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A different approach for almost sequence spaces defined by a generalized weighted means 

Gülsen Kılınç*1 and Murat Candan2 

ABSTRACT 

In this study, we introduce �(�, �),  ��(�, �) and ��(�, �) sequence spaces which consisting of all the sequences whose 
generalized weighted �-difference means are found in �,  �� and �� spaces utilising generalized weighted mean and �-difference 
matrices. The �-and the �-duals of the spaces �(�, �) and ��(�, �) are determined. At the same time, we have characterized the 
infinite matrices (�(�, �):�) and (�:�(�, �)), where � is any given sequence space. 

Keywords: Matrix transformations, sequence spaces, matrix domain of a sequence space, dual spaces   

Bir genelleştirilmiş ağırlıklı ortalama ile tanımlanan hemen hemen yakınsak dizi uzayları için bir 
farklı yaklaşım 

ÖZ 

Bu çalışmada, B-fark matrisi ile genelleştirilmiş ağırlıklı ortalama metodu yardımıyla inşa edilen �(�, �), ��(�, �) ve ��(�, �) 
dizi uzayları tanımlandı. Bu uzaylar, genelleştirilmiş ağırlıklı �-fark ortalamaları sırasıyla �, �� ve �� uzaylarında olan dizilerin 
uzayıdır. �(�, �) ve ��(�, �) uzaylarının �- ve �-dualleri elde edildi. Ayrıca, � herhangi bir dizi uzayı olmak üzere (�(�, �):�) 
ve (�:�(�, �)) sonsuz matrisleri karakterize edildi.  

Anahtar Kelimeler:  Matris dönüşümleri, dizi uzayları, bir dizi uzayının matris alanı, dual uzaylar 

 

1. INTRODUCTION 

Let’s start with the definition of sequence space, which is the 
basic concept of summability theory. As usual, the symbol �  
denotes the space of all real valued sequences. A �������� 
space is known as any vector subspace of � . By ��, �, ��,
��(1 ≤ � < ∞ ), �� and ��, we demonstrate the sets of all 

bounded, convergent, null sequences, � −  absolutely 
convergent series , bounded series and convergent series, 
respectively. At the same, we are going to use representation 

that � = (1,1, ...,1, ...) and e(�) is the sequence space in 
which only non-zero terms is 1 in the �-th place for each � ∈
ℕ , where ℕ = {0,1,2, ...}. 
Let � and �  be arbitrary sequence spaces and � = (���) be 
an infinite matrix of real numbers ���, where �, � ∈ ℕ . we 

                                                 
* Corresponding Author/Sorumlu Yazar 
1 Adiyaman University, Faculty of Education, Department of Elementary Education, Adıyaman - gkilinc@adiyaman.edu.tr 
2 Inonu University, Faculty of Arts and Science, Department of Mathematics, Malatya –murat.candan@inonu.edu.tr 

can defines a matrix transformation as follows. If �� =
{��(�)}, the � − transform of �, is in � for each � = (��) ∈
 � , we call � as a matrix transformation from � into � and 
denote the class of all such matrices by (�, �). If  a matrix � 
is an element of this class, then the series ��(�) is 
convergence for each � ∈ ℕ  and � ∈ �, where  
 
��(�) = ∑ � �����,    for each  � ∈ ℕ   
 
and �� = (���)�∈ℕ  is the sequence of elements in the �-th 
row of �. For sake of briefness, henceforward, the 
summation without limits runs from 0 to ∞ . 
A matrix �  is called triangle if main diagonal’s elements 
aren’t zero and elements on the top of the main diagonal are 
zero. For triangle matrices �, � and a sequence �, the 
equality �(��) = (�� )� holds. Further, a triangle matrix �  
uniquely has an inverse � � � = �, also a triangle matrix. The 
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equality � = � (��) = �(�� ) yields for talked about 
matrices. 
If there exists a single sequence (��) of scalars satisfied the 
following equation, then the sequence (��) is known a 
Schauder basis (or shortly basis) for a normed sequence 
space �, where mentioned above equation is, for every � ∈
�, 
 

���
�→ �

�� − �

�

���

����� = 0. 

 
The series ∑ � ���� which has the sum � is called the 
enlargement of � according to (��), and written as � =
∑ � ����.  Schauder basis and algebraic basis coincide for 
finite sequence spaces. Let us present the definition of some 
triangle limitation matrices which are required in text. 
Let �  be the set of all sequences � = (��) such that �� ≠ 0 

for all � ∈ ℕ . For � ∈ � , let 
�

�
= �

�

��
�. Let �, � ∈ �  and 

define the matrix �(�, �) = (���) by 

��� = �

����, (� < �),

����, (� = �),

0, (� > �),

 

 
for all �, � ∈ ℕ , where �� is only attached to � and �� bounds 
up with only �. The matrix �(�, �) described above, is 
entitled as generalized weighted mean or factorable matrix. 
Another matrix �(�, �) = {���(�, �)} known as generalized 
difference matrix is defined as below:  

 

���(�, �) = �

�, (� = �),

�, (� = � − 1),

0, (0 ≤ � < � − 1 �� � > �),

 

 
where � and � are non-zero real numbers. The matrix �(�, �) 

can be degraded to the difference matrix ∆(�) in case of � =
1, � = − 1. Therefore, the obtained conclusions concerned 
with domain of the matrix �(�, �) are  the generalization of 
the consequences corresponding of the matrix domain of 

∆(�), where ∆(�) = (���) is described as  
 

��� = �
(− 1)�� �, (� − 1 ≤ � ≤ �),

0, (0 ≤ � < � − 1  ��  � > �).
 

 
The matrix � = (���) is defined as 
 

��� = �
1, (0 ≤ � ≤ �),

0, (� > �),
. 

The domain of an infinite matrix �  on a sequence space μ is 
a sequence space denoted by ��  and this space is recognized 
by the set 
 

�� = {� = (��) ∈ � :�� ∈ �}. (1) 
 

Generally, the new sequence space μ�  is the enlargement or 
the shrinkage of the original space �, in some cases it can be 
sighted that those spaces overlap. Also, If � is one of the 
sequence space of bounded, convergent and null sequence 
spaces, then inclusion relationship �� ⊂ � strictly holds. 
Further it can be acquired easily that the inclusion 
relationship � ⊂ �∆(�) yields for � ∈ {��, �, ��, ��}. 

Combined with a linear topology a sequence space � is 
denominated a � − space, if for each � ∈ ℕ , coordinate maps  

��:� → ℂ, described by ��(�) = ��  are continuous, where ℂ 
is the complex numbers field. A � − space which is a 
complete linear metric space is entitled an FK space. An 
�� − space whose topology is normable is called a �� −  
space [1] which comprises � , the set of all finitely nonzero 
sequences. 
Let us assume that �  is a triangle matrix, in that case, we can 
obviously say that the sequence spaces ��  and � are linearly 
isomorphic, i.e.,  �� ≅ � and if � is a �� − space, then  ��  
is also a �� − space with the norm given by  ‖�‖ ��

=

‖�� ‖� , for all � ∈  �� . As well as above mentioned 

sequence spaces ��, �, �� and almost convergent sequence 
space � are �� − spaces with the ordinary supnorm 
described by  

 
‖�‖� = ���

�∈ℕ
|��|. 

 
Also ��  are �� − spaces with the ordinary norm defined by  

‖�‖� = ��

�

|��|��

�
�

,          (1 ≤ � < ∞ ). 

 
A continuous linear functional �  on �� is said a Banach limit, 
if 

i) For every � = (��), � (�) ≥ 0, 
 

ii) � ��� (�)� =   � (��), where � is shift operator 

which is described onto �  with 
�(�) = � + 1, 

iii) � (�) = 1, where � = (1,1,1, ...). 
 

A sequence � = (��) ∈ �� is entitled to be almost 
convergent to generalized limit �, if all Banach Limits of � 
are � [2] and denoted by � − lim� = �. In an other saying, 
� − lim�� = �   iff uniformly in � 
 

���
�→ �

1

� + 1
�

�

���

���� = �. 

 
We indicate the sets of all almost convergent sequences by � 
and series by �� and define as follow: 

� = �� = (��) ∈ � :lim
�→ �

���(�) = ��, 

where � exists uniformly in � and 
 

���(�) =
1

� + 1
�

�

���

����,     

and 

 �� = �� = (��) ∈ � :∃� ∈ ℂ ∋

lim
�→ �

∑ �
��� ∑ ���

���

��

���
= �, ��������� �� ��.  

 
As known that the containments � ⊂ � ⊂ �� are precisely 
acquired. Owing to these containments, norms ‖.‖�  and 

‖.‖� of the spaces � and �� are equivalent. Therefore the 
sets � and �� are BK- spaces having the following norm  
 

‖�‖� = ���
�,�

|���(�)|. 
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For a sequence � = (��), we demonstrate the difference 
sequence space by ∆� = (�� − ��� �). Kızmaz first 
presented the difference sequence spaces as follows: 

�(∆) = {� = (��) ∈ � :∆� = (�� − ����) ∈ �}. 
It was proved by Kızmaz [3] that �(∆) is a Banach space 
with the norm 

‖�‖� = |��|+ ‖��‖�;    � = (��) ∈ �(�) 
and the containment relation � ⊂ �(∆) strictly holds. The 
author at the same time investigated the �− , �− , � −  duals 
of the difference spaces and determined the classes (�(∆):�) 

and ��:�(∆)� of infinite matrices, here �, � ∈ {��, �}. When 
we look according to summability theory perspective, we can 
see that to define new Banach spaces by the matrix domain 
of triangle and investigate their algebraical, geometrical and 
topological properties is well-known. Therefore, many 
authors were interested in this subject and by using some 
known matrices, many studies were done. 
In literature, it was investigated domain of following 
matrices on the almost convergent and null almost 
convergent sequence spaces in the sources mentioned: the 
generalized weighted mean � in [4], the double band matrix 
�(�, �) in [5], the Riesz matrix in [6], Cesaro matrix of order 
1 in [13], the matrix � in [7] can be seen. Further, using 
generalized difference Fibonacci matrix, Candan and 

Kayaduman defined �̂�(�,�) space [24]. Furthermore, it can 
be looked at those works about this topic nearly: [9], [10], 
[11], [25], [26], [27], [28], [29], [30], [31] [32] [33] [34] [35], 
[36]. 
Recently, A. Karaisa and F. Özger [12]  the spaces 
�(�, �, ∆),   ��(�, �, ∆) and ��(�, �, ∆) defined and studied. 
By taking inspiration from this work, we decided to study 
this subject of this paper. By using generalized weighted 
mean and  � − difference matrices, we familiarize �(�, �),
��(�, �) and ��(�, �) sequence spaces consisting of all 
sequences whose generalized weighted � − difference means 
are in the �, �� and �� spaces . 
We assume throughout this paper � = (��) and � = (��) ∈
�  (as above talk about) and �, � ∈ ℝ − {0}, further, we shall 
write for briefness that � = �(�, �) = �(�, �).�(�, �), 
where  
 

�(�, �) = {���}= �
����� + �������, � < �,
�����, � = �,
0, � > �.

 

In following definitions, let � = (�� ) be the 
�(�, �) − transform of a sequence � = (��). Then 

�� = �������,      and for     � ≥ 1 
 

�� = ���∑ �� �
��� (��� + �����)�� + ������, (2) 

 
and for each �, � ∈ ℕ  we shall write for briefness  
 

∇���= (− 1)�� � �
��� �

��� �� ���
+

��� �� �

��� ���� �
� (3) 

 
and if � = (��) = �(�, �)(�) ∈ �, it means that ∃� ∈ ℂ 
such that uniformly in �, 
 

lim
�→ �

�

���
∑ �

��� �����∑ ���� �
��� (��� + �����)�� +

���������� = �,     (4) 
 

Now, let us define the sequence space �(�, �) 
 

�(�, �) = {� = (��) ∈ � :�(�, �)(�) ∈ �}. 

 
Similarly, we can define ��(�, �) and ��(�, �) spaces as 
 
 ��(�, �) = {� = (��) ∈ � :�(�, �)(�) ∈ ��}, 
 if � = (��) ∈ ��, we know that in (4), � = 0. Further, 
 

��(�, �) = {� = (��) ∈ � : �(�, �)(�) ∈ ��}, 
i.e. � = (��) = �(�, �)(�) ∈ ��, then ∃� ∈ ℂ ∋, uniformly 
in �, 
 

 ���
�→ �

�

���
∑ �

��� ∑ ���
��� ����∑ �� �

��� (��� + �����)�� +

�������= �. 

 
We can redefine the spaces ��(�, �), �(�, �) and ��(�, �) 
by the notation of (1), 
 
��(�, �) = (��)�(� ,� ),  �(�, �) = (�)� (� ,� ), 

��(�, �) = (��)� (� ,� ). 
 

In this paper, we investigate some topological properties, 
beta- and gamma- duals of these spaces and study to acquire 
some matrix characterizations between these spaces and 
standard spaces. 

 

2. SOME TOPOLOGICAL PROPERTIES OF THESE 
SPACES 

Theorem 1: i) The sequence space �(�, �) is normed space 
with  

 ‖�‖�(�,� ) = ���
�,�

�
�

���
∑ �

��� �����∑ ���� �
��� (��� +

�����)�� + �����������, 

 
ii) The  sequence space ��(�, �) is normed space with  

‖�‖��(� ,� ) = ���
�,�

�
�

���
∑ �

��� �∑ ���
��� ���∑ �� �

��� (��� +

 + �����)�� + ��������.  

 
Theorem 2: The sets �(�, �), ��(�, �) and ��(�, �) are 
linearly isomorphic to the sets �, �� and �� respectively, i.e., 
�(�, �) ≅ �, ��(�, �) ≅ ��, ��(�, �) ≅ ��. 

 
Proof: Firstly, let us attest that �(�, �) ≅ �. For this 
purpose, we have to show that there exists a linear bijection 
among the spaces �(�, �) and �. Let us take into account the 
transformation � described by the relation of (1) from 
�(�, �) to � with � → � = �� = �(�, �)� ∈ �, for � ∈
�(�, �). The linearity of � is clear. Moreover, it is obvious 
that � = 0 when �� = 0, thus � is injective. 
Let us assume � = (��) ∈ � and describe � = (��)  by  
 

�� = �

�� �

���

1

��

������ +
1

�����

��,    (� ∈ ℕ ). 

 
Then, we have 
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uk ��

k-1

j=0

�rvj+svj+1�xj+rvkxk�

    = uk �

k-1

j=0

�rvj+svj+1� ��

j-1

i=0

1

ui

∇�jiyi+
1

rujvj

yj�

    + ukrvk ��

k-1

j=0

1

uj

∇�kjyj+
1

rukvk

yk�

    = �

k-1

j=0

uk�rvj+svj+1� �

j-1

i=0

1

ui

∇�jiyi

    + �

k-1

j=0

uk�rvj+svj+1�
1

rujvj

yj+ ukrvk ��

k-1

j=0

1

uj

∇�kjyj�  + yk

    = �

k-1

j=0

uk�rvj+svj+1� �

j-1

i=0

1

ui

∇�jiyi

    + ��

k-1

j=0

�rvj+svj+1�
1

rujvj

+rvk �

k-1

j=0

1

uj

∇�kj�ukyj+ yk

    = yk

 

 
for all � ∈ ℕ , which leads us to the truth that 

 ���
�→ �

�

���
∑ �

��� �����∑ ���� �
��� (��� +

�����)�� + ���������� 
  

= ���
�→ �

1

� + 1
�

�

���

����     (��������� �� �) 

 
= � − �����. 

  
It means that � = (��) ∈ �(�, �). Hereby, we reach the truth 
that T is surjective. So, T is a linear bijection, and it means 
that the spaces �(�, �) and � are linearly isomorphic, as 
desired. The fact ��(�, �) ≅ �� can be analogously attested. 
Due to the well known fact that the matrix domain ��  of the 
normed sequence space denoted by �, has got a base iff � has 
got a base, whenever a matrix � = (���) is a triangle [14] 
(������ 2.4) and since the space � has no Schauder basis, 
we have;  

 
Corollary 1: The space �(�, �) has no Schauder basis.  

3.THE �− , �− , � − DUALS OF THESE SPACES 

The �− , �− , � − duals of the  sequence space �  are defined 
by  
 

� � = {� = (��) ∈ � :�� = (����) ∈ ��,
∀ � = (��) ∈ �}, 

 

�� = {� = (��) ∈ � :�� = (����) ∈ ��,
∀ � = (��) ∈ �}, 

and 
� � = {� = (��) ∈ � :�� = (����) ∈ ��,

∀ � = (��) ∈ �}, 
 

here �� and �� are defined to be  sequence spaces of all 
convergent and bounded series, respectively.  
 
Lemma 1: [15] So as to the matrix � appertains to the matrix 
class from � to �� is necessary and sufficient condition  

���
�∈ℕ

�

�

|���|< ∞  

is satisfied.  
 
Lemma 2: [15] So as to the matrix � appertains to the 
matrix class from � to � is necessary and sufficient 
conditions 
 

i) ����∈ℕ ∑ � |���|< ∞ , 
ii) ����→ ���� = ��,    for each � ∈ ℕ , 
iii) ����→ � ∑ � ��� = �, 
iv) ����→ � ∑ � |�(��� − ��)|= 0, 

are satisfied.  
 
Theorem 3: The � − dual of the space �(�, �) is the 
intersection of the sets  

 �� = �� = (��) ∈ � :���
�

∑ �� �
��� �

��

�����
+

����

��
∑ �� �

����� ���< ∞ �, 

 

 �� = �� = (��) ∈ � :���
�

�
��

��� ��
�< ∞ �. 

 
Proof: For an optional sequence � = (��) ∈ �  and take 
into consideration  the  following equality                    

∑ �
��� ���� = ∑ �

��� �� �∑ �� �
���

�

��
∇����� +

�

�����
���

    = �∑ �� �
���

��

�����
+

�

��
∑ �� �

����� ∇�������� +
��

��� ��
��  

    = (��)�

(5) 

 
where  the general term ���  of the matrix �  is determined as 
follows:  

 

⎩
⎨

⎧∑ �� �
���

��

�����
+

�

��
∑ �� �

����� ∇�����, 0 ≤ � ≤ � − 1,

��

��� ��
, � = �,

0, � > �,

 (6) 

 
for all �, � ∈ ℕ . Thus, we deduce from [5] that ���� ∈ �� 
whenever � = (��) ∈ �(�, �) necessary and sufficient 
condition �� ∈ �� whenever � = (��) ∈ �,  where � =
(���) is described in (6). That’s why with assistance of  
Lemma 1,  �(�, �)� = �� ∩ ��. 
 
Theorem 4: The � − dual of the space �(�, �) is the 
intersection of the sets 
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�� = �� = (��) ∈ � :���
�→ �

���    �������,

�� = �� = (��) ∈ � :���
�→ �

�

�

���      �������,

�� = �� = (��) ∈ � :���
�→ �

�

�

∆[��� − ��] < ∞ �,

 

 

where �� = ����→ ����. Then {�(�, �)}� = ∩ ���
� ��. 

 
Proof: Let us take any sequence � ∈ � . By (5), �� =
(����) ∈ �� whenever � = (��) ∈ �(�, �) necessary and 
sufficient condition �� ∈ � whenever � = (��) ∈ �,  where 
� = (���) is designated in (6). We reproduce the 

consequence by Lemma 2 that {�(�, �)}� = ∩ ���
� ��. 

 
Theorem 5: The � − dual of the space ��(�, �) is the 
intersection of the sets, 

�� = �� = (��) ∈ � :���
�

�

�

|����|< ∞ �, 

 

�� = �� = (��) ∈ � :���
�→ �

��� = 0�. 

 
In another saying, we get {��(�, �)}� = �� ∩ ��. 
 
Proof: This might be acquired in a similar concept as talk 
about in the proof of Theorem 3 with Lemma 1 in lieu of 
Lemma 4 (iii). So, we neglect details. 
 
Theorem 6:  Defined the set   

�� = �� = (��) ∈ � :���
�→ �

�

�

|�����|< ∞ �. 

Then,     {��(�, �)}� = �� ∩ �� ∩ �� ∩ ��. 
 

Proof: This might be acquired in a similar concept as talk 
about in the proof of Theorem 4 with Lemma 2 in lieu of 
Lemma 4 (iv). So, we disregard details. 

4. SOME MATRIX TRANSFORMATIONS 

For briefness, we write 

��� = �

�

���

���, 

�(�, �, �) =
1

� + 1
�

�

���

����,�, 

∆��� = ��� − ��,���. 
 

Theorem 7: [16] Let � be an �� -space, �  be a triangle, � 
be its inverse and � be optional subset of � . Then we have 
� = (���) ∈ (��:�) necessary and sufficient condition 

�(�) = ����
(�)

� ∈ (�, �)  ��� ��� � ∈ ℕ , (7) 
 

� = (���) ∈ (�:�), (8) 
 
where,  

���
(�)

= �
�

�

���

������, 0 ≤ � ≤ �,

0, � > �,

 

and 

��� = �

�

���

������, ��� ��� �, �, � ∈ ℕ . 

 
Lemma 3: So as to the matrix � appertains to the matrix 
class from � to � is necessary and sufficient conditions: 

���
�∈ℕ

�

�

|���|< ∞ , 

for each fixed � ∈ ℕ , � − lim��� = ��  �����,  

� − ��� �

�

��� = �, 

and uniformly in � 

���
�→ �

�

�

|��(�, �, �) − ��]|= 0, 

are satisfied.  
 
For an infinite matrix � = (���), we shall write for briefness 
that, 

���
� = ����(�) =

�

�����
��� +

�

��
∑ �

����� ∇������,  (� < �), (9) 

 and 

��� = ���� =
�

�����
��� +

�

��
∑ �

����� ∇������, (10) 

 
 for all �, �, � ∈ ℕ , 
 
���� = ��(∑ �� �

��� (��� + �����)��� + ������). (11) 
 

Theorem 8: Let us assume that the entries of the infinite 
matrices given by � = (���) and � = (ℎ��) are related by 
the following relation 

 
ℎ�� = ����                                                  (12) 
 

 for all � and � ∈ ℕ , � is an arbitrary  sequence space. 
Then, � ∈ (�(�, �):�) necessary and sufficient condition 
for all  � ∈ ℕ ,  {���}�∈ℕ ∈ �(�, �)� and � ∈ (�:�). 
 
Proof: We assume that � is a given  sequence space. Let us 
assume that (12) yields among the entries of � = (���) and 
� = (ℎ��), and consider the fact that the spaces �(�, �) and 
� are defined to be linearly isomorphic. 
We take � ∈ (�(�, �):�) and any � = (��) ∈ � . Thus, 
�.�(�, �) does exist and {���}�∈ℕ ∈∩ ���

� �� which yields 
that {ℎ��}�∈ℕ ∈ �� for each � ∈ ℕ . Hence, �� exists and thus 
for all � ∈ ℕ  
 

 ∑ �  ℎ���� = ∑ � �����,                                 (13) 
we have by (12) that �� = ��, which leads us to 
consequence � ∈ (�:�). 
Conversely, let {���}�∈ℕ ∈ �(�, �)� for each � ∈ ℕ  and 
� ∈ (�:�) yield, and take any � = (��) ∈ �(�, �). Then, 
�� exists. Thus, we acquire from the following equality for 
each � ∈ ℕ , 

�

�

���

����� =  

∑ �
��� �∑ �� �

���
�

��
∇�(�, �)����� +

�

�����
������, (14) 

 
as � → ∞  that �� = �� and this shows that � ∈
(�(�, �):�). 
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This completes the proof.  
 
Theorem 9:  � ∈ (�(�, �):�) necessary and sufficient 

condition �(�) = ����
(�)

� ∈ (�:�) and � = (���) ∈ (�:�). 
 
Theorem 10: � ∈ (�(�, �):��) necessary and sufficient 

condition �(�) = ����
(�)

� ∈ (�:�) and � = (���) ∈ (�:��). 
 

If we change the roles for the spaces �(�, �) and �  with  �, 
we have; 
 
Theorem 11: Assume that the entries of the infinite matrices 
� = (���) and � = (���) are connected with the relation 
��� = ����, (11), for all �, � ∈ � and � be any given  
sequence space. Then, � ∈ (�:�(�, �)) necessary and 
sufficient condition � ∈ (�:�). 
 
Proof: Let � = (��) ∈ � and take into account the following 
equality  

{R(G,B)(Ax)}n= un ��

n-1

j=0

�rvj+svj+1�(Ax)j+runvn(Ax)n�

    = un ��

n-1

j=0

�rvj+svj+1� �

j

anjxj� +runvn �

k

ankxk

    = �

k

��

n-1

j=k

uk�rvj-k+svj-k+1 �an,j-kxj-k+runvnankxk�

    = (Lx)n,

 

 
which leads us to consequence that �� ∈ �(�, �) necessary 
and sufficient condition �� ∈ �. 
This step completes the proof. 
 
At this time, we are going to denote the following conditions:  

���
�∈ℕ

∑ � |���|< ∞ , (15) 

 
���
�→ �

��� = ��,        for each  fixed � ∈ ℕ , (16) 

 
���
�→ �

∑ � ��� = �, (17) 

 
���
�→ �

∑ � |�(��� − ��)|= 0, (18) 

 
���
�∈ℕ

∑ � |�(���)|< ∞ , (19) 

 
���
�→ �

��� = 0, for each  fixed � ∈ ℕ , (20) 

 
���
�→ �

∑ � |�����|= �, (21) 

 
for each  fixed � ∈ ℕ  

� − ������ = �� exists,                              (22) 
uniformly in � 
  

���
�→ �

∑ � |�(�, �, �) − ��|= 0, (23) 

uniformly in � 
 
              � − ��� ∑ � ��� = �, (24) 
uniformly in � 
 

���
�→ �

∑ � |�[�(�, �, �) − ��]|= 0,                  (25) 

uniformly in � 
 

���
�→ �

∑ �
�

���
�∑

�
��� �[�(� + �, �) − ��]� = 0,  (26) 

  
���
�∈ℕ

∑ � |��(�, �)|< ∞ , (27) 

for each fixed � ∈ ℕ ,  
� − ����(�, �) = ��exists,                             (28) 
uniformly in � 
 

���
�→ �

∑ �
�

���
�∑

�
��� ��[�(� + �, �) − ��]� = 0, (29) 

 
���
�∈ℕ

∑ � |�(�, �)|< ∞ , (30) 

 
∑ � ��� = ��, for each fixed � ∈ ℕ  (31) 

 
∑ � ∑ � ��� = �, (32) 

 
���
�→ �

∑ � |��(�, �) − ��|= 0. (33) 

 
Let � = (���) be an infinite matrix. In that case, the 
following expressions yield: 

 
Lemma 4:  i) � = (���) ∈ (ℓ�:�) necessary and sufficient 
condition (15), (22) and (23) yield. [17] 
ii) � = (���) ∈ (�:�) necessary and sufficient condition 
(15), (22), (24),  and (25) yield. [17] 
iii) � = (���) ∈ (��:ℓ�) necessary and sufficient condition 
(19) and (20) yield. 
iv) � = (���) ∈ (��:�) necessary and sufficient condition 
(16), (19) and (21) yield. [18] 
v) � = (���) ∈ (�:�) necessary and sufficient condition 
(15), (22)  and (24) yield. [19] 
vi) � = (���) ∈ (��:�) necessary and sufficient condition 
(19), (20), (22) and (26) yield. [20] 
vii) � = (���) ∈ (��:�) necessary and sufficient condition 
(20), (22), (25) and (26) yield. [21] 
viii) � = (���) ∈ (��:�) necessary and sufficient condition 
(19) and (22) yield. [22] 
ix) � = (���) ∈ (��:��) necessary and sufficient condition 
(20), (26) and (28) yield. [20] 
x) � = (���) ∈ (��:��) necessary and sufficient condition 
(26) and (29) yield. [21] 
xi) � = (���) ∈ (��:��) necessary and sufficient condition 
(27) and (28) yield. [22] 
xii) � = (���) ∈ (�:��) necessary and sufficient condition 
(30) and (33) yield. [23] 

 
Corollary 2: The following statements hold: 
           i) � = (���) ∈ (�(�, �):��) necessary and sufficient 
condition {���}�∈ℕ ∈ �(�, �)� for all � ∈ ℕ  and (15) yields 
with ���� lieu of ���. 

ii) � = (���) ∈ (�(�, �):�) necessary and 
sufficient condition {���}�∈ℕ ∈ �(�, �)� for all � ∈ ℕ  and 
(15), (16), (18) yield with ����  lieu of ���. 

iii) � = (���) ∈ (�(�, �):��) necessary and 
sufficient condition {���}�∈ℕ ∈ �(�, �)� for all � ∈ ℕ  and 
(30) yields. 

iv) � = (���) ∈ (�(�, �):��) necessary and 
sufficient condition {���}�∈ℕ ∈ �(�, �)� for all � ∈ ℕ  and 
(30), (33) yield with ���� lieu of ���. 
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Corollary 3: The following statements hold: 

i) � = (���) ∈ ���:�(�, �)� necessary and 

sufficient condition (15), (22) and (23) yield with ����  lieu of 
��� . 

ii) � = (���) ∈ ��:�(�, �)� necessary and 

sufficient condition (15), (22), (24) and  (25) yield with ���� 
lieu of ���. 

iii) � = (���) ∈ ��:�(�, �)� necessary and 

sufficient condition (15), (22) and (24) yield with ����  lieu of 
���. 

 
Corollary 4: The following statements hold: 

            i) � = (���) ∈ ���:�(�, �)� necessary and 

sufficient condition (19), (20), (22) and (26) yield with ���� 
lieu of ���. 

ii) � = (���) ∈ ���:�(�, �)� necessary and 

sufficient condition (20), (22) and (26)  yield with ����  lieu of 
���. 

iii) � = (���) ∈ ���:�(�, �)� necessary and 

sufficient condition (19), (22) yield with ���� lieu of ���. 
 

Corollary 5: The following statements hold: 

           i) � = (���) ∈ ���:��(�, �)� necessary and 

sufficient condition (20), (26) and (28) yield with ����  lieu of 
���. 

ii) � = (���) ∈ ���:��(�, �)� necessary and 

sufficient condition (26) and (29) yield with ���� lieu of ���. 

iii) � = (���) ∈ ���:��(�, �)� necessary and 

sufficient condition (27) and (28) yield with ���� lieu of ���. 
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