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Bu çalışmada yüksek doz ilaç kullanımına rağmen nöbeti engellenemeyen epilepsi 

hastalarının nöbetlerinin önceden tespit edilmesi amaçlanmıştır. Bu amaç doğrultusunda 

epilepsinin teşhisi ve tedavisinde de kullanılan elektroensefalografi (EEG) kayıtları analiz 

edilmiştir. EEG analizi için doğrusal ve doğrusal olmayan analiz yöntemleri 

araştırılmıştır.  Bonn Üniversitesi verilerinde zaman alanında belirlenen eşik değeri geçen 

peak (tepe noktalarının) sayısına ve güç spektral yoğunluğuna bakılmıştır.   Fakat sağ lıklı 

ve epileptik verilerin farklı dosyalarda olmaları incelemeyi yetersiz kılmıştır. Bu 

nedenle, CHB-MIT verilerinde doğrusal analiz yöntemlerinden sinyalin ortalaması, 

sinyalin ortalama karekökü (RMS) ve doğrusal olmayan sinyal analiz yöntemlerinden 

Shannon entropi, sample entropi, permütasyon entropi, approximate entropi ve spectral 

entropi değerleri hesaplanmıştır. Bu hesaplamalarda sinyal ortalaması ve RMS özellikleri 

ile sırasıyla %58.4, %75 doğruluk ile nöbet dönemi belirlenmiştir.  Entropi yöntemlerinde 

ise ayrı ayrı düşünüldüğünde sırası ile %75, %66.6, %66.6, %79.2 ve %62.5 doğruluk ile 

nöbet dönemi tespit edilmiştir. EEG sinyallerindeki nöbet tespitinde sample entropi 

değerinin yükselmesi veya permütasyon entropisi değerini azalması baz alındığında 

doğruluk %79.2 ye yükselmiştir.  Ayrıca approximate entropi değerinin azalması veya 

spectral entropi değerinin azalması baz alındığında doğrulııuk değeri %83.3 değerine 

yükselmiştir. Bu durum nöbet başlanğıcının bir entropi yöntemi ile tespit edilemediği 

durumda diğer entropi yöntemi ile tespit edilebileceğinin göstergesidir. Ayrıca epileptik 

EEG sinyallerinin analizinde nöbet öncesinde tespit edilen bazı değişiklikler 

bulunmaktadır. Bu değişikjliklerin incelenmesi ve farklı analiz yöntemleri ile de tespit 

edilmesi durumunda epilepsi nöbetlerinin önceden tespit edilebileceği öngörüsüne 

varılmıştır. 

 
Anahtar Kelimeler:  Epilepsi, Sinyal analizi, Sinyalin ortalama değ eri, Sinyalin ortalama 

karekökü, Shannon entropi, Sample entropi, Permütasyon entropisi, Approximate entropi, 

Spectral Entropi. 
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In this study, it was aimed to detect the seizures of epileptic patients whose seizures could not 

be prevented despite the use of high-dose medication. For this purpose, 

electroencephalography (EEG) recordings used in the diagnosis and treatment of epilepsy 

were analyzed. Linear and nonlinear analysis methods were investigated for EEG analysis. 

In the University of Bonn data for the time domain, the number of peaks crossing the 

threshold, and the power spectral density were investigated. However, the fact that healthy 

and epileptic data are in different files made the analysis insufficient. In CHB-MIT data, the 

mean of the signal and root mean square of the signal (RMS) from linear analysis methods 

and Shannon entropy, sample entropy, permutation entropy, approximate entropy, and 

spectral entropy from nonlinear signal analysis methods were calculated. In these 

calculations, the signal mean and RMS properties through the seizure period were 

determined with %58.4, %75 accuracies, respectively. In entropy methods, when 

considered respectively, the seizure period was determined with %75, %66.6, %66.6, %79.2 

and %62.5 accuracy. In the detection of seizures in EEG signals, the accuracy has increased 

to %79.2, based on the increase in the sample entropy value or the decrease in the 

permutation entropy value. In addition, the accuracy value increased to %83.3 based on the 

decrease in the approximate entropy value or the decrease in the spectral entropy value. 

This is an indication that when the onset of a seizure cannot be detected with one entropy 

method, it can be detected with another entropy method. In addition, there are some 

changes detected before the seizure in the EEG signal analysis. It has been predicted 

that epileptic seizures can be detected beforehand if these changes are examined and 

detected by different analysis methods. 

 
Keywords: Epilepsy, Signal analysis, Signal mean value, Signal mean square root, 

Shannon entropy, Sample entropy, Permutation entropy, Approximate entropy, Spectral 

entropy. 



1  

 
1 .LITERATURE RESEARCH 

 
1.1 What is Epilepsy? 

 

The word epilepsy means to be caught or to have a crisis in ancient Greek. In French, 

epilepsy, which comes from Latin, means sara [1]. Epilepsy is the involuntary movement 

of body extremities (arms and feet) as a result of sudden discharges in the brain. Although 

the causes of epileptic seizures differ from person to person, there are cases where the 

exact cause cannot be determined. The factors that cause epilepsy are generally as 

follows: Hippocampal sclerosis, brain tumors, hypoxic (ischemic brain injuries), central 

nervous system infections, developmental disorders of brain tissue, developmental 

disorders in brain vessels, hereditary diseases, and genetic causes. 

 

1.2 History of Epilepsy 

 

Epilepsy was first mentioned 2000 years ago in a chapter of the Babylon textbook (in 

the British Museum). Babylonian physicians suggested that demons or ghosts caused 

epilepsy and that the treatment was a spiritual matter. Because of these thoughts of 

Babylonian physicians, patients were punished by excluding them from society. However, 

Hippocrates, unlike the Babylonian doctors, saw the disease as a brain disorder and wrote a 

book about epilepsy called "The Sacred Disease" [2]. 

In ancient Mesopotamia, epilepsy was mentioned in a part of 40 tablets, called 

’Sakikku kil’, meaning ’All Diseases’ [3]. In the 19th century, epilepsy emerged as a new 

discipline. This concept has become common in Europe and North America. In 1857, a 

hospital was established for ’paralyzed and epileptic’ patients in London. In addition, 

benevolent and humane epilepsy colonies were established against the social problems of 

epileptic patients. In 1873, Hughlings Jackson laid the modern foundation for dysfunction in 

epilepsy by arguing that seizures are the result of sudden short electrochemical discharges. 

Later, the electrical excitability of the animal and human cortex of the brain was discovered 
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by David Ferrier, Gustav Theodor Fritsch, and Eduard Hitzig. In 1909, an organization 

called the International League Against Epilepsy was founded around the world. In 1912, the 

drug called phenobarbital was used as a primary drug in the treatment of epilepsy. In the 

1920s, Hans Berger developed human electroencephalography. After the 1930s, there were 

important developments such as EEG showing electrical discharge in the brain, different 

discharge patterns in different seizure types, and revealing the discharge areas of the 

seizures that occurred. In 1938, a drug called phenytoin was used as the primary drug in 

the treatment of epilepsy. A rapid drug discovery took place after the 1960s. In the following 

years, computerized tomography (CT), magnetic resonance imaging (MRI), MRI 

spectroscopy, and positron emission tomography techniques were used to reveal sensitive 

brain disorders caused by epilepsy [2]. 

 

1.3 How is Epilepsy Diagnosed? 

 

In order to diagnose epilepsy accurately, seizures must be observed and reported to the 

doctor. If possible, the duration of the seizure should be recorded with a video camera and 

shown to the doctor. If necessary, electroencephalography (EEG) and some blood tests can 

also be checked. There are more than 30 types of epileptic seizures, ranging from short-

term seizures to complex seizures. Therefore, video recordings are an important element in 

the diagnosis of epilepsy, as they provide information about the time and duration of the 

seizure [3]. 

 

1.4 Electroencephalography 

 

Electroencephalography is the cerebral bioelectrical activity recorded by electrodes 

placed on the scalp of the human skull through a conductive gel. EEG is the most 

important laboratory method used in diagnosing epilepsy, classifying seizures, and 

following the disease. The basis of EEG activity recorded from the scalp is the post synaptic 

potential of cortical pyramidal cells. Intracellular and extracellular electrical potential 

differences create postsynaptic potentials. This potential is collected in the cortex and spread 

to the scalp from the structures surrounding the brain [4]. An example of EEG signals taken 

from the scalp is shown in Figure 1.1. 
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Figure 1.1 : Signals received with electrodes placed on the scalp of the skull [5]. 

 

1.4.1 EEG activity qualities 

 

  1.4.1.1 Waveform 
 

The term waveform is used to describe the morphology or appearance of a wave. 

Any electrical potential change between two recording electrodes, regardless of the 

waveform, is called a wave. Each wave or series of waves is called an activity. It is 

known that there are many waveforms. Although the shapes and durations of irregular 

waves are not equal, there is symmetry in regular waves, that is, regular descent and rise 

are observed. 

Waves can also be classified as monophasic, biphasic, triphasic, or polyphasic. 

Monophasic waves are known as waves that show a single deflection (deviation) up or down 

the isoelectric line. The diphasic wave has two components in opposite directions, and the 

triphasic wave has three components that change around the isoelectric line. A polyphasic 

wave appears to have two or more components in different directions [4]. Figure 1.2 shows 

examples of various waveforms. 
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Figure 1.2 : Waveforms of EEG [6]. 

 

  1.4.1.2 Repetition 

The repeatability of waves is being rhythmic or arithmetic. In rhythmic repetitive 

waves, there are similar intervals between waves. It is usually regular and often sinusoidal. 

Arrhythmic repetitive waves are defined by varying and irregular intervals between waves. 

They usually have an irregular shape [4]. 

 

 1.4.1.3 Frequency 

Frequency indicates how many times a repeating wave repeats in one second. The 

frequency of a wave or repetitive wave is determined by measuring the duration and 

wavelength of a single wave and calculating its inverse. EEG waves are examined in five 

sub-band ranges. Table 1.1 shows the subbands of EEG waves and the frequency ranges of 

these bands [4]. Figure 1.3 shows the lower frequency bands of the EEG waves. 

 

Table 1.1 : EEG waveforms chart. 

 
 

Name of subband Symb

ol 

Range 

Theta θ 4-8 Hz 

Alpha α 8-12 Hz 

Beta β 12-22 

Hz 

Gamma γ 22-40 

Hz 
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Figure 1.3 : Lower frequency bands of the EEG signal [4]. 

 

 

1.4.1.4 Amplitude 

The amplitude of EEG waves is measured in microvolts (µV ). It is measured by 

comparing the vertical length of a wave with the recorded calibration signal height at the same 

gain and filter settings [4]. 

 

1.4.1.5 Scatter 

EEG signal distribution refers to the electrical activity recorded with electrodes 

placed on different parts of the head. Widespread, diffuse, or generalized distribution refers to 

simultaneous activity in all or nearly all of the head [4]. 

 

1.4.1.6 Phase relationship 

The phase relationship is used to express the timing and polarity of the wave 

components in one or more channels. Waves of different frequencies can appear in 

different channels. Thus, peaks and troughs are formed at the same time. These waves are 

said to be in phase. If the waves at the frequency do not come together in this way, then it is 

said that there is a phase separation (out of phase). Phase differences can be expressed 

based on phase angles. For example, there is a 180-degree phase difference between two 

peaks in opposite directions. Phase shows the time relationship between different 

components of a rhythm in a single channel. For example, a sinusoidal wave has 90° 

between its peak and its zero point, and 360°with the next peak [4]. 
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1.4.1.7 Timing 

It’s timing in different areas of the head may be the same or different. The terms 

simultaneous and synchronous mean that two events occur at the same time. These terms 

are often used interchangeably. However, while the term “synchronous” is sometimes used 

to emphasize simultaneous occurrence, “simultaneous” can be used more broadly to 

denote simultaneous occurrence, which can only be seen in an imprecise manner, within 

the relatively slower recording speed of the EEG [4]. 

 

1.4.1.8 Reactivity 

Reactivity describes the changes that can occur in some normal and abnormal 

patterns with various maneuvers. Some patterns may be provoked or increased, decreased 

or inhibited by eye-opening and closing, hyperventilation, photic or sensory stimuli, changes 

in alertness, movement, or other maneuvers [4]. 

 

1.4.2 Age-related EEG changes 

Some EEG changes occur with aging. These changes cause great variation among 

individuals. The most common change is a slowdown in alpha band frequency in normal 

elderly compared to younger adults. Although the reason for the decrease in EEG is not 

fully explained, it is usually caused by vascular factors [4]. 

 

1.4.3 Identification of abnormal EEG 

If an EEG contains interictal paroxysmal (inter-seizure) patterns and ictal (seizure 

moment) patterns other than normal activity, it is called an abnormal EEG [4]. 

Interictal paroxysmal (intermittent) patterns: Spike, sharp, multiple thorns, fast spike 

currents, spike and slow wave Complex, slow spike and wave complex. 

Ictal (seizure) patterns: generalized Tonic Clonic Convulsion, absence, complex 

partial seizures, simple partial seizures, myoclonic seizures, tonic seizures, atonic aeizures. 

 

1.4.4 The correlation between EEG patterns and neurological diseases 

The presence of epileptic waves in the EEG supports the diagnosis of epilepsy, 

but its absence does not exclude the diagnosis of epilepsy. EEG always remains normal in 

10% to 40% of epileptic cases. Sleep, sleep deprivation, photic stimulation, 
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hyperventilation facilitate the emergence of discharges in epileptic patients. West 

syndrome, Lennox-Gastaut Syndrome, Childhood Absence Epilepsy, Benign Rolandic 

Epilepsy, Juvenile Myoclonic Epilepsy, Temporal lobe seizures can be easily recognized 

by special EEG findings [4]. 

 

1.5 Classification of Epileptic Seizures 

Epileptic seizures differ according to the regions of the discharges that occur in the 

brain. The International Society for Combating Epilepsy classified epilepsy between 1991 

and 1998. Although these classifications are still valid, a new classification was proposed in 

2001 [7]: partial seizures, generalized seizures, and absence seizures. 

 

1.5.1 Partial seizures 

Partial seizures are the effects of discharge in a certain area of the brain in limited 

areas of it. These are studied in three different classes [3]. 

 In simple partial seizures, the person loses consciousness. This does not mean that 

it can stop or control the seizure. Seizures begin and end in a specific area of the 

brain. These seizures are not situations that another person might notice, such as 

immersion, and waking from dreaming. 

 In complex partial seizures, the person experiences changes in consciousness or 

loss of consciousness. It starts with the electrical discharge of the brain and all parts 

of the brain are affected. The person may experience a dreamlike state. There may 

also be situations such as winks or emotional outbursts. 

 In secondary partial seizures, the electrical discharge in the brain starts at one point, 

but affects all parts of the brain. In other words, the seizure starts as partial and 

continues as a generalized one. This can happen in three different ways: 

– The seizure that started as a simple partial seizure may continue as a 

generalized seizure. 

– The seizure that starts as a complex partial continues as a generalized seizure. 

– The seizure that starts as a simple partial seizure turns into a complex partial 

seizure. Complex partial seizures can evolve into generalized seizures [8]. 
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1.5.2 Generalized seizures 

If the electrical activity in the brain affects all parts of the brain simultaneously from 

the beginning of the discharge, or if it affects the whole brain as a secondary partial, it is 

called generalized seizure. Generalized tonic-clonic seizures are most common. 

Generalized tonic-chronic seizures are popularly known as epilepsy. During the seizure, 

contractions and relaxations occur in all the muscles in the body. With the discharge of the 

muscles in the rib cage, the air discharged from the lungs causesbelching. This state is 

called the tonic period. 

After a short time, the conical phase of the seizure begins. During this period, the 

tongue or cheeks may be bitten. After a minute or so, the body begins to relax. The patient 

begins to come to herself. During the tonic period, since there is a loss of consciousness in 

chronic seizures, the patient is not aware of what she is going through at first. Various 

pains may occur in the patient after the seizure. If the seizure lasted longer than five 

minutes or if it was the first seizure, the patient may need to apply to a health care provider. 

Most generalized seizures are idiopathic (the cause of the seizure is unclear). There is no 

cure for such epileptic seizures. Because there is no tissue damage or any symptom that 

causes seizures [3]. Although most patients with seizures state that they feel the seizure, 

there is no definite information about this situation. 

 

1.5.3 Absence seizures 

Seizures that affect the whole brain, called generalized, are absence seizures. 

Absence seizures are mild seizures but can be life-threatening if their frequency increases. 

The absence seizures can be seen in children. Although the child can hear the beginning of 

the sentence that is said to her during the absentmindedness due to the seizure, she may not 

hear the end. This suggests that children lack attention. 

Since the patient breathes deeply during the seizure, the patient may be asked to 

take deep breaths during EEG shots. 

 Myoclonic seizures or splash seizures are a type of seizure that occurs when the 

patient experiences a jump before falling asleep. In these seizures, contractions may 

occur in the whole body or arms. During the seizure, consciousness is clear but 

does not perceive what is happening. Seizure before falling asleep is a 

physiological finding, not a symptom of disease. 

 In Tonic and Atonic seizures, the patient falls to the ground as a result of muscle 

contraction or relaxation. Muscle contraction occurs in tonic seizures and muscle 
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relaxation occurs in atonic seizures. As a result of contractions and relaxations in 

the muscles, the patient loses her balance and falls to the ground. Since patients fall 

forward, they can use helmets for protection [8]. 

Classifying epileptic seizures only by type causes the information about the patient 

to be ignored. Therefore, there are various syndromes of epilepsy disease. 

Various symptoms are taken into account in the determination of epilepsy 

syndromes. These symptoms are can be listed as: Age at onset of seizures, seizure type, 

typical EEG patterns, genetic factors, behaviors during the seizure, triggering factors, 

expected disease course, response to treatment. 

 

1.6 Types of Epilepsy Syndrome 

Different epilepsy syndromes have been described. Epilepsy syndromes are 

generally divided into three main headings according to the cause or etiology: 

 Idiopathic epilepsy: The disease does not have an obvious cause, but there may be a 

genetic link [8]. 

 Symptomatic epilepsy: Symptomatic epilepsy is defined as “epilepsies developing 

secondary to a known lesion or disease of the brain”. In the majority of 

symptomatic epilepsies, seizures are focal, and mainly the first symptom of the 

seizure usually points to the anatomical site of origin. However, every focal seizure 

in childhood is not due to a known lesion, and even the group we call idiopathic 

partial epilepsies constitutes the most common epilepsy in childhood. 

 Cryptogenic epilepsy: Cases where doctors believe the disease is due to a cause, but 

cannot diagnose the cause of the disease [8]. 

 

1.6.1 Common epilepsy syndromes 

• Infantile Spasms: Infantile spasm is a syndrome that begins in infancy, in which a 

hypsarrhythmia (formation of abnormal waves with high voltage values) pattern is 

seen on EEG. It is a severe epileptic encephalopathy characterized by spasms 

clinically. It may cause psychomotor regression during infancy. The 

pathophysiology is not fully elucidated [9]. 

• Lennox-gastaut Syndrome: Lennox-gastaut syndrome (LGS) has specific EEG 

patterns with multiple seizure types. It is a treatment-resistant epileptic 

encephalopathy with a poor prognosis, including cognitive impairment [10]. 
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• Childhood absence epilepsy: Childhood idiopathic generalized seizures are a 

common occurrence. It is a syndrome characterized by seizures recurring many 

times during the day, short-term, loss of consciousness in which awareness 

disappears, and pauses in movements are observed. 

• Juvenile myoclonic epilepsy: In juvenile myoclonic epilepsy (JME), unilateral or 

bilateral recurrent irregular myochronic beats are seen mostly in the upper 

extremities. It is a type of epilepsy often accompanied by generalized tonic-clonic 

seizures (JTKN) and less frequently by absences. Myoclonic beats are triggered by 

awakening and sleep deprivation. Electroencephalography (EEG) shows 

generalized spike wave (4-6 Hz) and multiple spike wave complexes [11]. 

• Benign rolandic epilepsy (BRE): It is the most common and best-known epilepsy 

syndrome of childhood and accounts for 15-25 % of all childhood epilepsy. The 

transmission pattern and gene localization of BRE have not yet been fully 

determined [12]. 

• Temporal lobe epilepsy: Temporal lobe epilepsy is a heterogeneous syndrome in 

terms of etiology, age of onset and response to treatment. Complexpartial seizures 

are common in this syndrome. It is generally seen around 30- 35% [13]. 

• Frontal lobe epilepsy: Frontal lobe epilepsy exhibits a clinical picture that starts 

with strange, stereotypical behaviors, acts of violence that are perceived as 

purposeful, and ends abruptly. The clinical picture with the aforementioned 

symptoms often leads to confusion with pseudo-seizure and sleep disorders [14]. 

• Reflex epilepsy: Reflex seizures are seizures induced by a specific afferent 

stimulus or patient activity. It is classified as characterized by generalized and focal 

seizure findings. Reflex epilepsies are syndromes that include all epileptic seizures 

developed with sensory stimuli [15]. 

 

1.7 Epilepsy Treatment 

Epilepsy is a treatable disease. Since the causes of epileptic seizures are not known 

exactly or differ from person to person, the duration of treatment also differs from person to 

person [3]. 

Treatment of epilepsy is first started with medication. In cases where the drug is not 

effective, surgical treatment is applied if possible. 
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1.7.1 Medication 

The drugs used in the treatment of epilepsy are the ones used to suppress seizures, not 

for therapeutic purposes, like drugs used in the treatment of diabetes mellitus [3]. Since the 

drugs are used to suppress the seizures, it is recommended to take the drugs regularly 

without interrupting their time. The drugs and their doses are determined by considering 

the seizures of the person. 

Epilepsy drugs are designed to regulate electrical activity in brain cells. Drugs 

used in the treatment of epilepsy are given as [8]: Phenobarbitone, phenytoin, sodium 

valproate,carbamazepine, primidone, Vigabatrin, zonisamide,oxcarbamazepine, felbamate, 

gabapentin, topiramate, tiagabine, lacosamide, levetiracetam, pregabalin. 

 

1.7.2 Surgical treatment 

If the patient is resistant to epilepsy drugs, that is, if the seizures cannot be stopped or 

reduced despite the drugs used, surgical treatment can be applied. For surgical treatment to 

be applied, the cause of the disease (a tumor in the brain, occlusion in the cerebral 

vessels, etc.) must be a cause that can be treated with surgical intervention. Surgical 

intervention can be done in two different ways: the first and most preferred is aimed at 

eliminating the epileptic focus (resective surgery), and the second is aimed at reducing the 

spread and frequency of seizures (functional surgery, palliative surgery). 

Resective surgery: As the first step in resective surgery, a number of tests are 

applied to the patient. These tests help determine the patient’s history of seizures. By 

looking at the findings, the focus of the disease is tried to be determined. If it is concluded 

that the seizure focus will not cause any physical damage to the patient as a result of 

surgical intervention, surgical intervention is performed. If the focus of the seizure is a tumor 

or a lesion in the brain, the positive outcome of the surgical intervention is high. However, 

if the seizure focus cannot be detected, EEG data is taken as a basis for surgical 

intervention. 

Paritive (functional) surgery: In parietive (functional) surgery, it is tried to ensure 

that the seizure is effective in less area by cutting the ways of spread of the seizure. It is 

mostly applied in generalized seizures and sudden fall seizures. 

Vagal Nerve Stimulation (VNS): Another treatment method is vagal nerve 

stimulation, popularly known as an epilepsy battery. VNS was first applied in 1988. It is 

generally preferred in patients who are resistant to epilepsy drugs. In the treatment of vagal 

nerve stimulation, spiral electrodes are placed on the vagal nerve in the left region of the 
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neck. These electrodes are connected subcutaneously with the pacemaker in the pocket 

opening to the left chest. With vagal nerve stimulation, shortterm low current values are 

given to the vagal nerve, which regulates heartbeat, breathing patterns, and bowel 

movements. The applied electrical current prevents the occurrence of seizures by 

regulating the uncontrolled electrical discharge that causes epileptic seizures in the brain. 

If the patient’s seizures decrease as a result of VNS, the dose of the drugs used in the 

patient is rearranged by the neurologist. The dose setting in drugs differs from patient to 

patient. There are patients whose daily drug use is reduced by half a year after VNS 

treatment, and there are also patients for whom the treatment is not beneficial. Reducing the 

use of epileptic drugs with serious side effects is of great importance, especially in 

pediatric patients. 

In VNS, the value and duration of the electrical activity to be sent to the vagal nerve are 

predetermined. If these settings are not sufficient for the patient, with the approval of 

his/her doctor, the patient can hold a special magnet close to the pacemaker, that is, the 

epilepsy battery, and send a warning to the vagal nerve at any time. This is a situation that is 

mostly used in patients who do not see the benefit of VNS treatment [16]. 

Nemos T-VSN: Nemos T-VNS is a noninvasive type of VNS. In Nemos T-VSN, a 

special electrode is placed in the left ear. This electrode is connected to the phonesized 

nemos T-VSN device as shown in Figure 1.4. In the Nemos T-VSN device, the electrical 

currents to be sent to the vagal nerve are adjusted. In Nemos T-VSN, the vagal nerve is not 

stimulated directly, but through a branch that passes through the outer ear. Nemos T-VSN 

daily use and settings are made by the relevant neurologist. It is often used to decide whether 

vagal nerve stimulation therapy is appropriate for the patient. If the patient does not respond 

to the treatment, the treatment can be stopped immediately [17]. 

 

Figure 1.4 : Nemos T-VSN [17]. 
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1.8 What Should be done During an Epileptic Seizure? 

 

We can list what we should do when faced with someone who has an epileptic 

seizure: 

• We should avoid situations that would complicate or restrict the patient’s movements. 

• If the patient’s environment is not safe, we should put the patient in a safe place. 

• We must isolate the patient from items that may cause injury. 

• We should check their clothes, if they have tight clothes, we should loosen them. 

• We should take the patient in the most suitable position to allow her saliva to flow 

out. 

• If she is clenching her teeth, we should never try to open it or put anything in her 

mouth. 

• Any forceful movement of the jaw is definitely harmful. 

• Medication should not be given to the patient during the seizure, unfounded 

techniques should not be applied for the seizure to pass. (like smelling onions, 

cologne-like things). 

• It should be checked whether the patient has any health card showing that he/she 

has epilepsy. 

• It should be waited for the seizure to end. 

• Patients with seizures are often exhausted and do not know what to do after the 

seizure, so they should not leave the patient’s side and gently restrain the patient in 

dangerous situations such as heading for the road or facing an open window [7]. 

 
1.9 Literature Review of Epilepsy 

 

Epilepsy is one of the most common brain diseases in the world, and new cases of 

epilepsy are seen every year. The prevalence of epilepsy has led to many studies. The first 

recorded work on epilepsy is Hippocrates’ book, ’Holy Disease’. Contrary to what 

Babylonian physicians thought the disease was caused by demons or ghosts, Hippocrates 

argued in this book that epilepsy was a brain disease [2]. If more recent studies are started to 

be examined, one can say that there are cases that show similar symptoms with epileptic 

seizures but do not have epileptic seizures. In such cases, the seizures are called ’Pseudo-

Epilepsy Seizures’. 

There are some studies to distinguish pseudo-epileptic seizures from true epileptic 
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seizures. In 1999, Varlı stated that the distinction between false epileptic seizures and true 

epileptic seizures could not be made with the observations done by the clinician. It was 

concluded that EEG records should be examined in order to make a correct distinction [18]. 

In another study on epilepsy conducted by Canal and Koçer in 2011, the differences between 

EEG signals from healthy and epileptic individuals were analyzed using neural networks 

and genetic algorithms [19]. Furthermore, it is shown that it is possible to reduce or stop 

seizures in patients who are not candidates for surgery with VNS [16]. Parvez and Paul in 

2014 classified EEG signals by frequency band analysis. As a result of that study, it has 

been shown that with a good combination of sensitivity and resolution, preictal (pre-seizure) 

and interictal (post-seizure) EEG signals can be classified [20]. In 2014, frequency analysis 

was performed from healthy and epileptic EEG signals. In that study, normal EEG 

classification with epileptic signal was performed using Fourier transform. They divided the 

epileptic EEG signals into five frequency ranges as alpha, beta, gamma, delta and theta and 

separated the EEG signals according to their frequencies [21]. A pro totype developed that 

to be used in long-term EEG recordings in order to remove the limitations experienced in 

the patient’s life in long-term EEG recordings. The developed product resembles a behind-

the-ear hearing aid consisting of two electrodes [22]. 

Debener et al., in 2015, conducted a study to prevent the deterioration in EEG signals 

due to the increase in electrode impedance as a result of the evaporation of the gel used 

during EEG recordings over time. In their study, electrodes were placed under the C-shaped 

screen film to be used around the ear. The gel is also used in the designed system, but the 

evaporation of the gel and the disturbances in the EEG have minimized thanks to the design 

[23]. In 2016, a product stated that the best recordings for the in-ear EEG recording 

technique were obtained from the electrode close to the temporal lobe [24]. It is shown that 

surgical treatment for patients with refractory epilepsy was applied to only five percent of 

patients who were candidates for surgical treatment [25]. VNS was applied to 11 patients 

with refractory epilepsy in the Aegean medical faculty hospital and they observed the 

condition of these patients between 2010 and 2014. As a result of this four-year study, they 

concluded that the effect of VNS therapy has increased over the years. They stated that studies 

should be done in longer times for healthy results [26]. A design has been made to stimulate 

the vagus nerve with a constant wave of stimulation. The stimulator can be controlled and 

operated by the smartphone, and also provided flexible stimulus options for various nerve 

stimulation experiments. The low power consumption and small volume of the designed 

system have proven that it can meet the needs of medical experimental research and self-
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treatment of the patient [27]. 

In the diagnosis and treatment stages of epilepsy, it is very time-consuming to 

examine long-term EEG recordings by experts and to detect seizures. Therefore, EEG 

signals are analyzed with linear signal analysis or nonlinear signal analysis methods in 

order to detect the epileptic seizure in EEG automatically. Although EEG signals are not 

linear, in linear signal analysis they are considered as linear. In linear analysis method, 

EEG signals are analyzed in the time domain, frequency domain, and time-frequency 

domain. In the time domain analysis, energy, power, variance, standard deviation, mean, and 

root mean (RMS) of signals are checked. In the frequency domain, spectral power density and 

subband frequency values are investigated [28]. In one study, the epileptic region in the 

signal was identified using the Elman neural network, a special recurrent neural network, 

with features extracted in the time and frequency domain [29]. For the diagnosis of seizures 

in the EEG signal, the signals are separated into subbands by wavelet decomposition and 

classified by genetic algorithm [30]. A prediction filter has been proposed, which shows 

the presence of spikes and sharp waves in seizure regions in EEG signals. In another study, 

the seizure region was determined by the increase in the estimation error energy of the filter 

in the seizure region [31]. Furthermore, epilepsy disease was defined by performing EEG 

signal analysis with a single hidden layer feedforward artificial neural network machine 

(ELM) in 2012 [32]. Seizure was detected in EEG signals applied to artificial neural 

network with multi-stage nonlinear filtering preprocessing [33]. In one study, classifying 

preictal and interictal EEG signals by using features such as frequency and amplitude in 

gamma band signal has been shown [34]. Singh et.al. classified the EEG signals using the 

difference in RMS bandwidth and average frequency seen in epileptic zone rhythms [35]. 

Raghu et.al. showed that the epileptic EEG signal has a larger variance, maximum 

value, wavelet log energy entropy, RMS, and band power properties, while the normal 

EEG signal has a larger minimum value, wavelet Shannon entropy, and zero-crossing 

characteristics [36]. Mahapatra et.al classified ictal and interictal EEG signals using the 

RMS frequency [37]. To distinguish the epileptic region in EEG signals, a feature has been 

proposed as a time-domain energy-based called exponential energy [38]. In recent studies, 

the features used for the diagnosis of seizures in the EEG signal were examined. It has been 

shown that seizures can be determined by using the variance, energy, nonlinear energy, and 

Shannon entropy calculated in the raw EEG signal or by using the variance, energy, kurtosis, 

and line length calculated over the wavelet coefficients [39, 40]. 

As it is mentioned above, EEG signals are not linear, but in linear signal analysis they 
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are considered as linear. For this reason, the preference of nonlinear analysis methods may 

give better information than the EEG signal for the diagnosis of epilepsy. Entropy, one of 

the nonlinear analysis methods, is a thermodynamic concept that gives information about 

system disorder [28]. It is used to measure the irregularity in EEG signals during an 

epileptic seizure. Kannathal et al. [41] and Song et al. [42] showed the difference between 

seizure EEG signals and healthy EEG signals using the entropy methods as Shannon 

entropy, Renyi’s entropy, Kolmogorov-Sinai entropy, sample entropy, and approximate 

entropy. When the entropy values of the epileptic and normal signals were compared, it was 

observed that the entropy values of the epileptic signal were higher than normal. This showed 

that there was a decrease in the flow of information during the seizure [41,42]. EEG signals 

were decomposed into signal subbands by applying discrete wavelet transform at different 

levels. The separated signals were determined the seizure by using approximate entropy 

and spectral entropy [43, 44]. Signals were classified with the calculated wavelet entropy, 

spectral entropy, and sample entropy values by repetitive Elman-based neural networks 

and radial-based neural networks [45]. The extreme learning machine is combined with the 

optimized sample entropy (O-SampEn) algorithm. With this algorithm, it was determined 

whether there was a seizure in the EEG sig nal [46]. 

Nicolaou et.al and Xiang et.al. classified the permutation entropy, fuzzy entropy and 

sample entropy values of EEG signals calculated by support vector machine [47, 48]. It has 

been shown that fuzzy entropy has a better seizure detection index than sample entropy [48]. 

In another entropy method, distribution entropy, the epilepsy signal was segmented in three 

different ways and entropy values were calculated. Distribution entropy has been observed 

minimally affected in the parameter selection [49]. Raghu et. al. used Shannon spectral 

entropy to differentiate between two groups of patients with idiopathic epilepsy. They 

showed that Shannon spectral entropy measured in a specific frequency range can serve to 

follow the development of patients suffering from idiopathic epilepsy [50]. In another study, 

EEG signals were separated into subbands by discrete wavelet transform. Of the power 

spectral analysis in the frequency domain and of the amplitude values in the time domain, the 

sigmoid entropy was calculated. It was concluded that sigmoid entropy, which has less 

computational complexity, can be used to analyze epileptic seizure behavior, which also 

includes brain dynamics [51]. In a recent study, it was shown that the patients can be 

warned before the seizure by determining the time between the preictal and ictal state by 

inferring the distribution entropy feature has been stated [52]. Zhang et. al. proposed 

multidimensional sample entropy and compared with sample entropy, and they showed 
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that seizure onset was more pronounced in the multidimensional sample entropy [53]. 

Li et. al. found that permutation entropy was more sensitive than sample entropy 

for recognizing nonlinear activity in EEG data and predicting the absence seizures [54]. 

Since permutation entropy is a fast complexity measure in time series, it has been used for 

seizure detection in online devices. It was observed that permutation entropy makes a 

reliable distinction, but the sensitivity of the study could not be measured due to limited data 

[55]. Jouny et.al. proposed that the seizure detection was attempted with a combination of 

eighteen different feature extraction methods, including Shannon entropy, sample entropy, 

and permutation entropy [56]. In a study in 2012, the permutation entropy was calculated 

by making different synchronizations of the EEG electrodes. Within the analyzed database, 

the frontal-temporal scalp areas appeared to be consistently associated with higher 

permutation entropy levels compared to the remaining electrodes, while lower permutation 

entropy values were seen in the parietoccipital areas. This showed that from different parts of 

the brain were abnormalities leading to the onset of seizures [57]. Multiscale permutation 

entropy (MPE) was proposed to describe the dynamics in EEG recordings and MPE values 

were classified using linear discriminant analysis. It has been shown that the seizure-free 

state, pre-seizure and seizure moment can be differentiated by dynamic features in MPE 

and EEG. This result supported the view that seizures were predictable from EEG data 

[58]. 

Bhanot et. al. used four feature vectors for seizure detection: short-term permutation 

entropy (STPE), STPE gradient (GSTPE), short-term energy (STE), and short-term mean 

subtracted from ictal and interictal (STM). With these features, RB- Boost (Random Balance 

Boost) algorithm with k-fold cross validation was used to classify data as ictal and 

interictal [59]. Peng et.al. extracted nine features for each EEG channel, including power 

spectral density in six subbands, sample entropy, permutation entropy, and spectral 

entropy. The features of each channel were ordered according to the F-statistic value and 

the classification results were improved by selecting the most informative features [60]. In a 

recent study, channel selection has been made in EEG signals to minimize the complexity 

and computational power of classification. The channels were selected according to their 

permutation entropy values using the K-nearest neighbor (KNN) algorithm combined with 

the genetic algorithm. By channel selection, accuracy, sensitivity, and specificity values in 

seizure detection were improved. They tried to determine which part of the brain was 

associated with the onset of seizures for a particular patient and determined that the P7-O1 

channel was most effective in the selected patient group. They found that the seizure 
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predictions made by selecting the channel are more accurate and less computational 

burden than the seizure predictions made by using all channels [61]. Approximate entropy 

(ApEn) measures the predictability of the current amplitude values in the signal based 

on previous amplitude values. ApEn is preferred because of its reliability and 

computationally low density. Srinivasan V. et al. proposed a neural network-based 

automatic epilepsy detection system using ApEn as an input feature. Seizure detection was 

performed with high accuracy with the proposed system [62]. Invasive 

electroencephalogram (EEG) recordings of patients with medically intractable focal 

epilepsy with approximate entropy and Lempel-Ziv (LZ) complexity were analyzed. It was 

observed that ApEn and LZ values increased during a seizure at focal electrodes. Based on 

changes in seizure status, they showed that these techniques can be used to detect changes 

in EEG due to epileptic seizures [63]. A classification detection method is proposed to 

automatically detect different types of epileptic EEG (containing spike-wave, sharp-wave, 

spike-slow complex wave, and sharp-slow complex wave) data using ApEn coupled 

discrete wavelet transform (DWT). As a result of the study, a higher detection rate was 

achieved with a lower false detection rate [64]. In addition, EEG signals were separated into 

subbands for epilepsy detection. ApEn values were looked at to evaluate the complexity of 

the EEG signal and each subband. T-student statistical analysis was used to evaluate the 

discrimination ability of this method [65]. ApEn and Correlation Size (CD) were calculated 

for epileptic EEG and normal EEG segments, and signals were compared. It is found that 

there were statistically significant differences between the nonlinear properties of epileptic 

EEG and normal EEG signals [66]. 

Guo L. et al. developed an automatic epileptic seizure detection method combined 

with an artificial neural network for classification related to the presence or absence of 

seizure in EEG signals. They used the approximate entropy property derived from the 

multiple wavelets transform for detection [67]. ApEn and sample entropy methods were 

used to extract the quantitative entropy characteristics of different EEG series. It was 

determined that the mean ApEn and sample entropy values for epileptic time series were 

less than non-epileptic time series [68]. In a study conducted in 2012, ApEn, sample 

entropy, phase entropy 1, and phase entropy 2 properties were obtained in the EEG signal 

for the separation of normal, ictal, and preictal states in EEG signals.The resultant features 

were classified with seven different classifiers (Fuzzy Sugeno Classifier (FSC), Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), Probabilistic Neural Network 

(PNN), Decision Tree (DT), Gaussian Mixture Model (GMM) and Naive Bayes Classifier 
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(NBC)). The fuzzy classifier has been shown to detect all three classes with high accuracy 

[69]. EEG signals are decomposed with DWT to calculate approximate entropy and detail 

coefficients. The ApEn values of these coefficients were calculated and the differences 

between normal EEG and epileptic EEG were determined. It has been shown that seizures 

can be detected with an artificial neural network [70]. ApEn values were used to detect 

seizure onset. It has been shown that the onset and end of seizures in EEG signals can be 

detected with ApEn [71]. 

Restrepo J. F. et al. proposed that the wrong parameter selection in ApEn (embedding 

size, threshold(r), and data length(N)) and the presence of noise in the signal weakens 

the discrimination capacity. In that study, rmax(ApEn(m, rmax, N ) = ApEnmax) property 

was used to distinguish dynamics, and rmax provided useful additional information in 

classification [72]. A wavelet-based fuzzy approximate entropy (fApEn) method has been 

proposed for the classification of healthy, interictal, and ictal EEG signals. It was also 

shown that the fApEn value decreased during the ictal period and successfully 

differentiated all three conditions [73]. Vijith V. S. et al. extracted the ApEn, sample 

entropy, and Hurst exponent properties of epileptic and normal EEG signals and made a clear 

distinction between them [74]. A classification method using ApEn, sample entropy, and 

ray entropy have been proposed to classify focused and unfocused EEG. In this method, six 

different classification methods (Naive Bayes (NBC), Radial Basis Function (RBF), 

Support Vector Machines (SVM), KNN classifier, Non-Nested Generalized Examples 

classifier (NNge), and Best First Decision Tree (BFDT)) were used. The NNge 

classification was found to have the highest accuracy among them [75]. 

In a study conducted in 2017, EEG signals were separated into subbands with 

DWT.The ApEn and Shannon entropies of the signal and each subband were calculated 

and support vector machines were used for classification [76]. For Focus EEG and Out of 

Focus EEG classification, ApEn, sample entropy, and fuzzy entropy features were 

extracted and classification was performed with high accuracy [77]. In another study, a 

convolutional neural network combined method based on ApEn and repetition quantitation 

analysis was proposed for the detection of automated EEG recordings. The proposed 

method has been shown to have good performance [78]. Rout S. K. et al. proposed a system 

in which the variable mode decomposition (VMD) and ApEn features extracted from the 

EEG signals and the multilayer multicore random vector functional link network plus 

(MMRVFLN+) are combined. The superior classification accuracy, negligible false positive 

rate (FPR/h), simplicity, feasibility, robustness, and applicability of the proposed method 
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have shown that it can automatically identify episodes of epileptic seizures [79]. A new 

method of varying samples difference has been proposed for the diagnosis of epilepsy in 

EEG signals. Five features of EEG were investigated for the proposed method. It has been 

shown that the shift sample difference method in seizure separation has better performance 

than the commonly used DWT and empirical mode decomposition methods [80]. In 

another study, the approximate entropy and sample entropy values of the high band 

frequencies extracted from the EEG signals were calculated with the Directed transfer 

function. Using the K nearest neighbor and support vector machine, the signals were 

classified as epileptic and normal. It was stated that the seizure activity contained in the 

EEG signal of the proposed system has the advantage of finding accuracy [81]. 

Another entropy method is spectral entropy, which uses frequency domain properties. 

With short sliding time windows for seizure detection in EEG signals, the feature 

extraction of the data was done with time domain, frequency domain, and nonlinear 

methods. They stated that the best results with discriminant analysis were obtained from a 

combination of linear and nonlinear features [82]. In another study, a continuous wavelet 

transform has been proposed to calculate the spectrum of scalp EEG data. Entropy and 

scale-averaged wavelet power were extracted to indicate epileptic seizures using the 

moving window technique. Five patients tests with different seizure types showed that 

wavelet spectral entropy and scale-averaged wavelet power were more efficient than 

renormalized entropy and KullbackLeiler (KL) relative entropy to indicate epileptic 

seizures [83]. EEG was decomposed by wavelet transform and coefficient sets were 

obtained and spectral entropy was applied to these coefficient sets for the detection of 

epileptic seizures. It showed a low measure of the spectral entropy value for the ictal state 

compared to the healthy and interictal states, and the distinction was made with high 

accuracy [84]. 

Mirzaei et al.   investigated EEG and frequency subbands to detect epileptic 

seizures in their study. They applied a discrete wavelet transform (DWT) to decompose the 

EEG into its subbands. By applying histogram and spectral entropy approaches to EEG 

subbands, they differentiated normal and abnormal states of the brain with a high 

probability [85]. Blanco et al. compared the spectral entropy results calculated in different 

frequency bands of EEG signals to decide which band might be a better tool for predicting 

epileptic seizures. They said that entropy at high frequencies has great potential as a 

predictor because it reveals changes in the moments before the seizure [86]. The EEG 

signal is decomposed into subbands using multiple wavelet transform and spectral features 
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such as average spectral size, spectral entropy, and spectral square entropies are extracted. 

It has been shown that the classification of these features using k-NN achieves high 

accuracy [87]. 

With varying mode decomposition (VMD), a series of bands with central frequencies 

in the EEG signals are decomposed into limited mode. Mode spectral entropies are 

calculated from these mode center frequencies. To detect the presence of epileptic seizures, 

this mode of spectral entropies is compared and detected with high accuracy [88]. For the 

prediction of epileptic seizures, feature extraction was performed with spectral entropy 

using power spectral density as probability density in Shannon entropy. Support vector 

machine (SVM) and K-nearest neighbor (KNN) algorithms are used for classification. A 

seizure occurrence was predicted using the first 9 minutes of a 10-minute interval before 

the seizure. The proposed algorithm not only had acceptable accuracy, but was also the 

most successful in terms of computational complexity, the energy required for 

computations, and time delay compared to other studies in the literature [89]. 

Wijayanto and Rizal stated that EEG signals can be analyzed by empirical mode 

decomposition (EMD) methods since EEG signals are non-linear, non-Gaussian, and non-

stationary. In their study, they used the entropy feature (Shannon entropy (ShEN), spectral 

entropy (SE), Renyi entropy (RE), and permutation entropy (PE)) to characterize each 

intrinsic mode function (IMF) generated from the EMD for classification of epileptic 

seizure EEG. They detected seizures with higher accuracy with the Renyi entropy method, 

which is one of the entropy methods used [90]. For the classification of EEG data, a model 

consisting of bidirectional long-term memory (Bi-LSTM) (RNN) architecture memory 

units, neural numbers, and learning algorithms, which is a kind of repetitive neural network, 

has been proposed. Instantaneous frequency and spectral entropy properties are used to train 

the proposed model. In this model, both the classification success of the optimization 

algorithms and the effect of changing the number of neurons on the performance were 

investigated. Classification has been carried out with high success [91]. 

 
1.10 Objectives of the Thesis 

 

For the detection of epileptic seizures, EEG signals containing epileptic activity should be 

analyzed by signal analysis methods. Analysis methods to be used from linear and non-

linear signal analysis methods should be clarified and investigated in detail. The planned 

targets for the detection of epileptic seizures are as follows: 
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• The general characteristics of EEG signals and the difference between them and 

epileptic EEG should be investigated. 

• Linear analysis methods should be investigated because they have easier and 

simpler theories in terms of application. Linear analysis method(s) that give more 

accurate results in seizure detection should be determined. 

• Since EEG signals are not linear, information may be lost during linear analysis. 

For this reason, nonlinear signal analysis methods should be investigated for a more 

accurate determination. 

• Seizures in EEG signals should be tried to be detected with the investigated linear 

analysis methods. 

• Linear and nonlinear signal analysis methods used for seizure detection in EEG 

signals should be compared. It should be determined which method or methods are 

better for detection. 

 
1.11 Thesis Outline 

 

In Chapter 2, preprocessing methods used in the linear signal analysis are 

mentioned. Normalization methods that can be used to compare signals with different 

criteria are specified. Linear analysis methods and non-linear analysis methods are 

explained. 

In Chapter 3, information about the EEG data used is given. In addition, the 

analysis results obtained were interpreted. In Chapter 4, the results are discussed and 

suggestions are made for the further stages of the study. 
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2 .MATERIAL AND METHOD 

 

An epileptic seizure can be defined as the involuntary movement of body parts as a 

result of sudden electrical discharge in the brain. There are many reasons for this sudden 

discharge. Apart from known causes, there are also seizures whose cause cannot be 

determined. Different treatment approaches are applied in the treatment of epilepsy. First of 

all, drug treatment is applied, and if necessary, surgical treatment methods are also applied. 

However, in some patients, surgical intervention cannot be performed since the seizure 

cannot be determined. In these patients, the occurrence of seizures is prevented with the use 

of high-dose drugs. Long-term EEG data are examined very importantly to determine the 

treatment processes of patients before the surgical intervention or for whom the cause of 

seizures cannot be determined. Different signal analysis methods are used to determine the 

seizure onset and seizure period in EEG signals. In this thesis study, linear and non-linear 

signal analysis methods were used for the analysis of long EEG signals. 

Prediction and diagnosis of seizures in epilepsy patients are important issues. Signal 

analysis should be performed to detect seizures from EEG signals. Signal analysis is used 

to convert features in EEG data into a numerical description. For example, information 

about the frequency, energy, power, or complexity of the signal is obtained by signal analysis 

[28]. These features are not clearly visible from the EEG signals, so they are extracted by 

linear or non-linear analysis methods. 

 
2.1 Linear Signal Analysis Methods 

 

In linear signal analysis, EEG signals are considered linear, and the characteristics of 

the EEG data such as the energy of the signal, the strength of the signal, the frequency 

content, and the complexity of the signal can be expressed numerically. 

In EEG signal analysis, first, preprocessing should be applied to remove artifacts in 

the signal. After the preprocessing step, feature extraction should be done from the signals. 
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2.1.1 Preprocessing 

EEG signals recorded in a single EEG channel can be represented as xc(t) 

continuous signals. Here t and c represent the time and the channel, respectively. EEG 

signals can also be represented as xc[n] as a discrete signal. In this step, the EEG signal is 

adapted as xc[n], and the noise in the signal is removed. Normalization operations are 

performed to make comparisons with data on different criteria [28]. 

That is, in preprocessing, EEG signals are prepared for feature extraction. 

For better preprocessing, the signals with the sampling frequency Fs should contain 

frequencies up to Fs/2 that meet the Nyquist criterion. If there are frequencies higher than 

Fs/2, they cause the distortions known as overlap. Therefore, if the signal contains 

frequencies higher than Fs/2, these frequencies should be removed from the signal before 

sampling. For this process, filtering is done by passing the desired frequencies. 

In addition, another operation performed in the signal processing step is 

normalization. This step is performed to compare the signals recorded in different criteria. 

The normalization can be done by several different methods [28]. Normalization methods: 

 Statistical or Z-Score Normalization 

It is preferred when there are very extreme values in the data. The equation is given as 

follows [92]: 

                                                         
     

  
            (1) 

 

In this equation x
′ 

is the normalized data, xi is the input value, µi is the mean of the input set, 

   is the standard deviation of the input set. 

 Min-Max Normalization 

It is used to reduce the data to the 0-1 value range. The equation is given as follows [92]: 

 

     
       

          
           (2) 

In this equation x
′ 

is the normalized data, xi is the input value, xmin is the smallest 

number in the input set, xmax is the largest number in the input set. 

 Median Normalization 

This normalization method is made by taking the median of each input. The equation is 

given as follows [92]: 

 

    
  

          
       (3) 
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In this equation x
′ 

is the normalized data, xi is the input value, ai is median of the input set. 

 Sigmoid Normalization 

This method classifies data in the range of 0 to 1 or -1 to 1. The equation is given as 

follows [92]: 

  

          
        

        
             (4) 

In this equation x
′ 

is the normalized data, xi is the input value, e is natural logarithm 

value. 

Finally, the preprocessing step should be addressed the artifacts. The artifacts are tried to 

be removed using following strategies: [28]: 

• Ignoring: Feature extraction methods are assumed to be only minimally 

affected, and artifacts are treated as if they do not exist. 

• Rejection: Artifact is (automatically) identified and contaminated channels 

or periods are excluded from the analysis. 

• Removing: Artifact is re-identified and, if possible, removed from the EEG 

signal by separation methods such as independent component analysis 

(ICA) or wavelet filtering. There is less data loss compared to the rejection 

method. 

• Training: The system is trained to identify and deal with common artifacts. 

 

Weak artifacts, such as from cardiac activity, are ignored as their effect is assumed to 

be minor. 

Ocular artifacts are ignored in most cases because they are assumed to have minimal 

impact on signal processing methods. Although this assumption is not correct, rejection 

results in large amounts of data loss. But because it is computationally hard, rejecting is 

preferred [28]. 

The presence of muscles close to the electrodes on a scalp EEG is the reason why 

muscle artifacts are common. Rejection is not an option as removing channels from the 

analysis may result in information loss. Lifting is a better solution, but it is a difficult task 

because muscle artifacts frequencies overlap with normal and seizure EEG frequencies, 

especially in the 15-20 Hz range. Muscle artifact separation uses wavelet filters instead of 

conventional filters because they avoid distortion effects. Periods of heavy muscle artifact 

may be completely dismissed [28]. More complex detection algorithms use strategy 4 and 
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selectively train the system to deal with artifacts. 

 

2.1.2 Feature extraction 

 

Feature extraction is the step in which statistics or features required for seizure 

detection is extracted from the data. The feature extraction done at this stage is important for 

classification. It is the key to classification performance. 

 

 2.1.2.1 Time domain analysis 

 

Time-dependent forecasting features are known as time-domain analysis. For the 

classification of epileptic EEG, the time-domain analysis checks the characteristics 

such as an increase in amplitude, regularity, and synchronicity observed during epileptic 

events [28]. 

Amplitude (energy) and variance (strength) of the signal 

The instantaneous amplitude of a signal at n instants is given as |y[n]|. The amplitude 

of the signal is also called the energy of the signal. The square of the amplitude value of 

signal (|y[n]|2) gives the variance of the signal. The instantaneous energy of the signal does 

not give much information about unobservable waveforms as the entire signal cannot be 

observed. Therefore, it is preferable to take the average energy of the signal. The average of 

the signal is given as: 

            
 

 
∑        

              (5) 

where µy[k] is the mean of the sequence y[n] of length N starting at time k. 

The variance y[n] of a signal gives an idea of the spread and regularity of the signal 

by calculating how much it deviates from its mean. The variance of a signal is calculated 

as:  

  
      

 

   
∑         

                               (6) 

where   
     is the variance of an N long string y[n], and µy[k] is the mean of the signal. 

The square root of the variance σy[k] is known as the standard deviation [28]. 

Periodicity (Auto Correlation) 

The autocorrelation function provides information on how many times a signal repeats 

itself. It can often be used to describe regularity. For a real y[n] signal, the autocorrelation 

function is defined as: 

             
 

 
∑                                

                     (7) 



27  

In autocorrelation, comparison of autocorrelations between functions of different 

sizes is not correct, since scaling is not performed at equal intervals. During a seizure, 

there is an increase in regularity often observed on the EEG, where the signal becomes 

more oscillating. Therefore, autocorrelation is used to detect seizures. [28]. 

Synchronization 

Synchronization gives information about how similar the signals are to each other. It is 

calculated similarly to auto-correlation except that it is applied to two different signals (y1 

and y2) [28]. 

                 
 

 
∑                                  

              (8) 

 

Root Mean Square (RMS) 

The square root of the mean square (RMS) is defined as the arithmetic mean of the squares 

of a set of numbers. The RMS is also known as the quadratic mean. If the signal is periodic 

and sinusoidal, the RMS value is close to zero [36]. 

 

     √
 

 
∑   

  
                 (9) 

Mean 

It is the mean of the amplitude values of the signal. If the signal is regular, values close to 

zero are expected [93]. 

 

      
 

 
∑   

 
                (10) 

 

2.1.2.2 Frequency domain analysis 

 

Frequency is a measure of how often an event occurs in a unit of time. EEG signals 

contain events occurring at different frequencies. These differences may not be visually 

obvious because they overlap in the time domain. For frequency analysis of signals, signals 

are examined in the frequency domain using the Fourier transform.  

The Fast Fourier Transform (FFT) for discrete-time finite time-domain signals y[n] is 

given as in the following equation with k +2...k +N of an arbitrary windowed signal for n = 

k + 1 [28]. 

              ∑                
   

 
                   

           (11) 

 

In frequency domain transform, all information in the signal is preserved. In addition, the 
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signal can be converted back to the time domain using the inverse Fourier transform. 

How much power each frequency contributes to the signal is calculated by its 

power spectral density (PSD). The PSD value of a signal is found by squaring the Fourier 

transform of the signal [28]. 

                                    (12) 

PSD analysis is important for understanding the static and dynamic properties of 

EEG. Only PSD analysis is not sufficient for seizure detection. Synchronization, 

periodicity, the energy of the signal, and the strength of the signal should also support 

frequency domain analysis [28]. 

The time-domain and the frequency-domain analyzes contain the same information. 

But they differ in the features they emphasize. Therefore, it is important to obtain the same 

results in both analyzes. 

 

2.1.2.3 Time-Frequency domain analysis 

 

There are many methods such as Wigner-Ville distributions, wavelet analysis, and Gabor 

atoms, which are used in both time and frequency analysis for non-stationary signals [28]. 

Wavelet analysis functions Ψ[n];  

A. Zero integrated 

                                                       ∑         
                                        (13) 

 
 

B. Has limited power 
                                         ∑            

                     (14) 

Wavelets can be used as basis functions to provide a combination of both temporal 

and frequency information. 

Ψab[n] is the wavelet function sampled by b in the function and scaled by a. This 

function is given as: 

         
 

√ 
   

   

 
                (15) 

When a = 1, b = 0, Ψ10[n] is called main wavelet. If the scaling value "a" is 

between 0 and 1 (0<a<1), contraction occurs over time. If a>1, extension occurs over time. 

Scaling values allow finding different resolutions in time and frequency of content [28]. 

Wavelet transformation is required to perform the frequency and time domain 

analysis of a signal y[n] with wavelet analysis. The wavelet transform Wab[n] can be 

defined as: 



29  

              ∑                              
          (16) 

 

In the wavelet transform of the signal y[n], information can be obtained only about the 

frequencies in the same band as Ψab[n]. This operation is known as the convolution 

operation. The signal is filtered to obtain the information about the desired frequencies in 

the signal [28]. 

 

2.2 Non-Linear Signal Analysis Methods 

 

RMS and mean values are useful for extracting information from the signal produced 

by a linear system. Linear signal analyzes are preferred due to the ease of application and 

simplicity of the theory. More information about the signal can be obtained by nonlinear 

signal analysis. An important problem in nonlinear analysis is the noise of the signal. For 

better and more accurate results, nonlinear analysis methods should be applied after the 

signal becomes a noise-free signal. Nonlinear analysis methods can be divided into three 

categories. The first one is the size property, which gives an idea of how complex a system 

is; the second one is the property of Lyapunov bases, which gives an idea of how 

predictable a system is; and the third one is the entropy property, which gives an idea of how 

random a system is [28]. In this study, we have chosen to analyze the entropy property of 

the signal to predict the seizure some time ago using the disorderedness of the signal. 

Entropy was first used in thermodynamics to provide information about the disorder of 

a system. It is also a measure of randomness and can be calculated based on different 

properties of the signal. In general, it gives information about the disorder and regularity of 

the entire system of entropies. 

In the literature, researchers have applied different entropy methods such as Shannon 

entropy, distribution entropy, approximate entropy, permutation entropy, sample entropy, 

fuzzy entropy, sigmoid entropy, spectral entropy, and transfer entropy [43–54]. In this study, 

5 different entropy methods were used. The first entropy method used is Shannon entropy, 

which uses the amplitude value of the signal as a probability. The second is sample entropy, 

which measures the regularity of physiological signals regardless of their length. The third 

is permutation entropy, which is one of the embedded types of entropy that directly uses 

time series in entropy calculations. The fourth is approximate entropy, which uses previous 

amplitude values to measure the predictability of the current amplitude value. And finally, 

the fifth is spectral entropy, which measures in which bands the frequency distribution of 
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the signal is intense. 

2.2.1 Shannon entropy 

 

In the late 1940s, Shannon took the amplitude of the signal as a probability for the 

data transmission unit and applied it to the concept of entropy [94]. 

Let’s define the Shannon entropy (ShEn) of a discrete probability distribution p(k) 

∈ [0, 1]; where k is the number of different probabilities and p(k) is the probability of event 

K occurring [28]: 

     ∈     ∑              
               (17) 

 

To define entropy in bits, the logarithm is taken in base 2. Here, the probability p(k) 

of event K for the sequence y[n] is calculated as [28]: 

      
                         

                        
                  (18) 

High entropy values are observed when signals have a wide and flat probability 

distribution, and low entropy values are observed if they have a narrow and peaked 

distribution. 

 

2.2.2 Sample entropy 

 

Sample entropy (SmpE) is a method of measuring the regularity of physiological 

signals regardless of their length. The SmpE(m,r,n) value can be defined as the negative 

logarithm of the similarity probability of the tolerance value (r) for the points (m) in any 

time series of length n. The sample entropy formula is given as [95]: 

                  
 

 
              (19) 

 where m is the length of the arrays to be compared, r is the tolerance value to accept 

matches, and n is the length of the original data. A and B are defined as follows: 

   
            

 
         

            

 
              (20) 

 

where A
m
(r) is the probability that the two sequences will match for the m + 1 points and 

B
m
(r) is the probability that the two sequences will match for the m point.  SmpE is consistent 

for each (m, r) value to be selected [95]. This situation has been effective in the preference 

of sample entropy in the selection of entropy. 
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2.2.3 Permutation entropy 

 

Another method for assessing complexity in time series is permutation entropy (PE), 

which is based on a comparison of neighboring values. In permutation entropy, low noise 

in the signal does not affect the complexity of the chaotic signal. In this entropy, fast and 

robust information can be obtained as calculations can be made on very large data sets 

without the need for preprocessing of parameters [96]. 

Calculating permutation entropy is given as follows [97]: 

Step 1:The first step in calculating permutation entropy is to transform a 

onedimensional time series into a matrix of overlapping column vectors. Two parameters 

are used for this step. First, the embedding time delay τ controls the number of time 

periods between elements of each of the new column vectors. It is recommended to select 

1. Second is the embedding dimension, which controls the length of each of the M new 

column vectors. It is recommended to select in the range of 3 ≤ M ≤ 7. For τ = 1 and 

M=3, the matrix created from the example array x(t) = {4,7,9,10,6,11,3}:    

  
  
  

 
  
  
   

 
  
   
  

 
   
  
   

 
  
   
   

                (21) 

The number of items to be found in the columns is determined by the embedding 

size M . How many columns will be in the matrix is determined by the calculation of T − 

(M − 1)τ . T is the length of the vector x(t). Also, since the time delay τ is selected as 1, 

there is a time interval between the elements. 

Step 2: In order to calculate the similarity of the columns in the matrix created, 

permutation vectors of size M up to M! are generated. 3! = 6 the permutation vectors 

generated for:  
          
         
         

 

                               

          
          
          

                           (22) 

Step 3: It is necessary to calculate the match ratios of the permutations with the 

columns in the matrix. For this, each value in the column is restructured according to its 

magnitude: 

     

  
  
  

  
  
   

  
  
  

  
  
  

 
 
 

        (23) 
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If there are two or more elements with the same value in the column, the sorting is 

based on the positions of the elements in the array. 

Step 4: The relative frequency of a permutation is calculated by dividing the 

number of columns that matches by the total number of columns. 

Table 2.1: The relative frequencies of the generated permutations. 
 

Permutation N. of Matching Columns pi 

π1 2 2/5 

π2 0 0/5 

π3 1 1/5 

π4 2 2/5 

π5 0 0/5 

π6 0 0/5 

 

 

Step 5: Finally, Equation (25) is used to calculate the PE of order M of the signals: 

                   ∑         
  
                     (24) 

 

                                                                          =1.5219    (25) 

 

PE can be normalized and limited to the range 0 − 1. 28 equations are used for the 

normalization PE value [97]. 

            
 

      
  ∑         

  
                 (26) 

The embedded parameter, M , should be chosen between 3 − 7 in order to 

distinguish the stochastic and deterministic features of the signal. In this study, M is chosen 

as 3. PE values are in the range of 0 − 1. In a regular time series, the PE value is close to 

zero, whereas in an irregular and random time series, the PE value is close to 1. Since the 

EEG series becomes regular during the seizure, the PE value is close to zero during the 

seizure. 

 

2.2.4 Approximate entropy 

 

Another way to learn about the amount of regularity and unpredictability of the fluc 

tuations in the time series of data is the Approximate entropy (ApEn). ApEn was 

developed by Steve M. Pincus by changing the Kolmogorov-Sinai entropy. It was 

originally developed for the analysis of medical data such as heart rate. Moreover, it was 

applied in fields such as finance, physiology, human factors engineering, and climate 
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sciences [98]. 

The steps to calculate the approximate entropy are as follows [98]: 

Step 1: Time series data u(1), u(2), . . . , u(N ) consisting of N raw data values 

obtained from equally spaced measurements over time is created. 

Step 2: r is the filtering level and m is the length of the data being compared. 

Step 3: x(i) = [u(i), u(i+1), . . . , u(i+m−1)] defined by x(1), x(2), . . . , x(N 

−m+1)  vector array is created. 

    Step 4: The set {x(j)} represents the sequences x(j), where j = 1, .., N − m +1. 

Each value of x(j) in set {x(j)} is compared with the value of x(i): 

     
                                                              (27) 

where the d value represents the maximum distance between x(i) and x(j). 

                                       (28) 

Step 5: For the calculation of ApEn, the parameters Φ
m
(r) and Φ

m+1
(r) are 

defined as follows: 

                          ∑       
          

             (29) 

 

                                            ∑       
            

            (30) 

 

Step 6: ApEn(m,r,N) is defined using Φ
m
(r) and Φ

m+1
(r): 

 

                                    (31) 

 

The m value is usually chosen as 2 or 3, while the r value is application dependent [98]. 

 

2.2.5 Spectral entropy 

 

Spectral entropy(SE) is a modified method by using power spectral energy instead of 

amplitude values used as a probability in Shannon entropy. It is a measure of the spectral 

complexity present in the signal [99]. A low spectral entropy value means that the 

frequency distribution is dense in some frequency bands [100]. The Fourier transform of the 

signal x(i), i =1,2,..,N is X(i). In spectral entropy calculation, X(i) value is considered as 

probability. Spectral entropy equation (32) is defined as in [101] : 

 
      ∑           

 
                   (32) 

 



34  

 
   

    

∑      
   

              (33) 

The spectral entropy is normalized to minimize the effects of data lengths. Normalized 

Spectral entropy is: 

        
 

     
∑           

 
                   (34) 

Spectral entropy gives the maximum value of 1 when the amplitude distribution of the 

signal is flat, especially when the amplitude values of the frequency component in each 

frequency band are equal. Otherwise, if the amplitude distribution is summed in only one 

frequency component, the spectral entropy returns the minimum value of 0, especially 

where only one frequency component has a nonzero amplitude value. The equation in this 

case 34 the spectral entropy range is defined between [0,1] [101]. 
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3. FINDINGS AND DISCUSSION 

 
 
In this thesis study, two different data sets are used: Bonn University EEG data and EEG 

data collected from Boston Children’s Hospital (CHB-MIT) [102, 103]. Bonn University 

data belong to 5 different data sets and 5 different patients. Data were recorded using a 10-

20 electrode system. Information about these sets is in Table 3.1 below: 

Table 3.1: University of Bonn EEG datasets. 

 
 

Set Name Feature of the set 

A set Normal EEG data recorded from normal individuals with eyes open 

B set Normal EEG data recorded from normal individuals with eyes closed 

C set Epileptic EEG data obtained from epilepsy patients from the hippocam- 

pal region of the brain between seizures 

D set Epileptic EEG data recorded between seizures from an epileptogenic 

region from epilepsy patients 

E set EEG data recorded during an epileptic seizure 

 

 
The raw data of the University of Bonn is shown in Figure 3.1 and the electrode 

design is shown in Figure 3.2. 

In addition, CHB-MIT EEG data collected from the Boston children’s hospital 

were also used. There are 23 subjects 5 men from 3-22 years old and 17 women from 1.5-

19 years old. The EEG data in files 1 and 21 belong to the same person (subject) but they 

were recorded at different times. Case chb24 was added to this data in December 2010 

and is not a currently known piece of information about the patient. Table 3.2 contains 

information about the gender and age of CHB-MIT patients. EEG signals of 24 patients 

(subjects) with a 256 Hz sampling rate of 23 channels were recorded as FP1-F7 (1), F7-

T7 (2), T7-P7 (3), P7-O1 (4), FP1-F3(5), F3-C3 (6), C3-P3 (7), P3-O1 (8), FP2-F4 (9), 

F4-C4 (10), C4-P4 (11), P4-O2( 12), FP2-F8 (13), F8-T8 (14), T8-P8 (15), P8-O2 (16), 

FZ-CZ (17), CZ-PZ (18),P7-T7 (19 ), T7-FT9 (20), FT9-FT10 (21), FT10-T8 (22) and T8-
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P8 (23). The places of electrodes are labeled as FP: frontopolar, F: frontal, T: temporal, 

O: occipital, C: central, and P: parietal [103]. In Figure 3.3, the raw EEG data of a 19-year-

old female patient, and in Figure 3.4 the electrode design used is shown. 

 

 

 
 

 

Figure 3.1:   University of Bonn raw EEG data. 

 

 

 

 

Figure 3.2: Electrode design used in University of Bonn data [102]. 
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Figure 3.3:   Raw EEG data of a 19-year-old female patient from the CHB-MIT database. The signals are 

separated at 600 uV size. 

 

 
 

 

Figure 3.4:   Electrode diagram of CHB-MIT data. 
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Table 3.2: Gender and age of CHB-MIT patients. 

 
 

Patient Gender Age (Years) 

chb01 F 11 

chb02 M 11 

chb03 F 14 

chb04 M 22 

chb05 F 7 

chb06 F 1.5 

chb07 F 14.5 

chb08 M 3.5 

chb09 F 10 

chb10 M 3 

chb11 F 12 

chb12 F 2 

chb13 F 3 

chb14 F 9 

chb15 M 16 

chb16 F 7 

chb17 F 12 

chb18 F 18 

chb19 F 19 

chb20 F 6 

chb21 F 13 

chb22 F 9 

chb23 F 6 

 

Using the University of Bonn data, it was tried to distinguish between healthy EEG 

signals and epileptic EEG signals with linear analysis methods. In non-linear analysis 

methods, the data of the Boston Children’s Hospital, which contains both preictal and ictal 

data in a file, were used to detect epileptic activity. It is aimed to determine how few 

electrodes can be differentiated in the University of Bonn data. To do this, the signals 

obtained from the electrodes around the ear were examined based on vagal nerve 

stimulation and in-ear EEG recordings. 

In this study, EEG signals recorded from T7, T8, P7, and P8 electrodes located around 

the ear in the 10-20 electrode system were analyzed. 
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Steps of time-domain analysis are given as follows : 

 A 40 Hz low-pass filter is applied. 

 A median filter is applied to filter out the DC noise in the signals. 

 The difference signal is created by subtracting the filtered EEG signal from 

the normal EEG signal. 

 The difference signal has been developed to be free of noise. 

 Half of the maximum amplitude value found in the developed signal is 

accepted as the threshold value. The peaks that exceed this threshold value 

are plotted in the signal. 

 

The number of peaks crossing the threshold gives the spike rhythmicity and the 

maximum amplitude value of the spikes crossing the threshold gives the relative peak 

amplitude. 

Healthy EEG and epileptic EEG signals from the T3 electrode are shown in Figure 3.5 

and Figure 3.6, respectively. The one-second representations of these signals are given in 

Figure 3.7 and Figure 3.8, respectively. 

 

 

Figure 3.5:   Healthy EEG signal from T3 electrode. 



40  

 

 
 

Figure 3.6:   Epileptic EEG signal from T3 electrode. 

 

 

 

 

 

Figure 3.7: A one-second view of the healthy EEG signal received with the T3 electrode. 
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Figure 3.8: A one-second view of the epileptic EEG signal received with the T3 electrode. 

 

 

With the time-domain analysis, the number of spikes that exceed the threshold value 

in normal and epileptic EEG signals is 6 and 11, respectively. The spikes obtained by time-

domain analysis are shown in Figure 3.9 and Figure 3.10, respectively. 

In the epileptic signal, the number of peaks exceeding the threshold is higher. 

However, since healthy data and epileptic data are in different text files, the amplitude 

values of both signals are different. This causes a difference in threshold values. For this 

reason, such a comparison of the peak numbers that exceed the threshold value does not 

give us exact information. 

In frequency domain analysis, the power spectral density (PSD) of the signals is 

calculated. The power spectral density of epileptic EEG signals is also much higher than 

that of healthy EEG signals. The power spectral density of the healthy and epileptic signals 

are given in Figure 3.11 and Figure 3.12, respectively. 
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Figure 3.9: The spikes found in the healthy EEG signal received with the T3 electrode. 

 

 

 

 

 

Figure 3.10: The spikes found in the epileptic EEG signal received with the T3 electrode. 
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Figure 3.11: The spikes in the epileptic EEG signal received with the T3 electrode. 

 

 

 

 

 

Figure 3.12: The spikes in the epileptic EEG signal received with the T3 electrode. 
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Linear analysis methods are generally statistical methods. The fact that the signals 

are in different text files in the University of Bonn data is a disadvantage in examining the 

differences. In the CHB-MIT data, the signals were recorded in a certain time period and 

the seizure deletions were marked, which makes the examinations easier. Therefore, in this 

study, the seizure period was tried to be determined by the mean of the signal and the root 

mean square (RMS) value, which is one of the linear analysis methods in the time domain 

in the CHB-MIT data. 

We calculated the RMS and mean values of the EEG signal of each channel of each 

patient (subject). It is known that statistical features are used to determine the seizure 

moment in the time domain from the linear analysis method. To see the change in the seizure 

period more clearly, 5 minutes before and 5 minutes after the onset of the seizure EEG 

signals were taken from the patient. 

 

 

Figure 3.13: RMS and mean values of the P7-O1 channel of a 19-year-old female patient. The y-axis on the 

left side of the graph shows the mean values of the EEG signal in µV. The y-axis on the right shows the RMS 

value of the EEG signal in µV. The x-axis represents time. The ictal state representing the seizure is framed 

by purple. 

 

As seen in Figure 3.13, the RMS value is higher in the ictal condition than in the 

preictal condition. In addition, the mean value, positive and negative aspects move away 

from zero. As seen in Figure 3.14, this situation is also seen in other channels of the same 

patient. 
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Figure 3.14:   RMS and mean values of EEG data from all channels of a 19-year-old woman patient. 
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(a) F7-T7 channel of a 14-year-old female patient. 

 
 

 

(b) P4-O2 channel of a 2-year-old female patient. 
 

 

Figure 3.15: RMS and mean graphs from different channels of different patients. 

 

 
 

Figure 3.15a shows the RMS and mean values of the F7-T7 channel of a 14- year-

old female patient. In this graph, it is seen that the RMS value increases in the ictal state 

compared to the preictal state, and the mean value in the ictal state moves away from zero in 

positive and negative directions compared to the preictal state. In addition, it is observed that 

there is a change in the RMS value and the mean value 50 and 150 seconds before the onset 

of the seizure. 

Figure 3.15b shows the RMS and mean values of the P4-O2 channel of a 2- year-old 

female patient. In this patient, an increase in RMS values and deviation from zero in the 

mean value are observed in the ictal state compared to the preictal state. More pronounced 

changes are seen up to 200 seconds before the onset of the seizure. 
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(a) P3-O1 channel of a 7-year-old female patient. 

 
 

 

(b) FP1-F3 channel of a 7-year-old female patient. 

 
 

Figure 3.16: RMS and mean graphs from different channels of different patients. 

 

 
 

Figure 3.16a shows the RMS and mean values of the P3-O1 channel of a 7- year-

old female patient. This patient’s RMS and means values in the ictal state are not 

distinguishable from the values in the preictal state. However, a change in RMS and mean 

values are observed approximately 250 seconds before the onset of the seizure. 

Figure 3.16b shows the RMS and mean values of the FP1-F3 channel of another 7-

year-old female patient. The RMS value increases in the ictal state compared to the preictal 

state. The difference between the mean value in the ictal state and the mean value in the 

preictal state is indistinguishable. 
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(a) T7-FT9 channel of a 22-year-old female patient. 

 
 

 

(b) P8-O2 channel of an 18-year-old female patient. 
 

 

Figure 3.17: RMS and mean graphs from different channels of different patients. 

 

 
 

Figure 3.17a shows the RMS and mean values of the T7-FT9 channel of a 22- year-

old female patient. Towards the end of the ictal region, changes in RMS and mean values 

are observed. In addition, changes in both RMS and mean values are observed 

approximately 100 seconds before the onset of the seizure. 

Figure 3.17b shows the RMS and mean values of the P8-O2 channel of an 18- year-

old female patient. In the ictal state, an increase in RMS values and a deviation from zero in 

mean values are observed. RMS and mean values change approximately 250 seconds 

before the seizure. 

The patient data given in Figure 3.15, Figure 3.16, and Figure 3.17 were 

randomly selected to show the changes in RMS and mean values. 
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EEG signals are considered linear when using the RMS and mean methods. However, 

EEG signals are not linear. There are some information losses in the analysis of non-linear 

EEG signals with linear analysis methods. Nonlinear analysis methods should be used to 

obtain more comprehensive information about epileptic seizures from signals. In this study, 

nonlinear analysis methods such as Shannon entropy, permutation entropy, sample 

entropy, approximate entropy, and spectral entropy were preferred. Among these entropies, 

Shannon entropy is a type of spectral entropy that uses the amplitude value of the signal as a 

probability in entropy calculations. Permutation entropy is a type of embedded entropy that 

directly uses time series to estimate entropy. Sample entropy is a method that measures the 

regularity of physiological signals regardless of their size. The consistency property of 

sample entropy is another reason for preference. Approximate entropy is a method that 

measures the predictability of the current amplitude values of physiological signals with 

previous amplitude values. Spectral entropy measures the extent to which the amplitude 

values of EEG signals are distributed in frequency bands. 

 

Figure 3.18: Shannon entropy values of the P4-O2 channel of an 19-year-old female patient. The y-axis of 

the graph shows the Shannon entropy values of the EEG signal. The x-axis represents time in s. The ictal state 

representing the seizure is framed by purple. 

 

Figure 3.18 shows the Shannon entropy values of the P4-O2 channel of a 19- year-

old female patient. It is calculated by considering the probability of amplitude values in the 

Shannon entropy data set. Shannon entropy deviates from zero due to the complexity of the 

amplitude values in the ictal period. Figure 3.19 shows the Shannon entropy values of all 

channels of the same patient. 
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Figure 3.19: Shannon entropy values of all channels of an 19-year-old female patient. 
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(a) T7-P7 channel of an 18-year-old female patient. 
 

 

(b) P8-O2 channel of a 14-year-old female patient. 
 

 

Figure 3.20: Shannon entropy values of different channels of different patients 
 

In Figure 3.20a, Shannon entropy values of the T7-P7 channel of an 18-year-old 

female patient are shown. In the ictal period, Shannon entropy values moved away from 

zero. In addition, a sudden change in Shannon entropy values is observed about 250 

seconds before the seizure. 

Figure 3.20b shows the Shannon entropy values of the P8-O2 channel of a 14- year-

old female patient. In the ictal period, in addition to the fact that Shannon entropy values 

move away from zero, a sudden change in entropy values is observed about 150 seconds 

before the onset of the seizure. 
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(a) F7-T7 channel of an 22-year-old male patient. 

 

 

(b) T8-P8 channel of a 16-year-old male patient. 
 

 

Figure 3.21: Shannon entropy values of different channels of different patients 
 

Figure 3.21a shows the Shannon entropy values of the F7-T7 channel of a 22- year-

old male patient. In the ictal period, Shannon entropy values do not move away from zero. 

However, a sudden change in entropy values is observed about 100 seconds before the 

onset of the seizure. 

Figure 3.21b shows the Shannon entropy values of the T8-P8 channel of a 16- year-

old male patient. The difference between the ictal period and the preictal period cannot be 

distinguished. 
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(a) F3-C3 channel of an 11-year-old female patient. 

 

 

(b) C3-P3 channel of a 3.5-year-old male patient. 
 

 

Figure 3.22: Shannon entropy values of different channels of different patients 
 

Figure 3.22a shows the Shannon entropy values of the F3-C3 channel of an 11- 

year-old female patient. In the ictal period, the Shannon entropy moves away from zero. 

Shannon entropy values of the C3-P3 channel of a 3.5-year-old male patient are 

shown in Figure 3.22b. In the ictal period, besides the departure from zero in Shannon 

entropy, there are sudden changes at different times before the seizure. 

Figure 3.20, Figure 3.21, and Figure 3.22 show Shannon entropy changes in 

different channels of different patients. 
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In epileptic seizures, the entire brain is usually affected. During the transition from 

the preictal state to the ictal state, complexity occurs in the signals. Because of this 

complexity, the sample entropy value is expected to increase at the onset of the seizure [53]. 

Permutation entropy is expected to decrease at the onset of the seizure [56]. It was 

observed that the permutation entropy value decreased in the majority of the patients at the 

onset of the seizure. 

 

Figure 3.23: Sample entropy and permutation entropy values of the T7-P7 channel of an 11-year-old female 

patient. The y-axis on the left side of the graph shows the sample entropy values of the EEG signal. The y-axis 

on the right shows the permutation entropy values of the EEG signal. The x-axis represents time in s. The 

ictal state representing the seizure is framed by purple. 

 

 

In Figure 3.23, it is seen that the sample entropy value increases at the beginning of the 

seizure and the permutation entropy decreases. In other words, the ictal region can be 

determined by considering sudden decreases and increases in entropy values. Figure 3.24 

shows the sample entropy and permutation entropy values of all channels of the same patient. 
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Figure 3.24 : Sample entropy and permutation entropy values of all channels of an 11-year-old female 

patient. 
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(a) T7-P7 channel of an 18-year-old female patient. 

 

 

(b) P8-O2 channel of a 22-year-old male patient. 
 

 

Figure 3.25 : Sample entropy and permutation entropy values of different channels of different 

patients 

 

 
 

Figure 3.25a shows the entropy values of the T7-P7 channel of an 18-year-old 

female patient. In the ictal state, there was an increase in both entropy values compared to 

the preictal state. In addition, changes in entropy values are observed approximately 250 

seconds before the onset of the seizure. 

Figure 3.25b P8-O2 channel values of a 22-year-old male patient are shown. The 

distinction between the ictal state and the preictal state cannot be fully made with either 

entropy method. However, a sudden change in entropy values is observed until 120 

seconds before the onset of the seizure. 
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(a) P7-O1 channel of a 16-year-old male patient. 

 

 

(b) P8-O2 channel of a 12-year-old female patient. 

 

Figure 3.26 : Sample entropy and permutation entropy values of different channels of different 

patients 

 

 
 

Figure 3.26a shows the entropy values of the P7-O1 channel of a 16-year-old male 

patient. While the sample entropy value increases in the ictal case compared to the preictal 

case, it decreases in the permutation entropy value. 

Figure 3.26b shows the values of the P8-O2 channel of a 12-year-old female patient. 

In this patient, while the entropy value for example increases in the ictal state, it is not 

possible to distinguish between the ictal state and the preictal state in permutation entropy. 
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(a) C3-P3 channel of a 2-year-old female patient. 

 

 

(b) F7-T7 channel of a 3-year-old female patient. 
 

 

Figure 3.27 : Sample entropy and permutation entropy values of different channels of different 

patients 

 
 

Figure 3.27a shows the values of the C3-P3 channel of a 2-year-old female patient. 

In the sample entropy ictal case, there is a slight increase compared to the preictal case, 

while there is a slight decrease in the permutation entropy. In addition, there was a sudden 

change in both entropy values about 210 seconds before the onset of the seizure. 

Figure 3.27b shows the entropy values of the F7-T7 channel of a 3-year-old female 

patient. The difference between the ictal state and preictal state cannot be distinguished 

with either entropy method. 
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(a) P3-O1 channel of a 19-year-old female patient. 

 

 

(b) T7-P7 channel of a 7-year-old female patient. 
 

 

Figure 3.28: Sample entropy and permutation entropy values of different channels of different 

patients 

 

Figure 3.28a shows the values of the P3-O1 channel of a 19-year-old female 

patient. While there is an increase in both entropy values at the beginning of the seizure, 

sudden decreases are observed in both entropy values during the seizure. Figure 3.28b 

shows the sample entropy and permutation entropy values of the T7-P7 channel of a 7-

year-old female patient. The seizure duration was very short. With both entropy methods, 

the difference between ictal and preictal states could not be determined. In addition, a 

sudden change is observed in both entropy methods approximately 250 seconds before the 

onset of the seizure. 
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Figures 3.25, Figure 3.26, Figure 3.27, and Figure 3.28 are randomly chosen to 

show the different states observed in permutation entropy and sample entropy values. 

The approximate entropy gives information about the disorder of the signal. Epileptic 

EEG signals are more regular than normal EEG signals [70, 73]. For this reason, ApEn 

values of epileptic EEG signals are lower than normal EEG signals [62, 66, 68, 70, 

73]. Spectral entropy is a measure of the spectral distribution of EEG signals [99]. 

Since the frequency distribution in epileptic EEG signals is concentrated in certain 

frequency bands, the spectral entropy value is lower [84]. 

 

 

Figure 3.29: Approximate entropy and spectral entropy values of the T7-FT9 channel of a 3.5-year-old male 

patient. The y-axis on the left side of the graph shows the approximate entropy values of the EEG signal. The 

y-axis on the right shows the spectral entropy values of the EEG signal. The x-axis represents time in s. The 

ictal state representing the seizure is framed by purple. 

 

 

Figure 3.29 shows the approximate entropy and spectral entropy values of the T7-

FT9 channel of a 3.5-year-old male patient. In addition, approximate entropy and spectral 

entropy values of all channels of the same patient are shown in figure 3.30. 
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Figure 3.30 : Approximate entropy and spectral entropy values of all channels of a 3.5-year-old male 

patient. 
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(a) C3-P3 channel of a 14.5-year-old female patient. 

 
 

 

(b) C3-P3 channel of a 9-year-old female patient. 
 

 

Figure 3.31: Approximate entropy values and spectral entropy values belonging to different patients. 

 

Figure 3.31a shows the approximate entropy and spectral entropy values of the  C3-

P3 channel belonging to a 14.5-year-old female patient. As expected, there is a decrease in 

seizure duration in both entropy methods. 

Figure 3.31b shows the approximate entropy and spectral entropy values of the  C3-

P3 channel belonging to a 9-year-old female patient. Contrary to the expected decrease, an 

increase in entropy values are observed in this patient during the seizure period. Figure 

3.31 show the values of the same channel belonging to different patients. While the 

expected situation during the seizure period is observed in figure 3.31a, it is not observed in 

figure 3.31b. this is an indication that the same methods are not decisive for every patient or 

every channel. 
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(a) T8-P8 channel of a 3.5-year-old male patient. 

 
 

 

(b) F7-T7 channel of a 3-year-old female patient. 
 

 

Figure 3.32: Approximate entropy values and spectral entropy values belonging to different patients. 
 

Figure 3.32a shows the approximate entropy and spectral entropy values of the T8-

P8 channel belonging to a 3.5-year-old male patient. Approximate entropy and spectral 

entropy values are decreased at the onset of seizure. There is also a sudden decrease in 

spectral entropy about 100 seconds before the onset of the seizure. Figure 3.32b shows the 

approximate entropy and spectral entropy values of the F7-T7 channel belonging to a 3-

year-old female patient. This patient was a decrease in onset seizure both entropy methods. 
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(a) F7-T7 channel of a 11-year-old female patient. 

 
 

 

(b) C3-P3 channel of a 11-year-old female patient. 
 

 

Figure 3.33: Entropy values of different channels of the same patient recorded at different times. 

 

 
 

Figure 3.33 shows the entropy values of the EEG signals of an 11-year-old female 

patient recorded at different times. In figure 3.33a, the entropy values of the T7-P7 channel 

are lower in the ictal period than in the preictal period. Figure 3.33b shows the entropy 

values of the C3-P3 channel. While there is a decrease in approximate entropy in the ictal 

period, there is no change in spectral entropy between the ictal state and the preictal state. 
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(a) T8-P8 channel of a 19-year-old female patient. 

 
 

 

(b) T8-P8 channel of a 1.5-year-old female patient. 
 

 

Figure 3.34: Approximate entropy values and spectral entropy values belonging to different patients. 

 

Figure 3.34a shows the entropy values of the T8-P8 channel of a 19-year-old 

female patient. Approximate entropy is lower in the ictal period than in the preictal period. 

On the other hand, there is a sudden decrease in spectral entropy during the seizure. 

Figure 3.34b shows the entropy values of the T8-P8 channel of an 11-year-old 

female patient. With both entropy methods, it is not possible to distinguish between the ictal 

state and the preictal state. 

Figures 3.31, Figure 3.32, Figure 3.33, and Figure 3.34 are randomly chosen to 

show the different states observed in approximate entropy and spectral entropy values. 
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Figure 3.35: RMS and mean values belonging to the T8-P8 channel of the one-hour signal of a 3.5-year-old 

male patient. 
 

 

 

 

 
Figure 3.36: Shannon entropy values belonging to the C4-P4 channel of the one-hour signal of a 3.5-year-

old male  patient. 
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Figure 3.37: Sample entropy and permutation entropy values belonging to the P3-O1 channel of the one-

hour signal of a 3.5-year-old male patient. 

 

 

 

 

 

Figure 3.38: Approximate entropy and spectral entropy values belonging to the C4-P4 channel of the one-

hour signal of a 3.5-year-old male patient. 
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The analysis of one-hour EEG recordings of a 3.5-year-old male patient with 

different methods are shown in Figure 3.35 , Figure 3.36, Figure 3.37, and Figure 3.38. 

Figure 3.35 shows the mean and RMS values of the one-hour EEG signal of the T8-P8 

channel. At the onset of the seizure, an increase in RMS values and deviations in the mean 

value are observed. There are also changes before the seizure. 

Figure 3.36 shows the Shannon entropy values of the one-hour EEG signal of the 

C4-P4 channel. It is observed that there is a deviation in the Shannon entropy values during 

the seizure. In addition, there are changes in entropy values before the seizure. 

Figure 3.37 shows the permutation entropy and sample entropy values of the one-

hour EEG signal of the P3-O1 channel. While there is an increase in sample entropy values 

at the beginning of the seizure, a sudden decrease is observed in the permutation entropy 

value during the seizure. 

Figure 3.38 shows the approximate entropy and spectral entropy values of the one-

hour EEG signal of the C4-P4 channel. There is a decrease in both entropy methods at the 

beginning of the seizure. Also, there is a change in entropy values before the seizure. 

For both statistical analyzes and entropy methods, it was preferred to examine 5 

minutes before and 5 minutes after the onset of the seizure to better analyze the changes 

occurring at the onset of the seizure. 
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4. CONLUSIONS AND RECOMMENDATIONS 

 
In the University of Bonn data, healthy and seizure data can be classified by 

amplitude values, the number of peaks exceeding the threshold, and power spectral 

analysis. But the fact that the data is in separate txt files is not healthy for comparison. 

Therefore, one hour of data (CHB-MIT) including the seizure period was analyzed. 

In 18 of the 24 patient data in the CHB-MIT dataset, it was observed that the RMS 

values increased in the ictal state compared to the preictal state. In addition, in 14 of them, 

the mean value moves away from zero in the ictal state compared to the preictal state. In 

other words, according to the mean and RMS values of the EEG signal, the ictal region 

was determined at a rate of 58.4% and 75%, respectively. Linear analysis methods are 

preferred due to the ease of application and theory. But EEG signals are not linear. 

Therefore, information loss may occur in the analysis with linear analysis. It was also 

analyzed with entropy, one of the non-linear analysis methods, to avoid information loss. 

In this study, 5 different entropy methods were used. In the first method, Shannon 

entropy, since the complexity of the signal increases during the seizure period, the entropy 

value moves away from zero in positive and negative directions during the seizure. This 

difference was observed in 18 of 24 patients, ie 75% of patients, in the CHB-MIT data. 

When the sample entropy and permutation entropy values in the CHB-MIT data are 

analyzed separately, it is seen that the sample entropy value increased in 16 (66.6%) of 24 

patient data in the ictal state compared to the preictal state. A decrease in permutation 

entropy was observed at seizure onset in 16 of 24 patients (66.6%). When both entropy 

methods were examined together, two different situations emerged. In the first case, the 

increase in the sample entropy and the decrease in the permutation entropy were examined 

and this situation was found in 13 (54.2%) patients. In the latter case, the increase in the 

value of the sample entropy during the seizure or the decrease in the permutation entropy 

was examined and observed in 19 (79.2%) patients. It is also seen in cases where the sample 

entropy value decreases during the seizure or the permutation entropy value increases 

during the seizure. 
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When the approximate entropy and spectral entropy values in the CHB-MIT data are 

analyzed separately, it is seen that the approximate entropy value in 19 (79.2%) of the data of 

24 patients decreases in the ictal state compared to the preictal state. Also, a decrease in 

spectral entropy was observed at the onset of seizure in 15 (62.5%) of 24 patients. The 

observed reductions in approximate entropy are more specific than in spectral entropy. 

When both entropy methods were examined together, two different situations emerged. In 

the first case, the decrease in approximate entropy and spectral entropy was examined and 

this situation was found in 16 (66.6%) patients. In the second case, the decrease in 

approximate entropy value or decrease in spectral entropy during a seizure was examined 

and observed in 20 (83.3%) patients. It is also seen in cases where the approximate entropy 

or spectral entropy value increases during the seizure. 

In Table 4.1, and Table 4.2 seizure detection status in patients for each analysis 

method in CHB-MIT data is shown. As seen in the tables, if the seizure status in 

patients cannot be detected with one method, it can be detected with another method1. This 

indicates that the probability of detecting seizures will increase if more methods are used 

for analysis. 

In addition, there are some changes detected before seizures in EEG signal analysis. 

These changes are common to different analysis methods. These changes are thought to be 

a precursor to seizures. It is aimed to determine the cause of the changes and to investigate 

their relationship with the seizure in future studies. It will be examined whether the seizure 

can be predicted through these changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1RMS: Root Mean Square, Mean: Signals mean value, ShEn: Shannon entropy, SmpE: Sample 

entropy, PE: Permutation entropy, ApEn: Approximate entropy, SE: Spectral entropy. 
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[7]      Türkiye Epilepsi ile Savaş  Derneği. Epilepsi ve Tedavisi. Access: 30 March 

2021,  http://www.turkepilepsi.org.tr/menu/28/epilepsi-ve-tedavisi 

[8]       UCB. Epilepsi ve Tedavisi. UCB Inspried by patients driven by science, Access: 5  

April 2021, https://www.ucb.com.tr/hastalar/ko%C5%9Fullar/SantralSinir-

Sistemi/Epilepsi/Epilepsi-Tedavisi 

[9]       Dündar, N. O., Duman, Ö., and Haspolat, ¸S., (2008). ˙Infantil Spazm 

Tedavisinde ACTH+B6 Kombinasyonu ile Vigabatrinin Kar¸sıla¸stırılması: 

Retrospektif Bir Çalışma, Epilepsi, 14(2) 

[10] Göl, M. F. and Erdogan, F. F.  (2008). Bant Heterotopi ve Lennox-Gastaut, 

Epilepsi, 24(2). 

[11] Ertem, D. H., Yalaz, T. Ü., Polat, F. and Gökçel, E. (2014). Van ˙Ilinde Juvenil 

Miyoklonik Epilepsinin Geç Tanı Alma Nedenleri, Epilepsi. 

[12] Dörtcan, N., Tekin, G. B., Demirbilek, V. (2014). Çocuklugun Idiyopatik 

Parsiyel Epilepsileri, Epileps. 

[13] Türkoglu, ¸S., Ozdemir, H. (2007). Temporal Lop Epilepsisi Olan Hastalarda 

Perfüzyon MR Degerlendirmesi ve Normal Popülasyonla Kıyaslanmas, 

Elazığ : Fırat Üniversitesi. 

[14] Mukaddes, N. M., Bilge, S., Polvan, O. (1999). Frontal Lob Epilepsisinde 

Görülen Psikiyatrik Semptomatoloji: Olgu Sunumu, Klinik 

Psikofarmakoloji Bülteni, 9(4). 

 

[15] Canbaz, K. S., Özı¸sık, K. H., Çeli¸ska¸s, E., Erdinç, O. (2008). Refleks 

Epilepsiler: Gözden Geçirme. Epilepsi, 14(3). 

[16] Bek, S., Erdogan, E., Gökçil, Z.  (2012). Vagal Sinir Stimülasyonu ve Hasta 

Seçimi, Epilepsi, 18. 

[17] tVNS Technologies , Access: 5 April 2021, https://www.t-vnstherapy.com/ 

[18] Varlı, K. (1999). Yalancı Epileptik Nöbetler, Klinik Psikiyati, 2. 

[19] Canal, M. R., Koçer, S. (2011). Classifying Epilepsy Diseases Using Artificial 

Neural Networks and Genetic Algorithm, Journal of Medical Systems, 35. 

[20] Parvez, M. Z., Paul, M. (2014). EEG signal classification using frequency band 

analysis towards epileptic seizure prediction, IEEE. 

[21] Meenakshi, D. R., Singh, A., Singh, A. (2014). Frequency Analysis of Healthy & 

Epileptic Seizure in EEG using Fast Fourier Transform. International 

Journal of Engineering Research and General Science Volume 2. 

[22] Do Valle, B. G., Cash, S. S., Sodini, C. G. (2014). Wireless Behind-the-Ear EEG 

Recording Device with Wireless Interface to a Mobile Device (iPhone/iPod 

https://www.etimolojitur/
https://www.etimolojitur/
http://www.etimolojiturkce.com/kelime/epilepsi
http://www.yeditepeepilepsisiz.com/epilepsi/
http://www.mavimartinilgunucar.com/
http://www.turkepilepsi.org.tr/menu/28/epilepsi-ve-tedavisi
http://www.ucb.com.tr/hastalar/ko%C5%9Fullar/Santral-
http://www.ucb.com.tr/hastalar/ko%C5%9Fullar/Santral-


74  

Touch), IEEE. 

[23] Debener, S., Emkes, R., De Vos, M., Bleichner, M. (2015). Unobtrusive 

ambulatory EEG using a smartphone and flexible printed electrodes around 

the ear, Scientific Reports. 

[24] Dong, H., Matthews Paul, M., Guo, Y. (2016). A New Soft Material Based Inthe- 

Ear EEG Recording Technique, IEEE. 

[25] Biçer Göçmeli, Y., Dericioglu, N., Yeni, N., Gürses, C. (2017). Türkiye’de 

Video-EEG Monitorizasyonu ve Epilepsi Cerrahisi Uygulayan Merkezlerin 

Ayrıntılı ˙Incelemesi, Epileps, 23(3). 

[26] Gazeteci, T. H., Köse, S,. Gökben, S., Erermi¸s, S., Turhan, T., Tekgül, H., 
Yılmaz, S., Serdaroglu, G. (2017). Çoçuk Hastalarda Vagus Sinir 

Uyarımının Ya¸sam Kalitesi Üzerine Etkileri, J Pediatr Res. 4(3). 

[27] Li, X., Peng, X., He, M., Wang, R. (2018). Jize Guo Design of Portable 

Transcutaneous Vagus Nerve Stimulator Based on Microcontroller, IEEE. 

[28] Varsavvsky, Andrea., Mareels, Iven., Cook, Mark. (2011). Epileptic Seizures 

and the EEG Measurement, Models, Detection and Prediction, New York: 

CRC Press Taylor & Francis Group. 

 

[29] Srinivasan, V., Eswaran, C., Sriraam, a.N. (2005). Artificial Neural Network 

Based Epileptic Detection Using Time-Domain and Frequency-Domain 

Features. J Med Syst. 29, 647–660. 

[30] Ocak, H . (2008). Optimal classification of epileptic seizures in EEG using wavelet 

analysis and genetic algorithm. Signal Processing. 88(7), 1858-1867. 

[31] Altunay, S., Telatar, Z., Erogul, O. (2010). Epileptic EEG detection using the 

linear prediction error energy. Expert Systems with Applications. 37, 8, 

5661- 5665. 

[32] Kaya, Y., Tekin, R. (2012). Epileptik Nöbetlerin Tespiti için Aşırı Öğ renme 
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