250	30.463001	3.099125	9.604854	265.92	0.182021	
		$M_1 = 0.107$	75000027, N	$M_2 = 0.0110$	0001946, 1	$M_3 = 0.034$	0962963
	0	3.594000	0.349678	1.082640	-35.88	0.100000	
	50	8.969000	0.899687	2.787711	48.96	0.139703	
	100	14.344000	1.449701	4.492560	102.72	0.159186	
0.12	150	19.719000	1.999717	6.197305	156.96	0.170884	
	200	25.094000	2.549734	7.902010	211.32	0.177896	
	250	30.469000	3.099751	9.606701	265.80	0.182196	
		$M_1 = 0.107$	74999984, <i>N</i>	$M_2 = 0.0110$	0002935, 1	$M_3 = 0.034$	0962433
	0	3.597000	0.349978	1.083570	-35.94	0.100000	
	50	8.972000	0.899988	2.788640	49.02	0.139713	
	100	14.347000	1.450004	4.493490	102.72	0.159187	
0.06	150	19.722000	2.000021	6.198234	156.90	0.170895	
	200	25.097000	2.550039	7.902940	211.32	0.177898	
	250	30.472000	3.100058	9.607630	265.86	0.182203	
		$M_1 = 0.107$	74999990,	$M_2 = 0.011$.0003207,	$M_3 = 0.034$	40962404

Tablo 4.46: SFY-3 ile Problem 3'ün d = 5, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883913	2.739027	48.48	0.110310
	100	14.338000	1.433918	4.444263	102.24	0.136961
0.1	150	19.713000	1.983926	6.149200	156.24	0.157579
	200	25.088000	2.533937	7.853978	210.48	0.170330
	250	30.463000	3.083948	9.558698	264.96	0.177918
		$M_1 = 0.107$	74999996, N	$M_2 = 0.0110$	0001475, 1	$M_3 = 0.0341006701$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883911	2.739020	48.48	0.110280
	100	14.338000	1.433910	4.444232	102.24	0.136936
0.05	150	19.713000	1.983908	6.149125	156.24	0.157540
	200	25.088000	2.533905	7.853849	210.72	0.170380
	250	30.463000	3.083903	9.558511	264.96	0.177859
		$M_1 = 0.107$	74999996, N	$M_2 = 0.0109$	9999665, 1	$M_3 = 0.0340999239$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883910	2.739018	48.48	0.110270
	100	14.338000	1.433908	4.444222	102.24	0.136927
0.01	150	19.713000	1.983902	6.149101	156.48	0.157536
	200	25.088000	2.533895	7.853808	210.72	0.170396
	250	30.463000	3.083888	9.558451	264.96	0.177837
		$M_1 = 0.107$	74999996, N	$M_2 = 0.0109$	9999083, 1	$M_3 = 0.0340996839$

4.47 de d = 5, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 2 ve d = 5 durumlarında h ve k nın farklı değerleri için korunum sabitlerinin lineer değişim oranları (3.2.5) den elde edilen $M_1 = 0.1050$, $M_2 = 0.0106$ ve $M_3 = 0.03307$ analitik değerleriyle oldukça uyumlu değerler almıştır.

Tablo 4.48 de d = 2, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri;

Tablo 4.47: SFY-3 ile Problem 3'ün d = 5, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U	
	0	3.588000	0.333911	1.033530	-35.76	0.100000	
	50	8.963000	0.883913	2.739027	48.48	0.110310	
	100	14.338000	1.433918	4.444263	102.24	0.136961	
0.24	150	19.713000	1.983926	6.149200	156.24	0.157579	
	200	25.088000	2.533937	7.853978	210.48	0.170330	
	250	30.463000	3.083948	9.558698	264.96	0.177918	
		$M_1 = 0.107$	74999996, 1	$M_2 = 0.0110$	0001475, .	$M_3 = 0.0341$.006701
	0	3.594000	0.334511	1.035390	-35.88	0.100000	
	50	8.969000	0.884513	2.740887	48.36	0.110309	
	100	14.344000	1.434520	4.446122	102.36	0.137006	
0.12	150	19.719000	1.984533	6.151057	156.36	0.157754	
	200	25.094000	2.534548	7.855832	210.60	0.170616	
	250	30.469000	3.084565	9.560549	264.96	0.177934	
		$M_1 = 0.107$	74999993,	$M_2 = 0.011$.0002157	$M_3 = 0.034$	41006354
	0	3.597000	0.334811	1.036320	-35.94	0.100000	
	50	8.972000	0.884813	2.741817	48.42	0.110312	
	100	14.347000	1.434821	4.447052	102.30	0.137020	
0.06	150	19.722000	1.984835	6.151987	156.36	0.157754	
	200	25.097000	2.534852	7.856761	210.60	0.170617	
	250	30.472000	3.084870	9.561478	265.02	0.178006	
		$M_1 = 0.107$	74999987,	$M_2 = 0.011$.0002341	$M_3 = 0.034$	41006328

Tablo 4.48: SFY-3 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

t	I_1	I_2	I_3	x	U
0	3.588000	0.349077	1.080780	-35.76	0.100000
50	8.963000	0.899082	2.785853	48.96	0.139697
100	14.338000	1.449091	4.490704	102.72	0.159174
150	19.713000	1.999102	6.195452	156.96	0.170866
200	25.088000	2.549113	7.900160	211.20	0.177597
250	30.463001	3.099125	9.604854	265.92	0.182021
250[28]	30.48699	3.10148	9.61202	265.92	0.1819803
250[31]				265.92	0.182
250[36]	30.46299	3.09887	9.60482	265.68	0.18158
250[37]	30.4869971	3.10123	9.61118	265.92	0.18177
250[42]				265.92	0.1820388184

Tablo 4.49: SFY-3 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

	M_1	M_2	M_3
SFY-3	0.1075000027	0.0110001946	0.0340962963
[28]	0.1075	0.010999	0.034095
[36]	0.107500	0.010992	0.034096
[37]	0.1075	0.010999	0.034092

Tablo 4.49 da ise korunum sabitlerinin lineer değişim oranları, daha önce yapılan çalışmalardan elde edilen sonuçlarla karşılaştırıldı.

Tablo 4.50 de d = 5, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri, bu değerleri aldığı x konum değerleri ve Tablo 4.51 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalardan elde edilen değerleriyle karşılaştırıldı. Sonuç olarak SFY-3 ile elde edilen sonuçların literatürdeki farklı çalışmalarla elde edilen sonuçlarıyla uyum içinde olduğu görülür.

t	I_1	I_2	I_3	x	U
0	3.588000	0.333911	1.033530	-35.76	0.100000
50	8.963000	0.883913	2.739027	48.48	0.110310
100	14.338000	1.433918	4.444263	102.24	0.136961
150	19.713000	1.983926	6.149200	156.24	0.157579
200	25.088000	2.533937	7.853978	210.48	0.170330
250	30.463000	3.083948	9.558698	264.96	0.177918
250[28]	30.48704	3.08631	9.56594	264.96	0.1787177
250[31]				264.96	0.182
250[36]	30.46305	3.08376	9.55868	264.96	0.17710
250[37]	30.4869998	3.08613	9.56533	264.96	0.17767
250[42]				264.96	0.1779322071

Tablo 4.50: SFY-3 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

Tablo 4.51: SFY-3 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları $(-36 \le x \le 300)$.

	M_1	M_2	M_3
SFY-3	0.1074999996	0.0110001475	0.0341006701
[28]	0.1075	0.011	0.034099
[36]	0.107500	0.010992	0.034101
[37]	0.1075	0.010999	0.034097

4.4 Sonlu Fark Yaklaşımı-4 (SFY-4)

3.1.1 denkleminde UU_x nonlineer terim yerine

$$UU_{x} \simeq \frac{1}{2} \left[\left(\frac{U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_{m}^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1}}{5} \right) \left(\frac{-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n}}{12h} \right) + \left(\frac{U_{m+2}^{n} + U_{m+1}^{n} + U_{m-1}^{n} + U_{m-2}^{n}}{5} \right) \left(\frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right) \right]$$

$$(4.4.1)$$

sonlu fark yaklaşımı, $U_{\boldsymbol{x}}$ türevi yerine

$$U_x \simeq \frac{1}{2} \left(\frac{-U_{m+2}^n + 8U_{m+1}^n - 8U_{m-1}^n + U_{m-2}^n}{12h} + \frac{-U_{m+2}^{n+1} + 8U_{m+1}^{n+1} - 8U_{m-1}^{n+1} + U_{m-2}^{n+1}}{12h} \right)$$

 U_t türevi yerine

$$U_t \cong \frac{U_m^{n+1} - U_m^n}{k}$$

ve U_{xxt} türevi yerine

$$U_{xxt} \cong \frac{1}{k} \left(\frac{-U_{m+2}^{n+1} + 16U_{m+1}^{n+1} - 30U_m^{n+1} + 16U_{m-1}^{n+1} - U_{m-2}^{n+1}}{12h^2} - \frac{-U_{m+2}^n + 16U_{m+1}^n - 30U_m^n + 16U_{m-1}^n - U_{m-2}^n}{12h^2} \right)$$

sonlu fark yaklaşımları yazılır ve düzenlenirse

$$\begin{pmatrix} \frac{1}{24h} + \frac{\varepsilon}{120h} \left(-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n} \right) \\ + \frac{\varepsilon}{120h} \left(U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1} \right) + \frac{\mu}{12kh^{2}} \right) U_{m-2}^{n+1} \\ + \left(-\frac{1}{3h} + \frac{\varepsilon}{120h} \left(-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n} \right) \right) \\ - \frac{\varepsilon}{120h} 8 \left(U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1} \right) - \frac{4\mu}{3kh^{2}} \right) U_{m-1}^{n+1} \\ + \left(\frac{1}{k} + \frac{\varepsilon}{120h} \left(-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n} \right) + \frac{5\mu}{2kh^{2}} \right) U_{m}^{n+1} \\ + \left(\frac{1}{3h} + \frac{\varepsilon}{120h} \left(-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n} \right) \\ + \frac{\varepsilon}{120h} 8 \left(U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1} \right) - \frac{4\mu}{3kh^{2}} \right) U_{m+1}^{n+1} \\ + \left(-\frac{1}{24h} + \frac{\varepsilon}{120h} \left(-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n} \right) \\ - \frac{\varepsilon}{120h} \left(U_{m+2}^{n+1} + U_{m+1}^{n+1} + U_{m-1}^{n+1} + U_{m-2}^{n+1} \right) + \frac{\mu}{12kh^{2}} \right) U_{m+2}^{n+1} \\ = \frac{U_{m}^{n}}{k} - \frac{-U_{m+2}^{n} + 8U_{m+1}^{n} - 8U_{m-1}^{n} + U_{m-2}^{n}}{24h} \\ - \frac{\mu}{k} \left(\frac{-U_{m+2}^{n} + 16U_{m+1}^{n} - 30U_{m}^{n} + 16U_{m-1}^{n} - U_{m-2}^{n}}{12h^{2}} \right)$$

$$(4.4.2)$$

sonlu fark denklemi elde edilir.

4.4.1 Kararlılık Analizi

(4.4.1) sonlu fark yaklaşımının (3.1.1) ile verilen RLW denklemine uygulanmasıyla elde edilen sonlu fark şemasının kararlılık analizi von Neumann yöntemi kullanılarak incelendi. (3.1.1) ile verilen RLW denkleminde UU_x nonlineer terimdeki U yerine \hat{U} yerel sabiti yazılmasıyla SFY-3 ile bulunan (4.3.3) lineer sonlu fark denkleminin aynısı elde edilir. Sonuç olarak (4.4.2) sonlu fark yaklaşımı da kararlıdır.
4.4.2 Nümerik Sonuçlar

Bu bölümde (3.1.1) ile verilen RLW denkleminde UU_x nonlineer terim yerine (4.4.1) sonlu fark yaklaşımının yazılmasıyla elde edilen (4.4.2) fark denkleminin üç model probleme uygulanmasıyla elde edilen nümerik sonuçlar verildi.

Problem 1: Tek soliter dalga hareketi

Bu problemde 3c = 0.3 yüksekliğine sahip soliter dalganın, $-40 \le x \le 60$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi.

Tablo 4.52 de 3c = 0.3 yüksekliğine sahip soliter dalganın konum adım uzunluğu h = 0.125 ve zaman adım uzunluğu k = 0.1, 0.05, 0.01 değerleri için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi.Korunum sabitlerinin nümerik değerleri, (3.2.3) den elde edilen $I_1 = 3.9799497$, $I_2 = 0.81046249$, $I_3 = 2.579007$ analitik değerleriyle uyumlu olduğu tablodan görülür. I_1 , I_2 ve I_3 deki mutlak değişim h = 0.125 iken k = 0.1 için sırasıyla $\Delta I_1 = 3.955 \times 10^{-5}$, $\Delta I_2 = 6.736 \times 10^{-8}$ ve $\Delta I_3 = 1.800 \times 10^{-7}$; k = 0.05 için $\Delta I_1 = 3.957 \times 10^{-5}$, $\Delta I_2 = 4.787 \times 10^{-8}$ ve $\Delta I_3 = 1.359 \times 10^{-7}$; k = 0.01 için $\Delta I_1 = 3.957 \times 10^{-5}$, $\Delta I_2 = 4.006 \times 10^{-8}$ ve $\Delta I_3 = 1.152 \times 10^{-7}$ olarak bulunur. h = 0.125 iken k'nın küçülmesiyle I_1 deki mutlak değişim hemem hemen sabit kalmakta, I_2 ve I_3 deki mutlak değişimin küçük oranlarla azalmaktadır. t = 20 zamanında hata normları h = 0.125 için k = 0.1 iken $L_2 = 0.26245 \times 10^{-3}$, $L_{\infty} = 07603 \times 10^{-3}$; k = 0.05 iken $L_2 = 0.03212 \times 10^{-3}$ değerlerini alarak bir miktar küçülmektedir.

Tablo 4.53 de 3c = 0.3 yüksekliğindeki sahip soliter dalganın ilerleyişinin k = 0.1

Tablo 4.52: SFY-4 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

k	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799534	0.8104576052	2.579007448	0.05917	0.02155	4.375	0.29999
	8	3.9799723	0.8104576166	2.579007478	0.11592	0.03887	8.750	0.29997
0.1	12	3.9799864	0.8104576323	2.579007520	0.16884	0.05316	13.250	0.29996
	16	3.9799900	0.8104576499	2.579007568	0.21759	0.06537	17.625	0.29996
	20	3.9799658	0.8104576681	2.579007617	0.26245	0.07603	22.000	0.29996
		$\Delta I_1 = 3.95$	55×10^{-5} , $\Delta I_2 =$	$= 6.736 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.800 \times 10^{-7}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799534	0.8104576043	2.579007446	0.03194	0.01132	4.375	0.29999
	8	3.9799723	0.8104576128	2.579007470	0.06150	0.01982	8.750	0.29997
0.05	12	3.9799864	0.8104576241	2.579007502	0.08742	0.02625	13.250	0.29997
	16	3.9799900	0.8104576364	2.579007538	0.10968	0.03135	17.625	0.29997
	20	3.9799658	0.8104576486	2.579007573	0.12882	0.03606	22.000	0.29997
		$\Delta I_1 = 3.95$	57×10^{-5} , ΔI_2 =	$= 4.787 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.359 \times 10^{-7}$		
	0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000	0.000	0.30000
	4	3.9799534	0.8104576039	2.579007445	0.02585	0.00835	4.375	0.29999
	8	3.9799723	0.8104576113	2.579007466	0.04937	0.01518	8.750	0.29997
0.01	12	3.9799864	0.8104576209	2.579007494	0.06940	0.02265	13.250	0.29997
	16	3.9799900	0.8104576310	2.579007524	0.08607	0.02822	17.625	0.29998
	20	3.9799658	0.8104576408	2.579007552	0.10008	0.03212	22.000	0.29998
		$\Delta I_1 = 3.95$	57×10^{-5} , ΔI_2 =	$= 4.006 \times 10^{-8}$	3 , $\Delta I_3 = 1$.	$.152 \times 10^{-7}$		
Anal	itik:	$I_1 = 3.97994$	97, $\overline{I_2} = 0.8104$	$6249, I_3 = 2.57$	9007			

olmak üzere h = 0.1, 0.05 ve 0.01 için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik çözümle elde edilen değerleri (3.2.3) den elde edilen $I_1 = 3.9799497, I_2 = 0.81046249, I_3 = 2.579007$ analitik değerleriyle uyumludur. Ayrıca korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 4.809 \times 10^{-5}$, $\Delta I_2 = 3.183 \times 10^{-8}$ ve $\Delta I_3 = 7.903 \times 10^{-8}$; h = 0.05 için $\Delta I_1 = 6.874 \times 10^{-5}$, $\Delta I_2 = 4.718 \times 10^{-10}$ ve $\Delta I_3 = 9.444 \times 10^{-9}$; h = 0.01 için $\Delta I_1 = 8.921 \times 10^{-5}$, $\Delta I_2 = 4.866 \times 10^{-9}$ ve $\Delta I_3 = 2.687 \times 10^{-8}$ olarak bulunur. Burada korunum sabitlerindeki mutlak değişimler oldukça küçük değerler almıştır ancak bu değerler k nın küçülmesiyle düzenli bir azalma göstermezler. t = 20 zamanında hata normlarının k = 0.1 için h = 0.1 iken $L_2 = 0.23947 \times 10^{-3}$, $L_{\infty} = 0.06990 \times 10^{-3}$; h = 0.05 iken $L_2 = 0.21453 \times 10^{-3}$, $L_{\infty} = 0.06354 \times 10^{-3}$ ve h = 0.01 iken $L_2 = 0.20862 \times 10^{-3}$, $L_{\infty} = 0.0212 \times 10^{-3}$ değerlerini alarak küçüldüğü görülür.

Tablo 4.52 ve Tablo 4.53 e göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.0 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 22/20 = 1.1, teorik hızıyla $v = 1 + \varepsilon c = 1.1$ aynı hesaplanmıştır. Ayrıca h = 0.125 iken k değerlerinin küçülmesiyle veya k = 0.1 iken h değerlerinin küçülmesiyle t = 20 zamanında dalganın yüksekliği başlangıç değerine daha yakın değerler almıştır.

Ikinci olarak 3c = 0.09 yüksekliğine sahip soliter dalganın, $-80 \le x \le 120$ aralığında sağa doğru hareketi t = 20 zamanına kadar gözlendi. Burada dalganın genliği küçülünce dalga genişleyeceği için sınır şartlarını sağlamayı devam ettireceği önceki problemden daha geniş bir aralık seçildi.

Tablo 4.54 de 3c = 0.09 yüksekliğine sahip soliter dalganın konum adım uzunluğu

Tablo 4.53: SFY-4 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.3, -40 \le x \le 60$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	3.9799263	0.8104593621	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799541	0.8104593643	2.579007442	0.05266	0.01894	4.40	0.30000
	8	3.9799743	0.8104593696	2.579007455	0.10366	0.03462	8.80	0.29999
0.1	12	3.9799903	0.8104593769	2.579007473	0.15193	0.04793	13.20	0.29998
	16	3.9799961	0.8104593853	2.579007494	0.19715	0.05954	17.60	0.29997
	20	3.9799744	0.8104593939	2.579007516	0.23947	0.06990	22.00	0.29997
		$\Delta I_1 = 4.80$	0.9×10^{-5} , ΔI_2	$= 3.183 \times 10^{-8}$	3 , $\Delta I_3 = 7$	$.903 \times 10^{-8}$		
	0	3.9799265	0.8104617110	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799554	0.8104617114	2.579007437	0.04543	0.01585	4.40	0.30000
	8	3.9799785	0.8104617115	2.579007436	0.09009	0.02976	8.80	0.29999
0.05	12	3.9799990	0.8104617116	2.579007434	0.13331	0.04212	13.20	0.29999
	16	3.9800105	0.8104617116	2.579007431	0.17478	0.05329	17.60	0.29998
	20	3.9799952	0.8104617115	2.579007427	0.21453	0.06354	22.00	0.29998
		$\Delta I_1 = 6.87$	4×10^{-5} , ΔI_2	$= 4.718 \times 10^{-1}$	$^{.0}$, $\Delta I_3 = 9$	0.444×10^{-9}		
	0	3.9799266	0.8104624628	2.579007437	0.00000	0.00000	0.00	0.30000
	4	3.9799566	0.8104624638	2.579007436	0.04363	0.01502	4.40	0.30000
	8	3.9799822	0.8104624629	2.579007432	0.08676	0.02851	8.80	0.29999
0.01	12	3.9800069	0.8104624616	2.579007426	0.12878	0.04069	13.20	0.29999
	16	3.9800240	0.8104624599	2.579007419	0.16939	0.05182	17.60	0.29999
	20	3.9800159	0.8104624579	2.579007410	0.20862	0.06212	22.00	0.29998
		$\Delta I_1 = 8.92$	21×10^{-5} , ΔI_2	$= 4.866 \times 10^{-9}$	$\Delta I_3 = 2$	$.687 \times 10^{-8}$		
Anal	itik:	$I_1 = 3.97994$	97, $\overline{I_2} = 0.8104$	$6249, I_3 = 2.57$	'90 <u>07</u>			

h = 0.125ve zaman adım uzunluğu k = 0.1, 0.05, 0.01için belirli zamanlarda korunum sabitlerinin ve hata normlarının aldığı değerler ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tabloda verilen korunum sabitlerinin değerlerinin dalganın hareketi boyunca hemen hemen sabit kaldığı ve (3.2.3) den elde edilen $I_1 = 2.1094074997, I_2 = 0.1273017186, I_3 = 0.3888059904$ analitik değerleriyle uyumlu olduğu görülmektedir. Tabloya göre korunum sabitlerindeki mutlak değişim h = 0.125iken k = 0.1için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 1.062 \times 10^{-10}$ ve $\Delta I_3 = 2.876 \times 10^{-10}; k = 0.05$ için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 5.731 \times 10^{-11}$ ve $\Delta I_3 = 1.632 \times 10^{-10}; k = 0.01$ için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_1 = 5.069 \times 10^{-6}$, $\Delta I_2 = 4.581 \times 10^{-11}$ ve $\Delta I_3 = 1.331 \times 10^{-10}$; k = 0.01için $\Delta I_2 = 0.025$ için k = 0.1iken $L_2 = 0.01576 \times 10^{-3}$, $L_{\infty} = 0.0423 \times 10^{-3}$; k = 0.05iken $L_2 = 0.00594 \times 10^{-3}$, $L_{\infty} = 0.00161 \times 10^{-3}$ ve k = 0.01iken $L_2 = 0.00341 \times 10^{-3}$, $L_{\infty} = 0.00084 \times 10^{-3}$ şeklinde oldukça küçük değerler almıştır.

Tablo 4.55 de 3c = 0.09 yüksekliğine sahip soliter dalganın hareketi boyunca k = 0.1 ve h = 0.1, 0.05, 0.01 değerleri için belirli zamanlardaki korunum sabitlerinin ve hata normlarının aldığı değerleri ile birlikte dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Korunum sabitlerinin nümerik çözümle elde edilen değerleri (3.2.3) den elde edilen $I_1 = 2.1094074997, I_2 = 0.1273017186, I_3 = 0.3888059904$ analitik değerleriyle uyumludur. korunum sabitlerinin mutlak değişimi k = 0.1 iken h = 0.1 için $\Delta I_1 = 5.590 \times 10^{-6}, \Delta I_2 = 5.505 \times 10^{-11}$ ve $\Delta I_3 = 1.411 \times 10^{-10}$; h = 0.05 için $\Delta I_1 = 6.848 \times 10^{-6}, \Delta I_2 = 7.940 \times 10^{-13}$ ve $\Delta I_3 = 1.518 \times 10^{-11}$; h = 0.01 için $\Delta I_1 = 8.098 \times 10^{-6}, \Delta I_2 = 4.323 \times 10^{-11}$ ve $\Delta I_3 = 1.587 \times 10^{-10}$ olarak

Tablo 4.54: SFY-4 ile Problem 1'in h = 0.125 ve k nın farklı değerleri için hesaplanan korunum sabitleri, hata normları, dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

\overline{k}	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00318	0.00092	4.125	0.09000
	8	2.1094078	0.1273016388	0.388805990	0.00635	0.00181	8.250	0.09000
0.1	12	2.1094088	0.1273016388	0.388805990	0.00951	0.00265	12.375	0.09000
	16	2.1094095	0.1273016388	0.388805991	0.01264	0.00346	16.500	0.09000
	20	2.1094101	0.1273016389	0.388805991	0.01576	0.00423	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 1.062 \times 10^{-1}$	10 , $\Delta I_3 = 2$	2.876×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00121	0.00036	4.125	0.09000
	8	2.1094078	0.1273016388	0.388805990	0.00242	0.00071	8.250	0.09000
0.05	12	2.1094088	0.1273016388	0.388805990	0.00362	0.00103	12.375	0.09000
	16	2.1094095	0.1273016388	0.388805990	0.00479	0.00133	16.500	0.09000
	20	2.1094101	0.1273016388	0.388805991	0.00594	0.00161	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 5.731 \times 10^{-1}$	1 , $\Delta I_3 = 1$	1.632×10^{-1}	.0	
	0	2.1094050	0.1273016387	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094066	0.1273016387	0.388805990	0.00071	0.00020	4.125	0.09000
	8	2.1094078	0.1273016388	0.388805990	0.00142	0.00038	8.250	0.09000
0.01	12	2.1094088	0.1273016388	0.388805990	0.00210	0.00055	12.375	0.09000
	16	2.1094095	0.1273016388	0.388805990	0.00277	0.00070	16.500	0.09000
	20	2.1094101	0.1273016388	0.388805990	0.00341	0.00084	20.625	0.09000
		$\Delta I_1 = 5.06$	59×10^{-6} , $\Delta I_2 =$	$= 4.581 \times 10^{-1}$	1 , $\Delta I_3 = 1$	1.331×10^{-1}	.0	
Anal	itik: <i>I</i>	1 = 2,10940	$74997, I_2 = 0.12$	273017186, I ₃ =	= 0.3888059	9904		

Tablo 4.55: SFY-4 ile Problem 1'in k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri ve hata normları; dalganın konumu ve yüksekliği ($3c = 0.09, -80 \le x \le 120$).

h	t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	x	U
	0	2.1094050	0.1273016675	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094066	0.1273016675	0.388805990	0.00301	0.00087	4.10	0.09000
0.1	8	2.1094079	0.1273016675	0.388805990	0.00602	0.00170	8.20	0.09000
	12	2.1094090	0.1273016675	0.388805990	0.00902	0.00249	12.40	0.09000
	16	2.1094099	0.1273016675	0.388805990	0.01200	0.00326	16.50	0.09000
	20	2.1094106	0.1273016676	0.388805990	0.01497	0.00400	20.60	0.09000
		$\Delta I_1 = 5.59$	00×10^{-6} , ΔI_2	$= 5.505 \times 10^{-1}$	11 , $\Delta I_3 = 1$	1.411×10^{-1}	10	
	0	2.1094050	0.1273017058	0.388805990	0.00000	0.00000	0.00	0.09000
	4	2.1094067	0.1273017058	0.388805990	0.00282	0.00079	4.10	0.09000
0.05	8	2.1094082	0.1273017058	0.388805990	0.00563	0.00156	8.25	0.09000
	12	2.1094095	0.1273017058	0.388805990	0.00844	0.00230	12.35	0.09000
	16	2.1094108	0.1273017058	0.388805990	0.01123	0.00301	16.50	0.09000
	20	2.1094119	0.1273017058	0.388805990	0.01401	0.00371	20.60	0.09000
		$\Delta I_1 = 6.84$	18×10^{-6} , ΔI_2	$= 7.940 \times 10^{-1}$	13 , $\Delta I_3 = 1$	1.518×10^{-1}	1	
	0	2.1094050	0.1273017181	0.388805990	0.00000	0.00000	0.000	0.09000
	4	2.1094068	0.1273017181	0.388805990	0.00276	0.00077	4.12	0.09000
0.01	8	2.1094084	0.1273017181	0.388805990	0.00552	0.00151	8.24	0.09000
	12	2.1094100	0.1273017181	0.388805990	0.00828	0.00224	12.36	0.09000
	16	2.1094116	0.1273017181	0.388805990	0.01102	0.00294	16.48	0.09000
	20	2.1094131	0.1273017181	0.388805990	0.01375	0.00362	20.60	0.09000
		$\Delta I_1 = 8.09$	08×10^{-6} , ΔI_2	$= 4.323 \times 10^{-1}$	11 , $\Delta I_3 = 1$	1.587×10^{-1}	10	
Anal	itik:1	$\overline{1}_1 = 2, 10940$	$74997, I_2 = 0.12$	$\overline{273017186}, I_3 =$	= 0.3888059	9904		

bulunur. Buradan k = 0.1 iken h'nın farklı değerleri için I_1 , I_2 ve I_3 de oldukça küçük mutlak değişimler olmuştur ancak bu değişimler k'nın değişimiyle orantılı olmamıştır. t = 20 zamanında hata normları k = 0.1 için h = 0.1 iken $L_2 = 0.01497 \times 10^{-3}$, $L_{\infty} = 0.00400 \times 10^{-3}$; h = 0.05 iken $L_2 = 0.01401 \times 10^{-3}$, $L_{\infty} = 0.00371 \times 10^{-3}$ ve h = 0.01iken $L_2 = 0.01375 \times 10^{-3}$, $L_{\infty} = 0.00362 \times 10^{-3}$ değerlerini almıştır. Oldukça küçük değerler alan hata normlarında k nın küçülmesiyle ciddi bir azalma olmamıştır.

Tablo 4.54 e göre t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 20.625 konumundadır. Buna göre nümerik çözümden elde edilen hızı v =konum/zaman= 20.625/20 = 1.13125 dir.

		<i>c</i> =	= 0.1	c =	c = 0.03			
h	k	$L_2 \times 10^3$	$L_{\infty} \times 10^3$	$L_2 \times 10^3$	$L_{\infty} \times 10^3$			
	0.1	0.26245	0.07603	0.01576	0.00423			
0.125	0.05	0.12882	0.03606	0.00594	0.00161			
	0.01	0.10008	0.03212	0.00341	0.00084			
0.1		0.23947	0.06990	0.01497	0.00400			
0.05	0.1	0.21453	0.06354	0.01401	0.00371			
0.01		0.20862	0.06212	0.01375	0.00362			

Tablo 4.56: SFY-4 ile Problem 1'in h ve k'nın farklı değerleri için hesaplanan hata normları (3c = 0.3 için $-40 \le x \le 60$, 3c = 0.09 için $-80 \le x \le 120$).

Tablo 4.55 e göre ise t = 0 zamanında tepe noktası x = 0 konumunda olan soliter dalganın t = 20 zamanına geldiğinde tepe noktası x = 22.60 konumunda olduğu için nümerik çözümden elde edilen hızı v =konum/zaman= 22.60/20 = 1.13 'dir. Dalganın hızının nümerik değerleri $v = 1 + \varepsilon c = 1.03$ analitik değeriyle uyumludur. Ayrıca hve k'nın farklı değerleri için t = 20 zamanında dalganın yüksekliği başlangıç değeriyle hemem hemen aynı değerleri aldığı görülür.

Tablo 4.56 de c = 0.1 ve c = 0.03 genlikli dalgalar için farklı konum ve zaman adımları için hesaplanan hata normları karşılaştırıldı. Tabloda h = 0.125 iken kküçüldüğünde hata normlarında önemli ölçüde azalma gözlenmektedir. Diğer taraftan k = 0.1 iken h küçüldüğünde hata normlarının oldukça küçük ama birbirine yakın değerler aldığı görülür.

Tablo 4.57 de 3c = 0.3, $-40 \le x \le 60$, h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi. SFY-4 ile t = 20 zamanında oldukça küçük hata normları elde edilmiştir.

Problem 2: İki Soliter Dalga Girişimi

Bu problemde tepe noktası $x_1 = -177$ konumunda, $3c_1 = 0.6$ yüksekliğinde ve

t	I_1	I_2	I_3	$L_2 \times 10^3$	$L_{\infty} \times 10^3$
0	3.9799262	0.8104576008	2.579007437	0.00000	0.00000
4	3.9799534	0.8104576052	2.579007448	0.05917	0.02155
8	3.9799723	0.8104576166	2.579007478	0.11592	0.03887
12	3.9799864	0.8104576323	2.579007520	0.16884	0.05316
16	3.9799900	0.8104576499	2.579007568	0.21759	0.06537
20	3.9799658	0.8104576681	2.579007617	0.26245	0.07603
20[19](h = 0.1)	3.97989	0.810462	2.57901	0.217	0.084
20[20](h = 0.1)	3.97989	0.810467	2.57902	0.220	0.086
20[21]	3.98203	0.808650	2.57302	4.688	1.755
20[25]	3.961597	0.804185	2.558292	0.0184	1.5664
20[26]	3.97986	0.811164	2.58133	0.511	0.198
20[27]	3.98206	0.810399	2.57880	0.227	0.081
20[28]	3.980016	0.8104624	2.579006	0.22050	0.08448
20[31]	3.979883	0.81027618	2.57839258	0.30	0.116
20[36](h = 0.1)	3.97997	0.810459	2.57901	0.55	0.21
20[37]	3.97988	0.810465	2.57901	0.219	0.086
20[38]	3.98206	0.811164	2.58133	0.511	0.198
20[38]	3.97986	0.810399	2.57880	0.227	0.081
20[44]	3.97988	0.81046	2.57902	0.52171	0.19828
20[44]	3.98005	0.81047	2.57902	0.03689	0.01824
20[46]	3.979950	0.810521	2.579202	0.702	0.268
20[47]	3.97972	0.81026	2.57873	0.266856	0.091465
20[48]	3.9799000	0.8104646	2.5790160	0.04921	0.02020
20[48]	3.9798834	0.8104651	2.5790160	0.01171	0.01268

Tablo 4.57: SFY-4 ile Problem 1'in h = 0.125 ve k = 0.1 için hesaplanan korunum sabitleri ve hata normları ($3c = 0.3, -40 \le x \le 60$).

tepe noktası $x_2 = -147$ konumunda, $3c_2 = 0.3$ yüksekliğinde iki soliter dalganın $-200 \le x \le 400$ aralığındaki girişimi t = 400 zamanına kadar gözlendi.

Tablo 4.58 de konum adım uzunluğu h = 0.12 iken zaman adım uzunluğu k = 0.1, 0.05 ve 0.01 için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre I_1 , I_2 ve I_3 korunum sabitlerindeki mutlak değişim h = 0.12 seçildiğinde k = 0.1 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 5.252 \times 10^{-6}$ ve $\Delta I_3 = 1.548 \times 10^{-5}$; k = 0.05 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 4.592 \times 10^{-6}$ ve $\Delta I_3 = 1.481 \times 10^{-5}$ ve k = 0.01 için $\Delta I_1 = 3.510 \times 10^{-3}$, $\Delta I_2 = 4.266 \times 10^{-6}$ ve $\Delta I_3 = 1.407 \times 10^{-5}$ olarak bulunmuştur. ΔI_1 , k değerinin küçülmesiyle değişmezken, ΔI_2 ve ΔI_3 bir miktar küçülmüştür.

Tablo 4.59 de k = 0.1 ve h = 0.12, 0.06, 0.03 değerleri için belirli zamanlarda korunum sabitlerinin aldığı değerler verildi. Tabloya göre k = 0.1 sabit h = 0.12 için I_1 deki mutlak değişim $\Delta I_1 = 3.510 \times 10^{-3}$, I_2 'deki mutlak değişim $\Delta I_2 = 5.252 \times 10^{-6}$ ve I_3 'deki mutlak değişim $\Delta I_3 = 1.548 \times 10^{-5}$; h = 0.06 için $\Delta I_1 = 6.906 \times 10^{-3}$, $\Delta I_2 = 7.557 \times 10^{-7}$ ve $\Delta I_3 = 1.441 \times 10^{-6}$, ayrıca h = 0.03 için $\Delta I_1 = 1.370 \times 10^{-2}$, $\Delta I_2 = 3.841 \times 10^{-7}$ ve $\Delta I_3 = 6.701 \times 10^{-6}$ olarak bulunmuştur. Zaman adım uzunluğu k sabit, konum zaman uzunluğu h nın küçülmesiyle I_1 in mutlak değişim artarken I_2 ve I_3 ün mutlak değişimleri azalmaktadır.

Tablo 4.60 de h = 0.125 ve k = 0.1 için korunum sabitlerinin ve hata normlarının aldığı değerlerle birlikte literatürdeki diğer çalışmalarda elde edilen değerler verildi. Tabloya göre diğer çalışmalarda elde edilen sonuçlarla karşılaştırıldığında SFY-4'ün oldukça iyi sonuçlar verdiği söylenebilir.

Problem 3: Ardışık Dalga Oluşumu

Bu problemde d = 2 yüksek eğim ve d = 5 düşük eğim için elde edilen ardışık dalgaların oluşumu $-36 \le x \le 300$ aralığında, t = 250 zamanına kadar gözlendi.

Tablo 4.58: SFY-4 ile Problem 2'nin h = 0.12 ve k nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3, x_1 = -177, x_2 = -147, -200 \le x \le 400$).

			k = 0.1			k = 0.05			k = 0.01		
	t	I_1	I_2	I_3	I_1	I_2	I_3	I_1	I_2	I_3	
	0	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	9.85822123	3.2447402	10.778329	
	40	9.86151172	3.2447614	10.778395	9.86151171	3.2447653	10.778416	9.86151171	3.2447665	10.778422	
	80	9.86172514	3.2448175	10.778570	9.86172514	3.2448353	10.778657	9.86172514	3.2448409	10.778684	
	120	9.86173071	3.2449664	10.777031	9.86173071	3.2450203	10.779291	9.86173071	3.2450375	10.779375	
h = 0.12	160	9.86173073	3.2452460	10.777889	9.86173073	3.2453689	10.780483	9.86173073	3.2454082	10.780673	
	200	9.86173056	3.2454377	10.780474	9.86173055	3.2456077	10.781296	9.86173055	3.2456621	10.781559	
	240	9.86173046	3.2452511	10.779904	9.86173046	3.2453741	10.780500	9.86173046	3.2454133	10.780690	
	280	9.86173055	3.2449709	10.779044	9.86173056	3.2450248	10.779307	9.86173056	3.2450419	10.779390	
	320	9.86173089	3.2448211	10.778581	9.86173090	3.2448386	10.778668	9.86173091	3.2448440	10.778695	
	360	9.86173124	3.2447643	10.778404	9.86173124	3.2447682	10.778425	9.86173125	3.2447693	10.778431	
	400	9.86173130	3.2447454	10.778345	9.86173129	3.2447448	10.778344	9.86173129	3.2447444	10.778343	
		ΔI_1	$= 3.510 \times 1$	0^{-3}	ΔI_1	$= 3.510 \times 1$	0^{-3}	ΔI_1	$= 3.510 \times 1$	0^{-3}	
	$\Delta I_2 = 5.252 \times 10^{-6}$			ΔI_2	$\Delta I_2 = 4.592 \times 10^{-6}$			$\Delta I_2 = 4.266 \times 10^{-6}$			
		ΔI_3	$= 1.548 \times 1$	0^{-5}	ΔI_3	$= 1.481 \times 1$	0^{-5}	ΔI_3	$\Delta I_{3} = 1.407 \times 10^{-5}$		

Tablo 4.59: SFY-4 ile Problem 2'nin k = 0.1 ve h nın farklı değerleri için hesaplanan korunum sabitleri ($3c_1 = 0.6$, $3c_2 = 0.3, x_1 = -177, x_2 = -147, -200 \le x \le 400$).

			h = 0.12			h = 0.06			h = 0.03		
	t	I_1	I_2	I_3	$\overline{I_1}$	I_2	I_3	$\overline{I_1}$	I_2	I_3	
	0	9.85822123	3.2447402	10.778329	9.85822732	3.2447773	10.778329	9.85823035	3.2447868	10.778329	
	40	9.86151172	3.2447614	10.778395	9.86323002	3.2447781	10.778324	9.86456661	3.2447828	10.778308	
	80	9.86172514	3.2448175	10.778570	9.86469569	3.2447785	10.778303	9.86813477	3.2447695	10.778238	
	120	9.86173071	3.2449664	10.777031	9.86505226	3.2447794	10.778243	9.87006670	3.2447336	10.778049	
k = 0.1	160	9.86173073	3.2452460	10.777889	9.86512207	3.2447810	10.778127	9.87106095	3.2446657	10.777689	
	200	9.86173056	3.2454377	10.780474	9.86513233	3.2447820	10.778045	9.87154719	3.2446189	10.777440	
	240	9.86173046	3.2452511	10.779904	9.86513316	3.2447811	10.778125	9.87177262	3.2446643	10.777682	
	280	9.86173055	3.2449709	10.779044	9.86513309	3.2447795	10.778241	9.87187123	3.2447324	10.778043	
	320	9.86173089	3.2448211	10.778581	9.86513312	3.2447786	10.778301	9.87191164	3.2447688	10.778234	
	360	9.86173124	3.2447643	10.778404	9.86513323	3.2447782	10.778324	9.87192695	3.2447826	10.778306	
	400	9.86173130	3.2447454	10.778345	9.86513328	3.2447781	10.778331	9.87193217	3.2447871	10.778330	
		ΔI_1	$= 3.510 \times 1$	0^{-3}	ΔI_1	$= 6.906 \times 1$	0^{-3}	ΔI_1	$= 1.370 \times 1$	0^{-2}	
	$\Delta I_2 = 5.252 \times 10^{-6}$			ΔI_2	$\Delta I_2 = 7.557 \times 10^{-7}$			$\Delta I_2 = 3.841 \times 10^{-7}$			
		ΔI_3	$= 1.548 \times 1$	0^{-5}	ΔI_3	$= 1.441 \times 1$	0^{-6}	ΔI_3	$= 6.701 \times 1$	0^{-7}	

102

Table	o 4.60: SFY-	4 ile Problem	2'nin $h = 0.12$	k ve $k = 0.1$ içir	ı hesaplanan	korunum	sabitleri (3	$c_1 = 0.6,$	$3c_2 = 0.3,$
$x_1 =$	$-177, x_2 =$	-147, -200	$\leq x \leq 400).$						

t	I_1	I_2	I_3		$I_1[27]$	$I_{2}[27]$	$I_{3}[27]$	$I_1[37]$	$I_{2}[37]$	$I_{3}[37]$
0	9.85822123	3.2447402	10.778329		9.8586	3.2449	10.7788	9.85825	3.24481	10.77833
40	9.86151172	3.2447614	10.778395		9.8642	3.2456	10.7809	9.85833	3.24482	10.77836
80	9.86172514	3.2448175	10.778570		9.8683	3.2475	10.7872	9.85832	3.24482	10.77834
120	9.86173071	3.2449664	10.777031		9.8719	3.2491	10.7928	9.85833	3.24486	10.77843
160	9.86173073	3.2452460	10.777889		9.8751	3.2506	10.7979	9.85833	3.24491	10.77852
200	9.86173056	3.2454377	10.780474		9.8886	3.2523	10.8036	9.85830	3.24492	10.77851
240	9.86173046	3.2452511	10.779904		9.8825	3.2544	10.8109	9.85830	3.24489	10.77846
280	9.86173055	3.2449709	10.779044		9.8854	3.2557	10.8156	9.85829	3.24484	10.77834
320	9.86173089	3.2448211	10.778581		9.8883	3.2569	10.8197	9.85832	3.24482	10.77833
360	9.86173124	3.2447643	10.778404		9.8907	3.2576	10.8220	9.85829	3.24479	10.77823
400	9.86173130	3.2447454	10.778345		9.8930	3.2585	10.8251	9.85830	3.24478	10.77819
			-	t	$I_1[38]$	$I_{2}[38]$	$I_{3}[38]$	$I_1[47](h = 0.25)$	$I_2[47](h=0.25)$	$I_3[47](h=0.25)$
				0	9.8586	3.2449	10.7788	9.8583	3.2328	10.7623
				40	9.8642	3.2456	10.7809	9.8575	3.2362	10.7738
				80	9.8683	3.2475	10.7872	9.8574	3.2362	10.7727
				120	9.8719	3.2492	10.7928	9.8573	3.2367	10.7707
				160	9.8751	3.2506	10.7979	9.8573	3.2377	10.7675
				200	9.8886	3.2523	10.8036	9.8574	3.2384	10.7654
				240	9.8825	3.2544	10.8109	9.8572	3.2376	10.7671
				280	9.8854	3.2557	10.8156	9.8570	3.2364	10.7695
				320	9.8883	3.2569	10.8197	9.8567	3.2357	10.7706
				0.00	0.0007	2 0570	10 0000	ODECE	2 2252	10 7700
				360	9.8907	3.2570	10.8220	9.8000	3.2333	10.7700

Tablo 4.61 de d = 2 yüksek eğimi için, konum adım uzunluğu h = 0.24 olduğunda zaman adım uzunluğu k = 0.1, 0.05 ve 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.62 de d = 2, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 2 iken h ve k nın farklı değerleri için korunum sabitlerinin lineer değişim oranları (3.2.5) eşitlikleri ile bulunan $M_1 =$ $0.1050, M_2 = 0.0106$ ve $M_3 = 0.03307$ analitik değerleriyle uyumlu olduğu görülür.

Tablo 4.63 de d = 5, h = 0.24 ve k = 0.1, 0.05, 0.01 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablo 4.64 de d = 5, k = 0.1 ve h = 0.24, 0.12, 0.06 değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri için I_1 , I_2 ve I_3 korunum sabitlerinin belirli zamanlarda aldıkları değerlerle birlikte öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri verildi. Tablolardan d = 5 olduğunda h ve k nın farklı değerleri için korunum sabitlerinin lineer değişimi analitik değerleriyle oldukça uyumlu olduğu görülür.

Tablo 4.65 de d = 2, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri ve bu değerleri aldığı x konum değerleri, diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Ayrıca Tablo 4.66 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı.

Tablo 4.67 de d = 5, h = 0.24 ve k = 0.1 için hesaplanan korunum sabitleri, öncü dalganın maksimum genlik değerleri, bu değerleri aldığı x konum değerleri

Tablo 4.61: SFY-4 ile Problem 3'ün d = 2, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	Ũ
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.898862	2.785175	48.96	0.139204
	100	14.338000	1.448567	4.489085	102.72	0.158343
0.1	150	19.713000	1.998234	6.192765	156.96	0.169820
	200	25.088000	2.547887	7.896359	211.20	0.176417
	250	30.463001	3.097534	9.599921	265.92	0.180779
		$M_1 = 0.107$	75000026, N	$I_2 = 0.0109$	938311, N	$I_3 = 0.0340765622$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.898853	2.785140	48.96	0.139188
	100	14.338000	1.448545	4.488998	102.72	0.158336
0.05	150	19.713000	1.998197	6.192617	156.96	0.169830
	200	25.088000	2.547834	7.896149	211.44	0.176446
	250	30.463001	3.097466	9.599648	265.92	0.180808
		$M_1 = 0.107$	75000032, N	$I_2 = 0.0109$	935588, N	$I_3 = 0.0340754701$
	0	3.588000	0.349077	1.080780	-35.76	0.100000
	50	8.963000	0.898850	2.785129	48.96	0.139182
	100	14.338000	1.448538	4.488969	102.72	0.158333
0.01	150	19.713000	1.998185	6.192570	156.96	0.169832
	200	25.088000	2.547818	7.896082	211.44	0.176461
	250	30.463001	3.097445	9.599560	265.92	0.180814
		$M_1 = 0.107$	75000034, N	$I_2 = 0.0109$	934712, N	$I_3 = 0.0340751188$

Tablo 4.62: SFY-4 ile Problem 3'ün d = 2, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

h	t	I_1	I_2	I_3	x	U	
	0	3.588000	0.349077	1.080780	-35.76	0.100000	
	50	8.963000	0.898862	2.785175	48.96	0.139204	
	100	14.338000	1.448567	4.489085	102.72	0.158343	
0.24	150	19.713000	1.998234	6.192765	156.96	0.169820	
	200	25.088000	2.547887	7.896359	211.20	0.176417	
	250	30.463001	3.097534	9.599921	265.92	0.180779	
		$M_1 = 0.107$	75000026, N	$I_2 = 0.0109$	938311, N	$I_3 = 0.0340$	0765622
	0	3.594000	0.349678	1.082640	-35.88	0.100000	
	50	8.969000	0.899631	2.787539	48.96	0.139578	
	100	14.344000	1.449568	4.492149	102.72	0.158975	
0.12	150	19.719000	1.999496	6.196622	156.96	0.170619	
	200	25.094000	2.549422	7.901045	211.32	0.177598	
	250	30.469000	3.099346	9.605447	265.80	0.181877	
		$M_1 = 0.107$	74999984, N	$I_2 = 0.0109$	986759, N	$I_3 = 0.0340$)912288
	0	3.597000	0.349978	1.083570	-35.94	0.100000	
	50	8.972000	0.899974	2.788597	49.02	0.139682	
	100	14.347000	1.449970	4.493386	102.72	0.159134	
0.06	150	19.722000	1.999966	6.198063	156.90	0.170828	
	200	25.097000	2.549961	7.902697	211.32	0.177823	
	250	30.472000	3.099956	9.607315	265.86	0.182124	
		$M_1 = 0.107$	$749\overline{99990}, N$	$I_2 = 0.0109$	$99\overline{9146}, N$	$I_3 = 0.0340$)9498175

Tablo 4.63: SFY-4 ile Problem 3'ün d = 5, h = 0.24 ve k nın farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği ($-36 \le x \le 300$).

k	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883864	2.738874	48.48	0.110181
	100	14.338000	1.433716	4.443638	102.24	0.136498
0.1	150	19.713000	1.983455	6.147738	156.24	0.156775
	200	25.088000	2.533134	7.851484	210.48	0.169291
	250	30.463000	3.082791	9.555103	264.96	0.176737
		$M_1 = 0.107$	74999996, N	$I_2 = 0.0109$	955196, N	$I_3 = 0.0340862930$
	0	3.588000	0.333911	1.033530	-35.76	0.100000
0.05	50	8.963000	0.883862	2.738867	48.48	0.110151
	100	14.338000	1.443708	4.443606	102.24	0.136472
	150	19.713000	1.983435	6.147658	156.24	0.156734
	200	25.088000	2.533099	7.851347	210.72	0.169335
	250	30.463000	3.082741	9.554904	264.96	0.176674
		$M_1 = 0.107$	74999996, N	$I_2 = 0.0109$	953213, N	$I_3 = 0.0340854967$
0.01	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883861	2.738864	48.48	0.110141
	100	14.338000	1.433706	4.443595	102.24	0.136463
	150	19.713000	1.983429	6.147633	156.48	0.156722
	200	25.088000	2.533088	7.851303	210.72	0.169349
	250	30.463000	3.082725	9.554840	264.96	0.176651
		$M_1 = 0.107$	74999996, N	$I_2 = 0.0109$	$952575, \Lambda$	$I_3 = 0.0340852406$

Tablo 4.64: SFY-4 ile Problem 3'ün d = 5, k = 0.1 ve h nin farklı değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

h	t	I_1	I_2	I_3	x	U
	0	3.588000	0.333911	1.033530	-35.76	0.100000
	50	8.963000	0.883864	2.738874	48.48	0.110181
	100	14.338000	1.433716	4.443638	102.24	0.136498
0.24	150	19.713000	1.983455	6.147738	156.24	0.156775
	200	25.088000	2.533134	7.851484	210.48	0.169291
	250	30.463000	3.082791	9.555103	264.96	0.176737
		$M_1 = 0.107$	74999996,	$M_2 = 0.010$	9955196,	$M_3 = 0.0340862930$
	0	3.594000	0.334511	1.035390	-35.88	0.100000
	50	8.969000	0.884501	2.740848	48.48	0.110276
	100	14.344000	1.434469	4.445964	102.36	0.136887
0.12	150	19.719000	1.984413	6.150686	156.36	0.157548
	200	25.094000	2.534345	7.855199	210.60	0.170351
	250	30.469000	3.084271	9.559636	264.96	0.177634
		$M_1 = 0.107$	74999993,	$M_2 = 0.010$	9990399,.	$M_3 = 0.0340969839$
0.06	0	3.597000	0.334811	1.036320	-35.94	0.100000
	50	8.972000	0.884810	2.741807	48.42	0.110305
	100	14.347000	1.434808	4.447012	102.30	0.136991
	150	19.722000	1.984805	6.151893	156.36	0.157703
	200	25.097000	2.534800	7.856603	210.60	0.170551
	250	30.472000	3.084796	9.561249	265.02	0.177931
		$M_1 = 0.107$	74999987,	$M_2 = 0.010$	9999390,	$M_3 = 0.0340997164$

Tablo 4.65: SFY-4 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

		, 0			0 (
t	I_1	I_2	I_3	x	U
0	3.588000	0.349077	1.080780	-35.76	0.100000
50	8.963000	0.898862	2.785175	48.96	0.139204
100	14.338000	1.448567	4.489085	102.72	0.158343
150	19.713000	1.998234	6.192765	156.96	0.169820
200	25.088000	2.547887	7.896359	211.20	0.176417
250	30.463001	3.097534	9.599921	265.92	0.180779
250[28]	30.48699	3.10148	9.61202	265.92	0.1819803
250[31]				265.92	0.182
250[36]	30.46299	3.09887	9.60482	265.68	0.18158
250[37]	30.4869971	3.10123	9.61118	265.92	0.18177
250[42]				265.92	0.1820388184

n ko	orunum sa	abitlerinin lineei	r artış oranları ($(-36 \le x \le 300).$
		M_1	M_2	M_3
	SFY-4	0.1075000026	0.0109938311	0.0340765622
	[28]	0.1075	0.010999	0.034095
	[36]	0.107500	0.010992	0.034096

0.010999

0.034092

[37]

0.1075

Tablo 4.66: SFY-4 ile Problem 3'ün d = 2, h = 0.24 ve k = 0.1 değerleri için hesaplanan ko<u>runum</u> sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

Tablo 4.67: SFY-4 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitleri, ilk dalganın konumu ve yüksekliği $(-36 \le x \le 300)$.

t	I_1	I_2	I_3	x	U
0	3.588000	0.333911	1.033530	-35.76	0.100000
50	8.963000	0.883864	2.738874	48.48	0.110181
100	14.338000	1.433716	4.443638	102.24	0.136498
150	19.713000	1.983455	6.147738	156.24	0.156775
200	25.088000	2.533134	7.851484	210.48	0.169291
250	30.463000	3.082791	9.555103	264.96	0.176737
250[28]	30.48704	3.08631	9.56594	264.96	0.1787177
250[31]				264.96	0.182
250[36]	30.46305	3.08376	9.55868	264.96	0.17710
250[37]	30.4869998	3.08613	9.56533	264.96	0.17767
250[42]				264.96	0.1779322071

Tablo 4.68: SFY-4 ile Problem 3'ün d = 5, h = 0.24 ve k = 0.1 değerleri için hesaplanan korunum sabitlerinin lineer artış oranları ($-36 \le x \le 300$).

	M_1	M_2	M_3
SFY-4	0.1074999996	0.0109955196	0.0340862930
[28]	0.1075	0.011	0.034099
[36]	0.107500	0.010992	0.034101
[37]	0.1075	0.010999	0.034097

verildi ve diğer araştırmacılar tarafından elde edilen sonuçlarla karşılaştırıldı. Bunun yanısıra Tablo 4.68 de korunum sabitlerinin lineer değişim oranları, literatürdeki diğer çalışmalarla elde edilen değerleriyle karşılaştırıldı. Sonuç olarak SFY-4 ile elde edilen sonuçların literatürdeki farklı çalışmalarla elde edilen sonuçlarıyla uyum içerisinde olduğu görülür.

5. SONUÇ ve ÖNERİLER

Bu çalışmada düzenli uzun dalga (RLW) denkleminin nümerik çözümleri araştırıldı. Denklemde zamana ve konuma göre türevler yerine uygun sonlu fark yaklaşımları yazılırken UU_x nonlineer terimi yerinede 4 değişik sonlu fark yaklaşımı yazılarak lineer cebirsel denklem sistemleri elde edildi ve her bir sonlu fark şemasının kararlılık analizi incelendi. Elde edilen cebirsel denklem sistemleri direkt yöntemlerden biri yardımıyla çözüldü. Her bir problem için farklı zaman ve konum adım uzunlukları için elde edilen sonuçlar incelendi. Soliter dalgaların hareketini görsel olarak anlamlandırmak için dalga grafikleri SFY-1'in nümerik çözümleriyle birlikte verildi ve ayırt edilemeyecek kadar benzer olduğundan dolayı diğer yaklaşımlarda verilme ihtiyacı duyulmadı.

Tek soliter dalganın hareketi problemi için farklı h ve k değerleri için korunum sabitlerinin mutlak değişimleri ve hata normları oldukça küçük değerler almıştır. SFY-1 ve SFY-2 için k'nın sabit tutulup h'ın küçültülmesiyle, SFY-3 ve SFY-4 için ise h'nın sabit tutulup k'ın küçültülmesiyle hata normlarında önemli bir ölçüde azalma gözlendi. Ayrıca c = 0.1 genlikli bir dalga yerine, sınır şartlarını sağlayacağı daha geniş bir aralıkta ele alınan c = 0.03 genlikli bir dalga için daha düşük hata normları elde edildi.

Iki soliter dalganın girişimi problemi için analitik çözüm olmadığından sadece korunum sabitlerinin değişimine bakıldı. Her bir yaklaşım için korunum sabitlerinin birbirine yakın değerler aldığı görüldü, üstelik bu değerlerin diğer ararştırmacılar tarafından yapılan çalışmalar ile oldukça uyumlu olduğu söylenebilir. Ardışık dalga oluşumu probleminde korunum sabitlerindeki lineer artış oranları, öncü dalganın genliği ve bu genliğin yerleşik olduğu konumu incelendi. Her bir yaklaşım için birbirine yakın değerler alan lineer artış oranları analitik değerleriyle uyum içerisinde olduğu gözlendi. Ayrıca d = 2 ve d = 5 eğimleri için öncü dalganın genliği ve bu genliğin yerleşik olduğu konumun zaman ilerledikçe birbirine yakın değerler almıştır.

Her bir model problem için elde edilen sonuçların var olan analitik çözümler ve daha önce başka araştırmacılar tarafından elde edilen sonuçlarla uyum içerisinde olduğu görüldü. Kullanılan yaklaşımlar arasından öncelikle SFY-3 ve onun ardından SFY-4 diğer yaklaşımlara göre daha iyi sonuçlar vermiştir. Bu çalışmanın sonucu olarak RLW denkleminde UU_x nonlineer terimi yerine kullanılan lineer sonlu fark yaklaşımlarının mühendislikte karşılan bu tip başka nonlineer denklemlerin de çözümünde kolaylıkla kullanılabileceği söylenebilir.

KAYNAKLAR

- [1] A.T. Filippov, *The versatile Soliton*, Birkhäuser, New York, 2000, 11-13.
- [2] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, New York, 2009, 480-481.
- [3] D. Irk, B-spline finite element solutions of the some partial differential equation systems, Ph.D. Thesis, Eskişehir Osmangazi University Turkey, 2007.
- [4] J.S. Russel, *Report on Waves*: 14th Meetinng of the British Association fot the Advancement of Science, John Murray, London, (1844) 311-390.
- [5] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and a new type of long stationary wave, Phil. Mag., 39 (1895) 422-443.
- [6] N.J. Zabusky and M.D. Kruskal, Interaction of solitons incollisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965) 240-243.
- [7] D.H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966) 321-330.
- [8] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc., A, 272 (1972) 47-78.
- P.J. Morrison, J.D. Meiss and J.R.Carey, Scattering of RLW Solitary waves, Physica D, 11 (1984) 324-336.
- [10] A. V. Wouwer, Ph. Saucez and W. E. Schiesser, Adaptive Method of Lines, Chapman and Hall/CRC, USA, 2001, 70
- [11] S. Kutluay, Sonlu fark yöntemleri, Basılmamış Ders Notları.
- [12] G. D. Smith, Numerical solution of partial differential equation: Finite difference methods, Clarendon Press, Oxford, 1987, 6-9.
- [13] Y. Uçar, Finite difference solutions of the one-dimensional Burger-like equations, Master Thesis, İnönü University Turkey, 2005.

- [14] J.C. Eilbeck and G.R. McGuire, Numerical study of RLW equation I: Numerical methods, Journal of Computational Physics., 19 (1975) 43-57.
- [15] J.C. Eilbeck and G.R. McGuire, Numerical study of RLW equation II: Interaction of Solitary waves, Journal of Computational Physics., 23 (1977) 63-73.
- [16] C.J. Padam and L. Iskandar, Numerical solutions of the Regularized long-wave equation, Computer Methods in Applied Mechanics and Engineering, 20 (1979) 195-201.
- [17] M.E. Alexander and J.L. Morris, Galerkin methods applied to some model equations for non-linear dispersive Waves, Journal of Computational Physics., 30 (1979) 428-451.
- [18] L.R.T. Gardner and G.A. Gardner, Solitary wave of the regularized long wave equation, Journal of Computational Physics., 91 (1990) 441-459.
- [19] L.R.T. Gardner and I.Dağ, The boundary-forced Regularized long wave Equation, Il Nuova Cimento, 110 B, N. 12 (1995) 1487-1496.
- [20] L.R.T. Gardner, G.A. Gardner and I.Dağ, A B-spline finite element method for the Regularized long wave Equation, Commun. Numer. Methods Eng., 11 (1995) 59-68.
- [21] L.R.T. Gardner, G.A. Gardner and A. Doğan, A least squares finite element scheme for the RLW equation, Commun. Numer., Methods Eng., 12 (1996) 795-804.
- [22] L.R.T. Gardner, G.A. Gardner, F.A. Ayoup, N.K. Amein, Modelling an Undular Bore with B-splines, Comput. Methods in Appl. Mech. Engrg., 147 (1997) 147-152.
- [23] D. Bhardwaj and R. Shankar, A computational method for Regularised Long Wave Equation, Comp. Math. Appl., 40 (2000) 1397-1404.
- [24] I. Dağ, Least squares quadratic B-spline finite element method for the Regularized long wave equation, Comp. Methods Appl. Mech. Eng., 182 (2000) 205-215.
- [25] I. Dağ, M.N. Ozer, Approximation of the RLW equation by the least square cubic B-spline finite element method, Applied Mathematical Modelling, 25 (2001) 221-231.

- [26] A. Doğan, Numerical soliton of Regularized long wave equation using Petrov-Galerkin Method, Communications in Numerical Methods in Engineering, 17 (2001) 485-494.
- [27] A. Doğan, Numerical Solution of RLW Equation Using Linear Finite Elements within Galerkin's Method, Applied Mathematical Modelling, 26 (7), (2002) 771-783.
- B. Saka, RLW ve K-S denklemlerinin B-spline kolokeyşin metodları ile çözümleri, Ph. D. Thesis, Osmangazi University Turkey, 2002.
- [29] A. A. Soliman, K. R. Raslan, Colloncation method using quadratic B-spline for the RLW equation, International Journal of Computer Mathematics 78(3) (2001) 399-412.
- [30] I. Dağ, A. Doğan and B.Saka, B-spline collocation methods for numerical solutions of the RLW equation, International Journal of Computer Mathematics, 80 (2003) 743-757.
- [31] I. Dağ, B. Saka and D. Irk, Application of cubic B-splines for numerical solution of the RLW equation, Applied Mathematics and Computation, 159 (2003) 373-389.
- [32] I. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, Journal of Computational and Applied Mathematics, 190 (2006) 532-547.
- [33] A. M. Soliman, M. H. Hussien, Collocation solution for RLW equation with septic spline, Applied Mathematics and Computation, 161(2) (2005) 623-636.
- [34] J.I. Ramos, Explicit finite difference methods for the EW and RLW equation, Applied Mathematics and Computation, 179 (2006) 622-638.
- [35] J.I. Ramos, Solitary waves of the EW and RLW equations, Chaos, Solitons and Fractals 34 (2007) 1498-1518.
- [36] S. Kutluay and A. Esen, A finite difference solition of the regularized long-wave equation, Mathematical Problems in Engineering, (2006) 1-14.
- [37] A. Esen, S. Kutluay, Application of a lumped galerkin method to the regularized long wave equation, Applied Mathematics and Computation, 174 (2006) 833-845.

- [38] Ş. Aydın, Düzenli uzun dalganın (RLW) nümerik çözümü, Master Thesis, Niğde University Turkey, 2007.
- [39] M. Rafei, D. D. Ganji, H. R. M. Daniali, H. Pashaei, Application of homotopy perturbation method to the RLW and generalized modified Boussinesq equations, Physics Letters A, 364 (2007) 1-6.
- [40] M. Inc and Y. Uğurlu, Numerical simulation of the regularized long wave equation by He's homotopy perturbation method, Physics Letters A, 369 (2007) 173-179.
- [41] B. Saka, I. Dağ and D. Irk, Quintic B-spline collocation method for numerical solution of the RLW equation, Anziam J., 49 (2008) 389-410.
- [42] S. Islam, S. Haq and A. Ali, A meshfree method for the numerical soliton of the RLW equation, Journal of Computational and Applied Mathematics, 223 (2009) 997-1012.
- [43] H. N. Hassan and H. K. Saleh, The solution of the regularized long wave equation using the fourier leap-frog method, Z. Naturforsch, 65a (2010) 268-276.
- [44] P. Keskin, Solitary dalga çözümlerine sahip bazı KTD'lere sonlu farklar yöntemlerinin uygulanması, Master Thesis, Eskişehir Osmangazi University Turkey, 2010.
- [45] J. Cai, Some linearly and non-linearly implicit schemes for the numerical solutions of the regularized long-wave equation, Applied Mathematics and Computation 217 (2011) 9948-9955.
- [46] L. P. Pozo, R. Meneses, C. Spa and O.Durán, A meshless finite-point approximation for solving the RLW equation, Mathematical Problems in Engineering, Volume 2012 (2012) 22.
- [47] L. Mei, Y. Chen, Numerical solutions of RLW equation using Galerkin method with extrapolation techniques, Computer Physics Communications 183 (2012) 1609-1616.
- [48] E. Yılmaz, Solitary dalga çözümlerine sahip bazı KTD"lere sonlu elemanlar yöntemlerinin uygulanması, Master Thesis, Eskişehir Osmangazi University Turkey, 2012.
- [49] J. Hozman and J. Lamač, Analysis and application of the discontinuous Galerkin method to the RLW equation, Boundary Value Problems, 2013 (2013):116

- [50] N. A. Al-Zahid, H. O. Bakodah and F. A. Hendi, Numerical solutions of the regularized long-wave (RLW) equation using new modification of laplace-decomposition method, Advances in Pure Mathematics, 3 (2013) 159-163.
- [51] Z. Fang and H. Li, Numerical solution to regularized long wave equation based on mixed covolume method, Applied Mathematics and Mechanics, 34(7) (2013) 907-920.
- [52] O. Iduğ, RLW ve KdV denklemlerinin Solitary dalga ve soliton çözümleri, Master Thesis, Eskişehir Osmangazi University Turkey, 2013.
- [53] P. J. Olver, Euler operators and conservation laws of the BBM equation, Mathematical Proceeding of Cambridge Philosophical Society, 85 (1979) 143-159.
- [54] J. Caldwell and P. Smith, Solution of Burger's equation with large Reynolds number, Applied Mathematical Modelling, 6 (1982), 381-385.

ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı	:	Şeyma YALVAÇ
Doğum Yeri ve Yılı	:	Malatya, 1988
Medeni Hali	:	Evli
İletişim	:	seymakrbkmz@gmail.com
Eğitim		
Lisans	:	Orta Doğu Teknik Üniversitesi,
		Fen Edebiyat Fakültesi, Matematik Bölümü (2011)
Tezsiz Yüksek Lisans	:	Afyon Kocatepe Üniversitesi,
		Pedogojik Formasyon (2014)
Tezli Yüksek Lisans	:	İnönü Üniversitesi, Fen Bilimleri Enstitüsü,
		Matematik Ana Bilim Dalı (2016)