	SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DERGİSİ SAKARYA UNIVERSITY JOURNAL OF SCIENCE		SAKARY, UNIVE	E455N: 2147-835X
SAU	e-ISSN: 2147-835X Dergi sayfası: http://dergipark.gov.tr/saufenbilder		NITESI FEN BILIMLERI	SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ
5	<u>Geliş/Received</u> 16-06-2017 <u>Kabul/Accepted</u> 17-10-2017	<u>Doi</u> 10.16984/saufenbilder.321886		

A different approach for almost sequence spaces defined by a generalized weighted means

Gülsen Kılınç*1 and Murat Candan2

ABSTRACT

In this study, we introduce f(G,B), $f_0(G,B)$ and fs(G,B) sequence spaces which consisting of all the sequences whose generalized weighted B-difference means are found in f, f_0 and fs spaces utilising generalized weighted mean and B-difference matrices. The γ -and the β -duals of the spaces f(G,B) and fs(G,B) are determined. At the same time, we have characterized the infinite matrices ($f(G,B): \mu$) and ($\mu: f(G,B)$), where μ is any given sequence space.

Keywords: Matrix transformations, sequence spaces, matrix domain of a sequence space, dual spaces

Bir genelleştirilmiş ağırlıklı ortalama ile tanımlanan hemen hemen yakınsak dizi uzayları için bir farklı yaklaşım

ÖZ

Bu çalışmada, *B*-fark matrisi ile genelleştirilmiş ağırlıklı ortalama metodu yardımıyla inşa edilen f(G, B), $f_0(G, B)$ ve fs(G, B) dizi uzayları tanımlandı. Bu uzaylar, genelleştirilmiş ağırlıklı *B*-fark ortalamaları sırasıyla f, f_0 ve fs uzaylarında olan dizilerin uzayıdır. f(G, B) ve fs(G, B) uzaylarının γ - ve β -dualleri elde edildi. Ayrıca, μ herhangi bir dizi uzayı olmak üzere (f(G, B): μ) ve (μ : f(G, B)) sonsuz matrisleri karakterize edildi.

Anahtar Kelimeler: Matris dönüşümleri, dizi uzayları, bir dizi uzayının matris alanı, dual uzaylar

1. INTRODUCTION

Let's start with the definition of *sequence space*, which is the basic concept of summability theory. As usual, the symbol w denotes the space of all real valued sequences. A *sequence* space is known as any *vector subspace* of w. By l_{∞} , c, c_0 , $l_p(1 \le p < \infty)$, bs and cs, we demonstrate the sets of all bounded, convergent, null sequences, p - absolutely convergent series, bounded series and convergent series, respectively. At the same, we are going to use representation that $e = (1,1,\ldots,1,\ldots)$ and $e^{(n)}$ is the sequence space in which only non-zero terms is 1 in the *n*-th place for each $n \in \mathbb{N}$, where $\mathbb{N} = \{0,1,2,\ldots\}$.

Let ϑ and η be arbitrary sequence spaces and $A = (a_{nk})$ be an infinite matrix of real numbers a_{nk} , where $n, k \in \mathbb{N}$. we can defines a matrix transformation as follows. If $Ay = \{A_n(y)\}$, the *A* –transform of *y*, is in η for each $y = (y_k) \in \vartheta$, we call *A* as a matrix transformation from ϑ into η and denote the class of all such matrices by (ϑ, η) . If a matrix *A* is an element of this class, then the series $A_n(y)$ is convergence for each $n \in \mathbb{N}$ and $y \in \vartheta$, where

$$A_n(y) = \sum_k a_{nk} y_k$$
, for each $n \in \mathbb{N}$

and $A_n = (a_{nk})_{k \in \mathbb{N}}$ is the sequence of elements in the *n*-th row of *A*. For sake of briefness, henceforward, the summation without limits runs from 0 to ∞ .

A matrix *E* is called triangle if main diagonal's elements aren't zero and elements on the top of the main diagonal are zero. For triangle matrices *E*, *F* and a sequence *y*, the equality E(Fy) = (EF)y holds. Further, a triangle matrix *W* uniquely has an inverse $W^{-1} = Z$, also a triangle matrix. The

^{*} Corresponding Author/Sorumlu Yazar

¹ Adiyaman University, Faculty of Education, Department of Elementary Education, Adiyaman - gkilinc@adiyaman.edu.tr

² Inonu University, Faculty of Arts and Science, Department of Mathematics, Malatya --murat.candan@inonu.edu.tr

equality y = W(Zy) = Z(Wy) yields for talked about matrices.

If there exists a single sequence (c_n) of scalars satisfied the following equation, then the sequence (c_n) is known a *Schauder basis* (or shortly *basis*) for a normed sequence space μ , where mentioned above equation is, for every $y \in \mu$,

$$\lim_{n\to\infty}\left\|y-\sum_{k=0}^n\,\alpha_kc_k\right\|=0$$

The series $\sum_k \alpha_k b_k$ which has the sum y is called the enlargement of y according to (c_n) , and written as $y = \sum_k \alpha_k c_k$. Schauder basis and algebraic basis coincide for finite sequence spaces. Let us present the definition of some triangle limitation matrices which are required in text.

Let *U* be the set of all sequences $u = (u_k)$ such that $u_k \neq 0$ for all $k \in \mathbb{N}$. For $u \in U$, let $\frac{1}{u} = \left(\frac{1}{u_k}\right)$. Let $u, v \in U$ and define the matrix $G(u, v) = (g_{nk})$ by

$$g_{nk} = \begin{cases} u_n v_k, & (k < n) \\ u_n v_n, & (k = n) \\ 0, & (k > n) \end{cases}$$

for all $k, n \in \mathbb{N}$, where u_n is only attached to n and v_k bounds up with only k. The matrix G(u, v) described above, is entitled as generalized weighted mean or factorable matrix. Another matrix $B(r, s) = \{b_{nk}(r, s)\}$ known as generalized difference matrix is defined as below:

$$b_{nk}(r,s) = \begin{cases} r, & (k=n), \\ s, & (k=n-1), \\ 0, & (0 \le k < n-1 \text{ or } k > n), \end{cases}$$

where *r* and *s* are non-zero *real numbers*. The matrix B(r, s) can be degraded to the *difference matrix* $\Delta^{(1)}$ in case of r = 1, s = -1. Therefore, the obtained conclusions concerned with *domain of the matrix* B(r, s) are the generalization of the consequences corresponding of the matrix domain of $\Delta^{(1)}$, where $\Delta^{(1)} = (\delta_{nk})$ is described as

$$\delta_{nk} = \begin{cases} (-1)^{n-k}, & (n-1 \le k \le n), \\ 0, & (0 \le k < n-1 \text{ or } k > n) \end{cases}$$

The matrix $S = (s_{nk})$ is defined as

$$s_{nk} = \begin{cases} 1, & (0 \le k \le n), \\ 0, & (k > n), \end{cases}$$

The domain of an infinite matrix K on a sequence space μ is a sequence space denoted by μ_K and this space is recognized by the set

$$\mu_{K} = \{ y = (y_{k}) \in w : Ky \in \mu \}.$$
(1)

Generally, the new *sequence space* μ_K is the enlargement or the shrinkage of the original space μ , in some cases it can be sighted that those spaces overlap. Also, If μ is one of the *sequence space* of *bounded*, *convergent* and *null sequence* spaces, then inclusion relationship $\mu_S \subset \mu$ strictly holds. Further it can be acquired easily that the inclusion relationship $\mu \subset \mu_{\Lambda^{(1)}}$ yields for $\mu \in \{l_{\infty}, c, c_0, l_p\}$.

Combined with a linear topology a sequence space μ is denominated a *K*-space, if for each $i \in \mathbb{N}$, coordinate maps

 $p_i: \mu \to \mathbb{C}$, described by $p_i(y) = y_i$ are continuous, where \mathbb{C} is the *complex numbers field*. A *K*-space which is a *complete linear metric space* is entitled an *FK space*. An *FK*-space whose topology is normable is called a *BK*-space [1] which comprises ϕ , the set of all finitely nonzero sequences.

Let us assume that *K* is a *triangle matrix*, in that case, we can obviously say that the *sequence spaces* μ_K and μ are *linearly isomorphic*, i.e., $\mu_K \cong \mu$ and if μ is a *BK*-space, then μ_K is also a *BK*-space with the norm given by $||y||_{\mu_K} = ||Ky||_{\mu}$, for all $x \in \mu_K$. As well as above mentioned sequence spaces l_{∞}, c, c_0 and almost convergent sequence space *f* are *BK*-spaces with the ordinary supnorm described by

$$\|y\|_{\infty} = \sup_{k \in \mathbb{N}} |y_k|.$$

Also l_p are BK –spaces with the ordinary norm defined by

$$\|y\|_p = \left(\sum_k |y_k|^p\right)^{\frac{1}{p}}, \qquad (1 \le p < \infty).$$

A continuous linear functional ψ on l_{∞} is said a *Banach limit*, if

- i) For every $y = (y_k), \ \psi(y) \ge 0$,
- ii) ψ(y_{ρ(k)}) = ψ(y_k), where ρ is shift operator which is described onto w with ρ(k) = k + 1,
 iii) ψ(e) = 1, where e = (1,1,1,...).

A sequence $y = (y_k) \in l_{\infty}$ is entitled to be *almost* convergent to generalized limit *l*, if all *Banach Limits* of *y* are *l*[2] and denoted by $f - \lim y = l$. In an other saying, $f - \lim y_k = l$ iff uniformly in *n*

$$\lim_{m\to\infty}\frac{1}{m+1}\sum_{k=0}^m y_{k+n}=l.$$

We indicate the sets of all *almost convergent sequences* by *f* and series by *fs* and define as follow:

$$f = \left\{ y = (y_k) \in w: \lim_{m \to \infty} s_{mn}(y) = l \right\}$$

where l exists uniformly in n and

$$s_{mn}(y) = \frac{1}{m+1} \sum_{k=0}^{m} y_{k+n},$$

and

$$fs = \left\{ y = (y_k) \in w : \exists l \in \mathbb{C} \ni \right.$$
$$\lim_{n \to \infty} \sum_{k=0}^{m} \sum_{j=0}^{n+k} \frac{y_j}{m+1} = l, uniformly in n \right\}.$$

As known that the containments $c \subset f \subset l_{\infty}$ are precisely acquired. Owing to these containments, norms $\|.\|_f$ and $\|.\|_{\infty}$ of the spaces f and l_{∞} are equivalent. Therefore the sets f and f_0 are *BK*-spaces having the following norm

$$||y||_f = \sup_{m,n} |s_{mn}(y)|.$$

For a sequence $y = (y_k)$, we demonstrate the *difference* sequence space by $\Delta y = (y_k - y_{k-1})$. Kizmaz first presented the *difference sequence spaces* as follows:

 $\mu(\Delta) = \{y = (y_k) \in w: \Delta y = (y_k - y_{k+1}) \in \mu\}.$ It was proved by K12maz [3] that $\mu(\Delta)$ is a Banach space with the norm

 $||y||_{\Delta} = |y_1| + ||\Delta y||_{\infty}; \quad y = (y_k) \in \mu(\Delta)$ and the containment relation $\mu \subset \mu(\Delta)$ strictly holds. The author at the same time investigated the $\alpha -, \beta -, \gamma - duals$ of the difference spaces and determined the classes $(\mu(\Delta): \nu)$ and $(\nu: \mu(\Delta))$ of infinite matrices, here $\mu, \nu \in \{l_{\infty}, c\}$. When we look according to summability theory perspective, we can see that to define new *Banach spaces* by the matrix domain of triangle and investigate their algebraical, geometrical and topological properties is well-known. Therefore, many authors were interested in this subject and by using some known matrices, many studies were done.

In literature, it was investigated domain of following matrices on the *almost convergent* and *null almost convergent sequence spaces* in the sources mentioned: *the generalized weighted mean G* in [4], the double band matrix B(r, s) in [5], the *Riesz matrix* in [6], *Cesaro matrix* of order 1 in [13], the matrix *B* in [7] can be seen. Further, using *generalized difference Fibonacci matrix*, Candan and Kayaduman defined $\hat{c}^{f(r,s)}$ space [24]. Furthermore, it can be looked at those works about this topic nearly: [9], [10], [11], [25], [26], [27], [28], [29], [30], [31] [32] [33] [34] [35], [36].

Recently, A. Karaisa and F. Özger [12] the spaces $f(u, v, \Delta)$, $f_0(u, v, \Delta)$ and $fs(u, v, \Delta)$ defined and studied. By taking inspiration from this work, we decided to study this subject of this paper. By using generalized weighted mean and B –difference matrices, we familiarize f(G, B), $f_0(G, B)$ and fs(G, B) sequence spaces consisting of all sequences whose generalized weighted B –difference means are in the f, f_0 and fs spaces.

We assume throughout this paper $u = (u_k)$ and $v = (v_k) \in U$ (as above talk about) and $r, s \in \mathbb{R} - \{0\}$, further, we shall write for briefness that $R = R(G, B) = G(u, v) \cdot B(r, s)$, where

$$R(G,B) = \{r_{nk}\} = \begin{cases} u_n v_k r + u_n v_{k+1} s, & k < n, \\ u_n v_n r, & k = n, \\ 0, & k > n. \end{cases}$$

In following definitions, let $y = (y_k)$ be the R(G,B) -transform of a sequence $x = (x_k)$. Then $y_0 = ru_0v_0x_0$ and for $k \ge 1$

$$y_k = u_k \left(\sum_{i=0}^{k-1} (rv_i + sv_{i+1}) x_i + rv_k x_k \right),$$
(2)

and for each $j, k \in \mathbb{N}$ we shall write for briefness

$$\widetilde{\nabla}_{jk} = (-1)^{j-k} \left(\frac{s^{j-k}}{r^{j-k+1}v_k} + \frac{s^{j-k-1}}{r^{j-k}v_{k+1}} \right)$$
(3)

and if $y = (y_k) = R(G, B)(x) \in f$, it means that $\exists l \in \mathbb{C}$ such that uniformly in n,

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n} \Big(\sum_{i=0}^{k+n-1} (rv_i + sv_{i+1}) x_i + rv_{k+n} x_{k+n} \Big) = l,$$
(4)

Now, let us define the sequence space f(G, B)

$$f(G,B) = \{x = (x_k) \in w : R(G,B)(x) \in f\}.$$

Similarly, we can define $f_0(G, B)$ and $f_S(G, B)$ spaces as

$$f_0(G,B) = \{x = (x_k) \in w: R(G,B)(x) \in f_0\},\$$
if $y = (y_k) \in f_0$, we know that in (4), $\alpha = 0$. Further,

 $fs(G,B) = \{x = (x_k) \in w: R(G,B)(x) \in fs\},$ i.e. $y = (y_k) = R(G,B)(x) \in fs$, then $\exists l \in \mathbb{C} \ni$, uniformly in n,

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} \sum_{j=0}^{k+n} \left[u_j \left(\sum_{i=0}^{j-1} (rv_i + sv_{i+1}) x_i + rv_j x_j \right) \right] = l.$$

We can redefine the spaces fs(G,B), f(G,B) and $f_0(G,B)$ by the notation of (1),

$$f_0(G,B) = (f_0)_{R(G,B)}, \ f(G,B) = (f)_{R(G,B)},$$

$$f_S(G,B) = (f_S)_{R(G,B)}.$$

In this paper, we investigate some topological properties, *beta-* and *gamma- duals* of these spaces and study to acquire some matrix characterizations between these spaces and standard spaces.

2. SOME TOPOLOGICAL PROPERTIES OF THESE SPACES

Theorem 1: *i*) The sequence space f(G, B) is normed space with

$$\|x\|_{f(G,B)} = \sup_{m,n} \left| \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n} \left(\sum_{i=0}^{k+n-1} (rv_i + sv_{i+1}) x_i + rv_{k+n} x_{k+n} \right) \right|,$$

ii) The sequence space fs(G,B) is normed space with $\|x\|_{fs(G,B)} = \sup_{m,n} \left| \frac{1}{m+1} \sum_{k=0}^{m} \left(\sum_{j=0}^{k+n} u_j \left(\sum_{i=0}^{j-1} (rv_i + sv_{i+1})x_i + rv_j x_j \right) \right) \right|.$

Theorem 2: The sets f(G,B), $f_0(G,B)$ and fs(G,B) are linearly isomorphic to the sets f, f_0 and fs respectively, i.e., $f(G,B) \cong f$, $f_0(G,B) \cong f_0$, $fs(G,B) \cong fs$.

Proof: Firstly, let us attest that $f(G,B) \cong f$. For this purpose, we have to show that there exists a linear bijection among the spaces f(G,B) and f. Let us take into account the transformation T described by the relation of (1) from f(G,B) to f with $x \to y = Tx = R(G,B)x \in f$, for $x \in f(G,B)$. The linearity of T is clear. Moreover, it is obvious that x = 0 when Tx = 0, thus T is injective.

Let us assume $y = (y_k) \in f$ and describe $x = (x_k)$ by

$$x_k = \sum_{j=0}^{k-1} \frac{1}{u_j} \tilde{\mathcal{V}}_{kj} y_j + \frac{1}{r u_k v_k} y_{k,} \quad (k \in \mathbb{N}).$$

Then, we have

$$\begin{split} u_{k} & \left(\sum_{j=0}^{k-1} (rv_{j} + sv_{j+1}) x_{j} + rv_{k} x_{k} \right) \\ = & u_{k} \sum_{j=0}^{k-1} (rv_{j} + sv_{j+1}) \left[\sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{V}_{ji} y_{i} + \frac{1}{ru_{j} v_{j}} y_{j} \right] \\ & + & u_{k} rv_{k} \left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{V}_{kj} y_{j} + \frac{1}{ru_{k} v_{k}} y_{k} \right) \\ = & \sum_{j=0}^{k-1} u_{k} (rv_{j} + sv_{j+1}) \sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{V}_{ji} y_{i} \\ & + \sum_{j=0}^{k-1} u_{k} (rv_{j} + sv_{j+1}) \frac{1}{ru_{j} v_{j}} y_{j} + u_{k} rv_{k} \left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{V}_{kj} y_{j} \right) + y_{k} \\ = & \sum_{j=0}^{k-1} u_{k} (rv_{j} + sv_{j+1}) \sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{V}_{ji} y_{i} \\ & + \left[\sum_{j=0}^{k-1} (rv_{j} + sv_{j+1}) \frac{1}{ru_{j} v_{j}} + rv_{k} \sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{V}_{kj} \right] u_{k} y_{j} + y_{k} \\ = & y_{k} \end{split}$$

for all $k \in \mathbb{N}$, which leads us to the truth that

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n} \left(\sum_{i=0}^{k+n-1} (rv_i + sv_{i+1}) x_i + rv_{k+n} x_{k+n} \right)$$
$$= \lim_{m \to \infty} \frac{1}{m+1} \sum_{k=0}^{m} y_{k+n} \quad (uniformly in n)$$

$$= f - limy_k$$

It means that $x = (x_k) \in f(G, B)$. Hereby, we reach the truth that T is *surjective*. So, T is *a linear bijection*, and it means that the spaces f(G, B) and f are *linearly isomorphic*, as desired. The fact $f_0(G, B) \cong f_0$ can be analogously attested. Due to the well known fact that *the matrix domain* λ_A of *the normed sequence space* denoted by λ , has got a *base* iff λ has got a *base*, whenever a matrix $A = (a_{nk})$ is a triangle [14] (*Remark* 2.4) and since the space f has no *Schauder basis*, we have;

Corollary 1: The space f(G, B) has no Schauder basis.

3.THE
$$\alpha$$
-, β -, γ -DUALS OF THESE SPACES

The α -, β -, γ -duals of the sequence space *X* are defined by

$$X^{\alpha} = \{a = (a_k) \in w : ax = (a_k x_k) \in l_1, \\ \forall x = (x_k) \in X\},\$$

$$X^{\beta} = \{a = (a_k) \in w : ax = (a_k x_k) \in cs, \\ \forall x = (x_k) \in X\},\$$

and

$$X^{\gamma} = \{a = (a_k) \in w : ax = (a_k x_k) \in bs, \\ \forall x = (x_k) \in X\},\$$

here *cs* and *bs* are defined to be *sequence spaces* of all convergent and bounded series, respectively.

Lemma 1: [15] So as to the matrix A appertains to the matrix class from f to l_{∞} is necessary and sufficient condition

$$\sup_{n\in\mathbb{N}}\sum_{k}|a_{nk}|<\infty$$

is satisfied.

Lemma 2: [15] So as to the matrix A appertains to the matrix class from f to c is necessary and sufficient conditions

i) $\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| < \infty$, ii) $\lim_{n \to \infty} a_{nk} = \alpha_k$, for each $k \in \mathbb{N}$, iii) $\lim_{n \to \infty} \sum_{k} a_{nk} = \alpha$, iv) $\lim_{n \to \infty} \sum_{k} |\Delta(a_{nk} - \alpha_k)| = 0$, are satisfied.

Theorem 3: The γ -dual of the space f(G,B) is the intersection of the sets

$$b_1 = \left\{ a = (a_k) \in w: \sup_n \sum_{k=1}^{n-1} \left| \frac{a_k}{u_k r v_k} + \frac{\overline{v}_{jk}}{u_k} \sum_{j=k+1}^{n-1} a_j \right| < \infty \right\},$$
$$b_2 = \left\{ a = (a_k) \in w: \sup_n \left| \frac{a_n}{r u_n v_n} \right| < \infty \right\}.$$

Proof: For an optional sequence $a = (a_k) \in w$ and take into consideration the following equality

$$\begin{split} \sum_{k=0}^{n} a_{k} x_{k} &= \sum_{k=0}^{n} a_{k} \left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}_{kj} y_{j} + \frac{1}{r u_{k} v_{k}} y_{k} \right) \\ &= \left[\sum_{k=0}^{n-1} \frac{a_{k}}{r u_{k} v_{k}} + \frac{1}{u_{k}} \sum_{j=k+1}^{n-1} \widetilde{\nabla}_{jk} a_{j} \right] y_{k} + \frac{a_{n}}{r u_{n} v_{n}} y_{n} \end{split}$$
(5)
$$&= (Ey)_{n} \end{split}$$

where the general term e_{nk} of the matrix *E* is determined as follows:

$$\begin{cases} \sum_{k=0}^{n-1} \frac{a_k}{ru_k v_k} + \frac{1}{u_k} \sum_{j=k+1}^{n-1} \widetilde{\nabla}_{jk} a_j, & 0 \le k \le n-1, \\ \frac{a_n}{ru_n v_n}, & k = n, \\ 0, & k > n, \end{cases}$$
(6)

for all $k, n \in \mathbb{N}$. Thus, we deduce from [5] that $a_k x_k \in bs$ whenever $x = (x_k) \in f(G, B)$ necessary and sufficient condition $Ey \in l_{\infty}$ whenever $y = (y_k) \in f$, where $E = (e_{nk})$ is described in (6). That's why with assistance of Lemma 1, $f(G, B)^{\gamma} = b_1 \cap b_2$.

Theorem 4: The β -dual of the space f(G,B) is the intersection of the sets

$$b_{3} = \left\{ a = (a_{k}) \in w: \lim_{n \to \infty} e_{nk} \quad exists \right\},$$

$$b_{4} = \left\{ a = (a_{k}) \in w: \lim_{n \to \infty} \sum_{k} e_{nk} \quad exists \right\},$$

$$b_{5} = \left\{ a = (a_{k}) \in w: \lim_{n \to \infty} \sum_{k} \Delta[e_{nk} - \alpha_{k}] < \infty \right\},$$

where $\alpha_k = \lim_{n \to \infty} e_{nk}$. Then $\{f(G, B)\}^{\beta} = \bigcap_{k=1}^5 b_k$.

Proof: Let us take any sequence $a \in w$. By (5), ax = $(a_k x_k) \in cs$ whenever $x = (x_k) \in f(G, B)$ necessary and sufficient condition $Ey \in c$ whenever $y = (y_k) \in f$, where $E = (e_{nk})$ is designated in (6). We reproduce the consequence by Lemma 2 that $\{f(G, B)\}^{\beta} = \bigcap_{k=1}^{5} b_{k}$.

Theorem 5: The γ -dual of the space fs(G,B) is the intersection of the sets,

$$b_{6} = \left\{ a = (a_{k}) \in w: \sup_{n} \sum_{k} |\Delta e_{nk}| < \infty \right\},$$
$$b_{7} = \left\{ a = (a_{k}) \in w: \lim_{k \to \infty} e_{nk} = 0 \right\}.$$

In another saying, we get $\{fs(G,B)\}^{\gamma} = b_6 \cap b_7$.

Proof: This might be acquired in a similar concept as talk about in the proof of Theorem 3 with Lemma 1 in lieu of Lemma 4 (iii). So, we neglect details.

Theorem 6: Defined the set

$$b_8 = \left\{ a = (a_k) \in w: \lim_{n \to \infty} \sum_k |\Delta^2 e_{nk}| < \infty \right\}.$$

Then, $\{fs(G,B)\}^{\beta} = b_3 \cap b_6 \cap b_7 \cap b_8.$

Proof: This might be acquired in a similar concept as talk about in the proof of Theorem 4 with Lemma 2 in lieu of Lemma 4 (iv). So, we disregard details.

4. SOME MATRIX TRANSFORMATIONS

For briefness, we write

$$a_{nk} = \sum_{j=0}^{n} a_{jk,}$$
$$a(n, k, m) = \frac{1}{m+1} \sum_{j=0}^{m} a_{n+j,k},$$
$$\Delta a_{nk} = a_{nk} - a_{n,k+1}.$$

Theorem 7: [16] Let η be an FK-space, U be a triangle, P be its inverse and μ be optional subset of w. Then we have $A = (a_{nk}) \in (\eta_U: v)$ necessary and sufficient condition $C^{(n)} = \left(C_{mk}^{(n)}\right) \in (\eta, c) \text{ for all } n \in \mathbb{N},$ (7)

$$C = (c_{nk}) \in (\eta; \nu), \tag{8}$$

where.

$$C_{mk}^{(n)} = \begin{cases} \sum_{j=k}^{m} a_{nj} p_{jk,} & 0 \le k \le m \\ 0, & k > m, \end{cases}$$

and

$$c_{nk} = \sum_{j=k}^{\infty} a_{nj} p_{jk} \text{ for all } k, m, n \in \mathbb{N}.$$

Lemma 3: So as to the matrix A appertains to the matrix class from f to f is necessary and sufficient conditions:

$$\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| < \infty,$$

for each fixed $k \in \mathbb{N}$, $f - \lim_{k \to \infty} a_{nk} = \alpha_k$ exist,
 $f - \lim_{k \to \infty} \sum_{k} a_{nk} = \alpha,$
and uniformly in n

$$\lim_{m \to \infty} \sum_{k} |\Delta a(n, k, m) - \alpha_k]| = 0,$$

are satisfied.

For an infinite matrix $A = (a_{nk})$, we shall write for briefness that,

$$d_{mk}^{n} = \tilde{a}_{nk}(m) = \frac{1}{ru_{k}v_{k}}a_{nk} + \frac{1}{u_{k}}\sum_{j=k+1}^{m}\widetilde{\nabla}_{jk}a_{nj}, \quad (k < m),$$
and
$$(9)$$

an

1

١

$$d_{nk} = \tilde{a}_{nk} = \frac{1}{ru_k v_k} a_{nk} + \frac{1}{u_k} \sum_{j=k+1}^{\infty} \widetilde{\nabla}_{jk} a_{nj}, \quad (10)$$

for all $n, k, m \in \mathbb{N}$,

$$\hat{a}_{nk} = u_n (\sum_{i=0}^{n-1} (rv_i + sv_{i+1})a_{ik} + rv_n a_{nk}).$$
(11)

Theorem 8: Let us assume that the entries of the infinite matrices given by $A = (a_{nk})$ and $H = (h_{nk})$ are related by the following relation

$$h_{nk} = \tilde{a}_{nk} \tag{12}$$

for all k and $n \in \mathbb{N}$, μ is an arbitrary sequence space. Then, $A \in (f(G,B):\mu)$ necessary and sufficient condition for all $n \in \mathbb{N}$, $\{a_{nk}\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ and $H \in (f: \mu)$.

Proof: We assume that μ is a given sequence space. Let us assume that (12) yields among the entries of $A = (a_{nk})$ and $H = (h_{nk})$, and consider the fact that the spaces f(G, B) and *f* are defined to be linearly isomorphic.

We take $A \in (f(G, B): \mu)$ and any $y = (y_k) \in f$. Thus, *H*. *R*(*G*, *B*) does exist and $\{a_{nk}\}_{k \in \mathbb{N}} \in \bigcap_{k=1}^{5} b_k$ which yields that $\{h_{nk}\}_{k\in\mathbb{N}} \in l_1$ for each $n \in \mathbb{N}$. Hence, Hy exists and thus for all $n \in \mathbb{N}$

$$\sum_{k} h_{nk} y_k = \sum_{k} a_{nk} x_{k}, \qquad (13)$$

we have by (12) that $Hy = Ax$, which leads us to
consequence $H \in (f:\mu)$.

Conversely, let $\{a_{nk}\}_{k\in\mathbb{N}} \in f(G,B)^{\beta}$ for each $n\in\mathbb{N}$ and $H \in (f:\mu)$ yield, and take any $x = (x_k) \in f(G,B)$. Then, Ax exists. Thus, we acquire from the following equality for each $n \in \mathbb{N}$,

$$\sum_{k=0}^{m} a_{nk} x_{k} = \sum_{k=0}^{m} \left[\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}(k, j) a_{nj} y_{j} + \frac{1}{r u_{k} v_{k}} a_{nk} y_{k} \right],$$
(14)

as $m \to \infty$ that Ax = Hy and this shows that $A \in$ $(f(G,B):\mu).$

This completes the proof.

Theorem 9: $A \in (f(G,B):c)$ necessary and sufficient condition $D^{(n)} = (d_{mk}^{(n)}) \in (f:c)$ and $D = (d_{nk}) \in (f:c)$.

Theorem 10: $A \in (f(G,B): l_{\infty})$ necessary and sufficient condition $D^{(n)} = (d_{mk}^{(n)}) \in (f:c)$ and $D = (d_{nk}) \in (f: l_{\infty})$.

If we change the roles for the spaces f(G, B) and f with μ , we have;

Theorem 11: Assume that the entries of the infinite matrices $A = (a_{nk})$ and $L = (l_{nk})$ are connected with the relation $l_{nk} = \hat{a}_{nk}$, (11), for all $k, n \in N$ and μ be any given sequence space. Then, $A \in (\mu: f(G, B))$ necessary and sufficient condition $L \in (\mu: f)$.

Proof: Let $x = (x_k) \in \mu$ and take into account the following equality

$$\{R(G,B)(Ax)\}_{n} = u_{n} \left(\sum_{j=0}^{n-1} (rv_{j} + sv_{j+1})(Ax)_{j} + ru_{n}v_{n}(Ax)_{n} \right)$$

$$= u_{n} \left(\sum_{j=0}^{n-1} (rv_{j} + sv_{j+1}) \sum_{j} a_{nj}x_{j} \right) + ru_{n}v_{n} \sum_{k} a_{nk}x_{k}$$

$$= \sum_{k} \left(\sum_{j=k}^{n-1} u_{k}(rv_{j\cdot k} + sv_{j\cdot k+1})a_{n,j\cdot k}x_{j\cdot k} + ru_{n}v_{n}a_{nk}x_{k} \right)$$

$$= (Lx)_{n},$$

which leads us to consequence that $Ax \in f(G, B)$ necessary and sufficient condition $Lx \in f$. This step completes the proof.

At this time, we are going to denote the following conditions: $\sup_{n \in \mathbb{N}} \sum_{k} |a_{nk}| < \infty,$ (15)

 $\lim_{k \to \infty} a_{nk} = \alpha_k, \quad \text{for each fixed } k \in \mathbb{N}, \quad (16)$

$$\lim_{n \to \infty} \sum_{k} a_{nk} = \alpha, \tag{17}$$

$$\lim_{n \to \infty} \sum_{k} |\Delta(a_{nk} - \alpha_k)| = 0, \tag{18}$$

$$\sup_{n\in\mathbb{N}}\sum_{k}|\Delta(a_{nk})|<\infty, \tag{19}$$

 $\lim_{k \to \infty} a_{nk} = 0, \text{ for each fixed } n \in \mathbb{N}, \tag{20}$

$$\lim_{n \to \infty} \sum_{k} |\Delta^2 a_{nk}| = \alpha, \tag{21}$$

for each fixed $k \in \mathbb{N}$ $f - lima_{nk} = \alpha_k$ exists, (22) uniformly in n

 $\lim_{m \to \infty} \sum_{k} |a(n, k, m) - \alpha_{k}| = 0,$ (23) uniformly in *n*

$$f - \lim \sum_{k} a_{nk} = \alpha, \qquad (24)$$
 uniformly in n

 $\lim_{m \to \infty} \sum_{k} |\Delta[a(n,k,m) - \alpha_k]| = 0,$ (25) uniformly in *n*

$$\lim_{q \to \infty} \sum_{k} \frac{1}{q+1} \left| \sum_{i=0}^{q} \Delta[a(n+i,k) - \alpha_k] \right| = 0, \tag{26}$$

$$\sup_{n\in\mathbb{N}}\sum_{k}|\Delta a(n,k)| < \infty, \tag{27}$$

for each fixed $k \in \mathbb{N}$,

 $f - lima(n,k) = \alpha_k$ exists, (28) uniformly in n

$$\lim_{q \to \infty} \sum_{k} \frac{1}{q+1} \left| \sum_{i=0}^{q} \Delta^{2} [a(n+i,k) - \alpha_{k}] \right| = 0,$$
(29)

$$\sup_{n\in\mathbb{N}}\sum_{k}|a(n,k)|<\infty,$$
(30)

$$\sum_{n} a_{nk} = \alpha_k, \text{ for each fixed } k \in \mathbb{N}$$
(31)

$$\sum_{n} \sum_{k} a_{nk} = \alpha, \tag{32}$$

$$\lim_{n \to \infty} \sum_{k} |\Delta a(n,k) - \alpha_k| = 0.$$
(33)

Let $A = (a_{nk})$ be an infinite matrix. In that case, the following expressions yield:

Lemma 4: *i*) $A = (a_{nk}) \in (\ell_{\infty}: f)$ necessary and sufficient condition (15), (22) and (23) yield. [17]

ii) $A = (a_{nk}) \in (f:f)$ necessary and sufficient condition (15), (22), (24), and (25) yield. [17]

iii) $A = (a_{nk}) \in (fs: \ell_{\infty})$ necessary and sufficient condition (19) and (20) yield.

iv) $A = (a_{nk}) \in (fs:c)$ necessary and sufficient condition (16), (19) and (21) yield. [18]

v) $A = (a_{nk}) \in (c; f)$ necessary and sufficient condition (15), (22) and (24) yield. [19]

vi) $A = (a_{nk}) \in (bs: f)$ necessary and sufficient condition (19), (20), (22) and (26) yield. [20]

vii) $A = (a_{nk}) \in (fs; f)$ necessary and sufficient condition (20), (22), (25) and (26) yield. [21]

viii) $A = (a_{nk}) \in (cs: f)$ necessary and sufficient condition (19) and (22) yield. [22]

ix) $A = (a_{nk}) \in (bs: fs)$ necessary and sufficient condition (20), (26) and (28) yield. [20]

x) $A = (a_{nk}) \in (fs: fs)$ necessary and sufficient condition (26) and (29) yield. [21]

xi) $A = (a_{nk}) \in (cs: fs)$ necessary and sufficient condition (27) and (28) yield. [22]

xii) $A = (a_{nk}) \in (f:cs)$ necessary and sufficient condition (30) and (33) yield. [23]

Corollary 2: *The following statements hold:*

i) $A = (a_{nk}) \in (f(G, B): l_{\infty})$ necessary and sufficient condition $\{a_{nk}\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for all $n \in \mathbb{N}$ and (15) yields with \tilde{a}_{nk} lieu of a_{nk} .

ii) $A = (a_{nk}) \in (f(G,B):c)$ necessary and sufficient condition $\{a_{nk}\}_{k \in \mathbb{N}} \in f(G,B)^{\beta}$ for all $n \in \mathbb{N}$ and (15), (16), (18) yield with \tilde{a}_{nk} lieu of a_{nk} .

iii) $A = (a_{nk}) \in (f(G,B):bs)$ necessary and sufficient condition $\{a_{nk}\}_{k \in \mathbb{N}} \in f(G,B)^{\beta}$ for all $n \in \mathbb{N}$ and (30) yields.

iv) $A = (a_{nk}) \in (f(G,B):cs)$ necessary and sufficient condition $\{a_{nk}\}_{k \in \mathbb{N}} \in f(G,B)^{\beta}$ for all $n \in \mathbb{N}$ and (30), (33) yield with \tilde{a}_{nk} lieu of a_{nk} . Corollary 3: The following statements hold:

i) $A = (a_{nk}) \in (l_{\infty}: f(G, B))$ necessary and sufficient condition (15), (22) and (23) yield with \hat{a}_{nk} lieu of a_{nk} .

ii) $A = (a_{nk}) \in (f: f(G, B))$ necessary and sufficient condition (15), (22), (24) and (25) yield with \hat{a}_{nk} lieu of a_{nk} .

iii) $A = (a_{nk}) \in (c: f(G, B))$ necessary and sufficient condition (15), (22) and (24) yield with \hat{a}_{nk} lieu of a_{nk} .

Corollary 4: The following statements hold:

i) $A = (a_{nk}) \in (bs: f(G, B))$ necessary and sufficient condition (19), (20), (22) and (26) yield with \hat{a}_{nk} lieu of a_{nk} .

ii) $A = (a_{nk}) \in (fs: f(G, B))$ necessary and sufficient condition (20), (22) and (26) yield with \hat{a}_{nk} lieu of a_{nk} .

iii) $A = (a_{nk}) \in (cs: f(G, B))$ necessary and sufficient condition (19), (22) yield with \hat{a}_{nk} lieu of a_{nk} .

Corollary 5: *The following statements hold:*

i) $A = (a_{nk}) \in (bs: fs(G, B))$ necessary and sufficient condition (20), (26) and (28) yield with \hat{a}_{nk} lieu of a_{nk} .

ii) $A = (a_{nk}) \in (fs: fs(G, B))$ necessary and sufficient condition (26) and (29) yield with \hat{a}_{nk} lieu of a_{nk} . *iii)* $A = (a_{nk}) \in (cs: fs(G, B))$ necessary and

sufficient condition (27) and (28) yield with \hat{a}_{nk} lieu of a_{nk} .

ACKNOWLEDGMENTS

This article is the written version of the authors' plenary talk delivered on April 18-21, 2017 at 2nd International Conference on Advances in Natural and Applied Sciences ICANAS-2017 in Antalya, TURKEY.

REFERENCES

- [1] B. Choudhary and S. Nanda, "Functional Analysis with applications," *John Wiley and Sons, New Delhi, İndia*, 1989
- G. G. Lorentz, "A contribution to the theory of divergent sequences," *Acta Mathematica*, Vol. 80, pp. 167-190, 1948.
- [3] H. Kızmaz, "On certain sequence spaces," *Canad. Math. Bull.* Vol. 24, no.2, pp.169-176, 1981.
- [4] M. Kirisçi, "Almost convergence and generalized weighted mean," *AIP Conf. Proc*, Vol. 1470, pp. 191–194, 2012.
- [5] F. Başar and M. Kirisçi, "Almost convergence and generalized difference matrix," *Comput. Math. Appl.*, Vol. 61, pp. 602-611, 2011.
- [6] K. Kayaduman and M. Şengönül, "On the Riesz almost convergent sequence space," *Abstr. Appl. Anal.* Vol. 2012, article ID: 691694, 18 pages, 2012.

- [7] M. Candan, "Almost convergence and double sequential band matrix," *Acta Math. Scientia*, Vol. 34, no. 2, pp. 354–366, 2014.
- [8] D. Butkovic, H. Kraljevic and N. Sarapa "On the almost convergence," in Functional analysis, II, Lecture Notes in Mathematics, Vol. 1242, 396417, Springer, Berlin, Germany, 1987.
- [9] M. Kirisçi, "Almost convergence and generalized weighted mean II," J. Ineq. and Appl, Vol.1, no.93, 13 pages, 2014.
- [10] H. Polat, V. Karakaya and N. Şimşek, "Difference sequence space reproduced by using a generalized weighted mean," *Applied Mathematics Letters*, Vol. 24, pp. 608–614, 2011.
- [11] A. Karaisa and F. Başar, "Some new paranormed sequence spaces and core theorems," *AIP Conf. Proc.* Vol. 1611, pp. 380–391, 2014.
- [12] A. Karaisa and F. Özger, "Almost difference sequence spaces reproduced by using a generalized weighted mean," *J. Comput. Anal. and Appl.*, Vol. 19, no. 1, pp. 27–38, 2015.
- [13] K. Kayaduman and M. Şengönül, "The space of Cesaro almost convergent sequence and core theorems," *Acta Mathematica Scientia*, Vol. 6, pp. 2265–2278, 2012.
- [14] A. M. Jarrah and E. Malkowsky, "BK- spaces, bases and linear operators," *Ren. Circ. Mat. Palermo*, Vol. 2, no. 52, pp. 177–191, 1990.
- [15] J. A. Sıddıqi, "Infinite matrices summing every almost periodic sequences," *Pacific J. Math*, Vol. 39, no. 1, pp. 235–251, 1971.
- [16] F. Başar, "Summability Theory and Its Applications," *Bentham Science Publishers e-books, Monographs*, xi+405 pp, ISB:978-1-60805-252-3, İstanbul, (2012).
- [17] J. P. Duran, "Infinite matrices and almost convergence," *Math. Z.* Vol.128, pp.75-83, 1972.
- [18] E. Öztürk, "On strongly regular dual summability methods," *Commun. Fac. Sci. Univ. Ank. Ser. A*₁ *Math. Stat.*, Vol. 32, p. 1-5, 1983.
- [19] J. P. King, "Almost summable sequences," Proc. Amer. Math. Soc. Vol. 17, pp. 1219–1225, 1966.
- [20] F. Basar and İ. Solak, "Almost-coercive matrix transformations," *Rend. Mat. Appl.* Vol. 7, no.11, pp. 249–256, 1991.
- [21] F. Başar, "f-conservative matrix sequences" Tamkang J. Math, Vol. 22, no. 2, pp. 205–212, 1991.

- [22] F. Başar and R. Çolak, "Almost-conserva- tive matrix transformations," *Turkish J. Math*, Vol. 13, no.3, pp. 91- 100, 1989.
- [23] F. Başar, "Strongly-conservative sequence to series matrix transformations," *Erc. Üni. Fen Bil. Derg.* Vol. 5, no.12, pp. 888–893, 1989.
- [24] M. Candan and K. Kayaduman, "Almost Convergent sequence space Reproduced By Generalized Fibonacci Matrix and Fibonacci Core," *British J. Math. Comput. Sci*, Vol. 7, no.2, pp.150-167, 2015.
- [25] M. Candan, "Domain of Double Sequential Band Matrix in the Spaces of Convergent and Null Sequences," Advanced in Difference Equations, Vol.1, pp. 1-18, 2014.
- [26] M. Candan and A. Güneş, "Paranormed sequence spaces of Non Absolute Type Founded Using Generalized Difference Matrix," *Proceedings of the National Academy of Sciences; India Section A: Physical Sciences*, Vol. 85, no.2, pp. 269- 276, 2014.
- [27] M. Candan, "A new Perspective On Paranormed Riesz sequence space of Non Absolute Type," *Global Journal of Mathematical Analysis*, Vol. 3, no. 4, pp. 150–163, Doi: 10.14419/gjma.v3i4.5335, 2015.
- [28] E. E. Kara and M. İlkhan, "Some Properties of Generalized Fibonacci Sequence Spaces," *Linear* and Multilinear Algebra, Vol. 64, no. 11, pp. 2208-2223, 2016.
- [29] S. Ercan and Ç. A. Bektaş, "On some sequence spaces of non-absolute type," *Kragujevac J. Math.*, Vol. 38, no. 1, pp. 195-202, 2014.

- [30] S. Ercan and Ç. A. Bektaş, "On new λ^2 –Convergent Difference BK-spaces," *J. Comput. Anal. Appl.*, Vol. 23, no. 5, pp. 793-801, 2017.
- [31] M. Başarır and E. E. Kara, "On the B-Difference Sequence Spaces Derived by Generalized Weighted Mean and Compact Operators," *Journal of Mathematical Analysis and Applications*, Vol. 391, no. 1, pp. 67-81, 2012.
- [32] M. Başarır and E. E. Kara, "On the mth Difference Sequence Space of Generalized Weighted Mean and Compact Operators," *Acta Mathematica Scienta*, Vol. 33, no. B(3), pp. 797-813, 2013.
- [33] M. Başarır and E. E. Kara, "On Compact Operators on the Riesz B^m-Difference Sequence Space," *Iranian Journal of Science & Technology*, Vol.35, no. A4, pp. 279-285, 2011.
- [34] M. Başarır and E. E. Kara, "On some Difference Sequence Spaces of Weighted Means and Compact Operators," *Annals of Functional Analysis*, Vol.2, no. 2 pp. 116-131, 2011.
- [35] E. E. Kara, "Some Topological and Geometrical Properties of New Banach Sequence Spaces," *Journal of Inequalities and Applications*, Vol. 2013, no. 38, 16 Pages, 2013, doi:10.1186/1029-242X-2013-38.
- [36] E. E. Kara and M. İlkhan, "On Some Banach Sequence Spaces Derived by a New Band Matrix," *British Journal of Mathematics & Computer Science*, Vol.9, no. 2, pp. 141-159, 2015.