

A different approach for almost sequence spaces defined by a generalized weighted means

Gülsen Kılınç ${ }^{* 1}$ and Murat Candan ${ }^{2}$

Abstract

In this study, we introduce $f(G, B), f_{0}(G, B)$ and $f s(G, B)$ sequence spaces which consisting of all the sequences whose generalized weighted B-difference means are found in f, f_{0} and $f s$ spaces utilising generalized weighted mean and B-difference matrices. The γ-and the β-duals of the spaces $f(G, B)$ and $f s(G, B)$ are determined. At the same time, we have characterized the infinite matrices $(f(G, B): \mu)$ and $(\mu: f(G, B)$), where μ is any given sequence space.

Keywords: Matrix transformations, sequence spaces, matrix domain of a sequence space, dual spaces

Bir genelleştirilmiş ağırlıklı ortalama ile tanımlanan hemen hemen yakınsak dizi uzayları için bir farklı yaklaşım

ÖZ

Bu çalışmada, B-fark matrisi ile genelleştirilmiş ağırlıklı ortalama metodu yardımıyla inşa edilen $f(G, B), f_{0}(G, B)$ ve $f s(G, B)$ dizi uzayları tanımlandı. Bu uzaylar, genelleştirilmiş ağırlıklı B-fark ortalamaları sırasıyla f, f_{0} ve $f s$ uzaylarında olan dizilerin uzayıdır. $f(G, B)$ ve $f s(G, B)$ uzaylarının γ-ve β-dualleri elde edildi. Ayrıca, μ herhangi bir dizi uzayı olmak üzere $(f(G, B): \mu)$ ve ($\mu: f(G, B)$) sonsuz matrisleri karakterize edildi.

Anahtar Kelimeler: Matris dönüşümleri, dizi uzayları, bir dizi uzayının matris alanı, dual uzaylar

1. INTRODUCTION

Let's start with the definition of sequence space, which is the basic concept of summability theory. As usual, the symbol w denotes the space of all real valued sequences. A sequence space is known as any vector subspace of w. By l_{∞}, c, c_{0}, $l_{p}(1 \leq p<\infty), b s$ and $c s$, we demonstrate the sets of all bounded, convergent, null sequences, $p-$ absolutely convergent series, bounded series and convergent series, respectively. At the same, we are going to use representation that $e=(1,1, \ldots, 1, \ldots)$ and $\mathrm{e}^{(n)}$ is the sequence space in which only non-zero terms is 1 in the n-th place for each $n \in$ \mathbb{N}, where $\mathbb{N}=\{0,1,2, \ldots\}$.
Let ϑ and η be arbitrary sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. we
can defines a matrix transformation as follows. If $A y=$ $\left\{A_{n}(y)\right\}$, the A-transform of y, is in η for each $y=\left(y_{k}\right) \in$ ϑ, we call A as a matrix transformation from ϑ into η and denote the class of all such matrices by (ϑ, η). If a matrix A is an element of this class, then the series $A_{n}(y)$ is convergence for each $n \in \mathbb{N}$ and $y \in \vartheta$, where
$A_{n}(y)=\sum_{k} a_{n k} y_{k}, \quad$ for each $n \in \mathbb{N}$
and $A_{n}=\left(a_{n k}\right)_{k \in \mathbb{N}}$ is the sequence of elements in the n-th row of A. For sake of briefness, henceforward, the summation without limits runs from 0 to ∞.
A matrix E is called triangle if main diagonal's elements aren't zero and elements on the top of the main diagonal are zero. For triangle matrices E, F and a sequence y, the equality $E(F y)=(E F) y$ holds. Further, a triangle matrix W uniquely has an inverse $W^{-1}=Z$, also a triangle matrix. The

[^0]equality $y=W(Z y)=Z(W y)$ yields for talked about matrices.
If there exists a single sequence $\left(c_{n}\right)$ of scalars satisfied the following equation, then the sequence (c_{n}) is known a Schauder basis (or shortly basis) for a normed sequence space μ, where mentioned above equation is, for every $y \in$ μ,
$$
\lim _{n \rightarrow \infty}\left\|y-\sum_{k=0}^{n} \alpha_{k} c_{k}\right\|=0
$$

The series $\sum_{k} \alpha_{k} b_{k}$ which has the sum y is called the enlargement of y according to $\left(c_{n}\right)$, and written as $y=$ $\sum_{k} \alpha_{k} c_{k}$. Schauder basis and algebraic basis coincide for finite sequence spaces. Let us present the definition of some triangle limitation matrices which are required in text.
Let U be the set of all sequences $u=\left(u_{k}\right)$ such that $u_{k} \neq 0$ for all $k \in \mathbb{N}$. For $u \in U$, let $\frac{1}{u}=\left(\frac{1}{u_{k}}\right)$. Let $u, v \in U$ and define the matrix $G(u, v)=\left(g_{n k}\right)$ by

$$
g_{n k}= \begin{cases}u_{n} v_{k}, & (k<n) \\ u_{n} v_{n}, & (k=n) \\ 0, & (k>n)\end{cases}
$$

for all $k, n \in \mathbb{N}$, where u_{n} is only attached to n and v_{k} bounds up with only k. The matrix $G(u, v)$ described above, is entitled as generalized weighted mean or factorable matrix. Another matrix $B(r, s)=\left\{b_{n k}(r, s)\right\}$ known as generalized difference matrix is defined as below:

$$
b_{n k}(r, s)= \begin{cases}r, & (k=n) \\ s, & (k=n-1) \\ 0, & (0 \leq k<n-1 \text { or } k>n)\end{cases}
$$

where r and s are non-zero real numbers. The matrix $B(r, s)$ can be degraded to the difference matrix $\Delta^{(1)}$ in case of $r=$ $1, s=-1$. Therefore, the obtained conclusions concerned with domain of the matrix $B(r, s)$ are the generalization of the consequences corresponding of the matrix domain of $\Delta^{(1)}$, where $\Delta^{(1)}=\left(\delta_{n k}\right)$ is described as

$$
\delta_{n k}= \begin{cases}(-1)^{n-k}, & (n-1 \leq k \leq n) \\ 0, & (0 \leq k<n-1 \text { or } k>n)\end{cases}
$$

The matrix $S=\left(s_{n k}\right)$ is defined as

$$
s_{n k}= \begin{cases}1, & (0 \leq k \leq n) \\ 0, & (k>n)\end{cases}
$$

The domain of an infinite matrix K on a sequence space μ is a sequence space denoted by μ_{K} and this space is recognized by the set

$$
\begin{equation*}
\mu_{K}=\left\{y=\left(y_{k}\right) \in w: K y \in \mu\right\} \tag{1}
\end{equation*}
$$

Generally, the new sequence space μ_{K} is the enlargement or the shrinkage of the original space μ, in some cases it can be sighted that those spaces overlap. Also, If μ is one of the sequence space of bounded, convergent and null sequence spaces, then inclusion relationship $\mu_{S} \subset \mu$ strictly holds. Further it can be acquired easily that the inclusion relationship $\mu \subset \mu_{\Delta^{(1)}}$ yields for $\mu \in\left\{l_{\infty}, c, c_{0}, l_{p}\right\}$.
Combined with a linear topology a sequence space μ is denominated a K-space, if for each $i \in \mathbb{N}$, coordinate maps
$p_{i}: \mu \rightarrow \mathbb{C}$, described by $p_{i}(y)=y_{i}$ are continuous, where \mathbb{C} is the complex numbers field. A K-space which is a complete linear metric space is entitled an $F K$ space. An $F K$-space whose topology is normable is called a $B K-$ space [1] which comprises ϕ, the set of all finitely nonzero sequences.
Let us assume that K is a triangle matrix, in that case, we can obviously say that the sequence spaces μ_{K} and μ are linearly isomorphic, i.e., $\mu_{K} \cong \mu$ and if μ is a $B K-$ space, then μ_{K} is also a $B K$-space with the norm given by $\|y\|_{\mu_{K}}=$ $\|K y\|_{\mu}$, for all $x \in \mu_{K}$. As well as above mentioned sequence spaces l_{∞}, c, c_{0} and almost convergent sequence space f are $B K$-spaces with the ordinary supnorm described by

$$
\|y\|_{\infty}=\sup _{k \in \mathbb{N}}\left|y_{k}\right| .
$$

Also l_{p} are $B K$ - spaces with the ordinary norm defined by

$$
\|y\|_{p}=\left(\sum_{k}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}}, \quad(1 \leq p<\infty)
$$

A continuous linear functional ψ on l_{∞} is said a Banach limit, if
i) For every $y=\left(y_{k}\right), \psi(y) \geq 0$,
ii) $\psi\left(y_{\rho(k)}\right)=\psi\left(y_{k}\right)$, where ρ is shift operator which is described onto w with

$$
\rho(k)=k+1
$$

iii) $\quad \psi(e)=1$, where $e=(1,1,1, \ldots)$.

A sequence $y=\left(y_{k}\right) \in l_{\infty}$ is entitled to be almost convergent to generalized limit l, if all Banach Limits of y are l [2] and denoted by $f-\lim y=l$. In an other saying, $f-\lim y_{k}=l$ iff uniformly in n

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} y_{k+n}=l
$$

We indicate the sets of all almost convergent sequences by f and series by $f s$ and define as follow:

$$
f=\left\{y=\left(y_{k}\right) \in w: \lim _{m \rightarrow \infty} s_{m n}(y)=l\right\}
$$

where l exists uniformly in n and

$$
s_{m n}(y)=\frac{1}{m+1} \sum_{k=0}^{m} y_{k+n}
$$

and

$$
f s=\left\{y=\left(y_{k}\right) \in w: \exists l \in \mathbb{C} \ni\right.
$$

$\lim _{m \rightarrow \infty} \sum_{k=0}^{m} \sum_{j=0}^{n+k} \frac{y_{j}}{m+1}=l$, uniformly in $\left.n\right\}$.
As known that the containments $c \subset f \subset l_{\infty}$ are precisely acquired. Owing to these containments, norms $\|\cdot\|_{f}$ and $\|\cdot\|_{\infty}$ of the spaces f and l_{∞} are equivalent. Therefore the sets f and f_{0} are $B K$-spaces having the following norm

$$
\|y\|_{f}=\sup _{m, n}\left|s_{m n}(y)\right|
$$

For a sequence $y=\left(y_{k}\right)$, we demonstrate the difference sequence space by $\Delta y=\left(y_{k}-y_{k-1}\right)$. Kızmaz first presented the difference sequence spaces as follows:

$$
\mu(\Delta)=\left\{y=\left(y_{k}\right) \in w: \Delta y=\left(y_{k}-y_{k+1}\right) \in \mu\right\}
$$

It was proved by Kızmaz [3] that $\mu(\Delta)$ is a Banach space with the norm

$$
\|y\|_{\Delta}=\left|y_{1}\right|+\|\Delta y\|_{\infty} ; \quad y=\left(y_{k}\right) \in \mu(\Delta)
$$

and the containment relation $\mu \subset \mu(\Delta)$ strictly holds. The author at the same time investigated the $\alpha-, \beta-, \gamma-$ duals of the difference spaces and determined the classes $(\mu(\Delta): v)$ and $(v: \mu(\Delta))$ of infinite matrices, here $\mu, v \in\left\{l_{\infty}, c\right\}$. When we look according to summability theory perspective, we can see that to define new Banach spaces by the matrix domain of triangle and investigate their algebraical, geometrical and topological properties is well-known. Therefore, many authors were interested in this subject and by using some known matrices, many studies were done.
In literature, it was investigated domain of following matrices on the almost convergent and null almost convergent sequence spaces in the sources mentioned: the generalized weighted mean G in [4], the double band matrix $B(r, s)$ in [5], the Riesz matrix in [6], Cesaro matrix of order 1 in [13], the matrix B in [7] can be seen. Further, using generalized difference Fibonacci matrix, Candan and Kayaduman defined $\hat{c}^{f(r, s)}$ space [24]. Furthermore, it can be looked at those works about this topic nearly: [9], [10], [11], [25], [26], [27], [28], [29], [30], [31] [32] [33] [34] [35], [36].
Recently, A. Karaisa and F. Özger [12] the spaces $f(u, v, \Delta), f_{0}(u, v, \Delta)$ and $f s(u, v, \Delta)$ defined and studied. By taking inspiration from this work, we decided to study this subject of this paper. By using generalized weighted mean and B-difference matrices, we familiarize $f(G, B)$, $f_{0}(G, B)$ and $f s(G, B)$ sequence spaces consisting of all sequences whose generalized weighted B-difference means are in the f, f_{0} and $f s$ spaces .
We assume throughout this paper $u=\left(u_{k}\right)$ and $v=\left(v_{k}\right) \in$ U (as above talk about) and $r, s \in \mathbb{R}-\{0\}$, further, we shall write for briefness that $R=R(G, B)=G(u, v) \cdot B(r, s)$, where

$$
R(G, B)=\left\{r_{n k}\right\}= \begin{cases}u_{n} v_{k} r+u_{n} v_{k+1} s, & k<n \\ u_{n} v_{n} r, & k=n \\ 0, & k>n\end{cases}
$$

In following definitions, let $y=\left(y_{k}\right)$ be the $R(G, B)$-transform of a sequence $x=\left(x_{k}\right)$. Then

$$
\begin{equation*}
y_{0}=r u_{0} v_{0} x_{0,} \quad \text { and for } \quad k \geq 1 \tag{2}
\end{equation*}
$$

$y_{k}=u_{k}\left(\sum_{i=0}^{k-1}\left(r v_{i}+s v_{i+1}\right) x_{i}+r v_{k} x_{k}\right)$,
and for each $j, k \in \mathbb{N}$ we shall write for briefness

$$
\begin{equation*}
\widetilde{\nabla}_{j k}=(-1)^{j-k}\left(\frac{s^{j-k}}{r^{j-k+1} v_{k}}+\frac{s^{j-k-1}}{r^{j-k} v_{k+1}}\right) \tag{3}
\end{equation*}
$$

and if $y=\left(y_{k}\right)=R(G, B)(x) \in f$, it means that $\exists l \in \mathbb{C}$ such that uniformly in n,

$$
\begin{align*}
& \lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n}\left(\sum_{i=0}^{k+n-1}\left(r v_{i}+s v_{i+1}\right) x_{i}+\right. \\
& \left.r v_{k+n} x_{k+n}\right)=l \tag{4}
\end{align*}
$$

Now, let us define the sequence space $f(G, B)$

$$
f(G, B)=\left\{x=\left(x_{k}\right) \in w: R(G, B)(x) \in f\right\}
$$

Similarly, we can define $f_{0}(G, B)$ and $f s(G, B)$ spaces as

$$
f_{0}(G, B)=\left\{x=\left(x_{k}\right) \in w: R(G, B)(x) \in f_{0}\right\},
$$

if $y=\left(y_{k}\right) \in f_{0}$, we know that in (4), $\alpha=0$. Further,

$$
f s(G, B)=\left\{x=\left(x_{k}\right) \in w: R(G, B)(x) \in f s\right\}
$$

i.e. $y=\left(y_{k}\right)=R(G, B)(x) \in f s$, then $\exists l \in \mathbb{C} \ni$, uniformly in n,

$$
\begin{aligned}
& \quad \lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} \sum_{j=0}^{k+n}\left[u _ { j } \left(\sum_{i=0}^{j-1}\left(r v_{i}+s v_{i+1}\right) x_{i}+\right.\right. \\
& l .
\end{aligned}
$$

We can redefine the spaces $f s(G, B), f(G, B)$ and $f_{0}(G, B)$ by the notation of (1),

$$
\begin{gathered}
f_{0}(G, B)=\left(f_{0}\right)_{R(G, B)}, f(G, B)=(f)_{R(G, B)} \\
f s(G, B)=(f s)_{R(G, B)}
\end{gathered}
$$

In this paper, we investigate some topological properties, beta- and gamma-duals of these spaces and study to acquire some matrix characterizations between these spaces and standard spaces.

2. SOME TOPOLOGICAL PROPERTIES OF THESE SPACES

Theorem 1: i) The sequence space $f(G, B)$ is normed space with

$$
\begin{aligned}
& \|x\|_{f(G, B)}=\sup _{m, n} \left\lvert\, \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n}\left(\sum _ { i = 0 } ^ { k + n - 1 } \left(r v_{i}+\right.\right.\right. \\
& \left.\left.s v_{i+1}\right) x_{i}+r v_{k+n} x_{k+n}\right) \mid
\end{aligned}
$$

ii) The sequence space $f s(G, B)$ is normed space with $\|x\|_{f s(G, B)}=\sup _{m, n} \left\lvert\, \frac{1}{m+1} \sum_{k=0}^{m}\left(\sum_{j=0}^{k+n} u_{j}\left(\sum_{i=0}^{j-1}\left(r v_{i}\right.\right.\right.\right.$ $\left.\left.\left.+s v_{i+1}\right) x_{i}+r v_{j} x_{j}\right)\right) \mid$.

Theorem 2: The sets $f(G, B), f_{0}(G, B)$ and $f s(G, B)$ are linearly isomorphic to the sets f, f_{0} and $f s$ respectively, i.e., $f(G, B) \cong f, f_{0}(G, B) \cong f_{0}, f s(G, B) \cong f s$.

Proof: Firstly, let us attest that $f(G, B) \cong f$. For this purpose, we have to show that there exists a linear bijection among the spaces $f(G, B)$ and f. Let us take into account the transformation T described by the relation of (1) from $f(G, B)$ to f with $x \rightarrow y=T x=R(G, B) x \in f$, for $x \in$ $f(G, B)$. The linearity of T is clear. Moreover, it is obvious that $x=0$ when $T x=0$, thus T is injective.
Let us assume $y=\left(y_{k}\right) \in f$ and describe $x=\left(x_{k}\right)$ by

$$
x_{k}=\sum_{j=0}^{k-1} \frac{1}{u_{j}} \tilde{\nabla}_{k j} y_{j}+\frac{1}{r u_{k} v_{k}} y_{k,} \quad(k \in \mathbb{N})
$$

Then, we have

$$
\begin{aligned}
& u_{k}\left(\sum_{j=0}^{k-1}\left(r v_{j}+s v_{j+1}\right) x_{j}+r v_{k} x_{k}\right) \\
& =u_{k} \sum_{j=0}^{k-1}\left(r v_{j}+s v_{j+1}\right)\left[\sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{\nabla}_{j i} y_{i}+\frac{1}{r u_{j} v_{j}} y_{j}\right] \\
& \quad+u_{k} r v_{k}\left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}_{k j} y_{j}+\frac{1}{r u_{k} v_{k}} y_{k}\right) \\
& \quad=\sum_{j=0}^{k-1} u_{k}\left(r v_{j}+s v_{j+1}\right) \sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{\nabla}_{j i} y_{i} \\
& \quad+\sum_{j=0}^{k-1} u_{k}\left(r v_{j}+s v_{j+1}\right) \frac{1}{r u_{j} v_{j}} y_{j}+u_{k} r v_{k}\left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}_{k j} y_{j}\right)+y_{k} \\
& =\sum_{j=0}^{k-1} u_{k}\left(r v_{j}+s v_{j+1}\right) \sum_{i=0}^{j-1} \frac{1}{u_{i}} \widetilde{\nabla}_{j i 1} y_{i} \\
& \quad+\left[\sum_{j=0}^{k-1}\left(r v_{j}+s v_{j+1}\right) \frac{1}{r u_{j} v_{j}}+r v_{k} \sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}_{k j}\right] u_{k} y_{j}+y_{k} \\
& =y_{k}
\end{aligned}
$$

for all $k \in \mathbb{N}$, which leads us to the truth that

$$
\begin{gathered}
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} u_{k+n}\left(\sum _ { i = 0 } ^ { k + n - 1 } \left(r v_{i}+\right.\right. \\
\left.\left.s v_{i+1}\right) x_{i}+r v_{k+n} x_{k+n}\right) \\
=\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{k=0}^{m} y_{k+n} \quad(\text { uniformly in } n) \\
=f-\text { lim }_{k} .
\end{gathered}
$$

It means that $x=\left(x_{k}\right) \in f(G, B)$. Hereby, we reach the truth that T is surjective. So, T is a linear bijection, and it means that the spaces $f(G, B)$ and f are linearly isomorphic, as desired. The fact $f_{0}(G, B) \cong f_{0}$ can be analogously attested. Due to the well known fact that the matrix domain λ_{A} of the normed sequence space denoted by λ, has got a base iff λ has got a base, whenever a matrix $A=\left(a_{n k}\right)$ is a triangle [14] (Remark 2.4) and since the space f has no Schauder basis, we have;

Corollary 1: The space $f(G, B)$ has no Schauder basis.

3.THE $\alpha-, \beta-, \gamma$-DUALS OF THESE SPACES

The $\alpha-, \beta-, \gamma-$ duals of the sequence space X are defined by

$$
\begin{gathered}
X^{\alpha}=\left\{a=\left(a_{k}\right) \in w: a x=\left(a_{k} x_{k}\right) \in l_{1},\right. \\
\left.\forall x=\left(x_{k}\right) \in X\right\},
\end{gathered}
$$

$$
\begin{gathered}
X^{\beta}=\left\{a=\left(a_{k}\right) \in w: a x=\left(a_{k} x_{k}\right) \in c s,\right. \\
\left.\forall x=\left(x_{k}\right) \in X\right\},
\end{gathered}
$$

and

$$
\begin{gathered}
X^{\gamma}=\left\{a=\left(a_{k}\right) \in w: a x=\left(a_{k} x_{k}\right) \in b s,\right. \\
\left.\forall x=\left(x_{k}\right) \in X\right\}
\end{gathered}
$$

here $c s$ and $b s$ are defined to be sequence spaces of all convergent and bounded series, respectively.

Lemma 1: [15] So as to the matrix A appertains to the matrix class from f to l_{∞} is necessary and sufficient condition

$$
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty
$$

is satisfied.
Lemma 2: [15] So as to the matrix A appertains to the matrix class from f to c is necessary and sufficient conditions
i) $\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty$,
ii) $\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}$, for each $k \in \mathbb{N}$,
iii) $\lim _{n \rightarrow \infty} \sum_{k} a_{n k}=\alpha$,
iv) $\lim _{n \rightarrow \infty} \sum_{k}\left|\Delta\left(a_{n k}-\alpha_{k}\right)\right|=0$,
are satisfied.
Theorem 3: The γ-dual of the space $f(G, B)$ is the intersection of the sets

$$
\begin{aligned}
& b_{1}=\left\{a=\left(a_{k}\right) \in w: \sup _{n} \sum_{k=1}^{n-1} \left\lvert\, \frac{a_{k}}{u_{k} r v_{k}}+\right.\right. \\
& \left.\left.\frac{\widetilde{\sigma}_{j k}}{u_{k}} \sum_{j=k+1}^{n-1} a_{j} \right\rvert\,<\infty\right\}, \\
& b_{2}=\left\{a=\left(a_{k}\right) \in w: \sup _{n}\left|\frac{a_{n}}{r u_{n} v_{n}}\right|<\infty\right\} .
\end{aligned}
$$

Proof: For an optional sequence $a=\left(a_{k}\right) \in w$ and take into consideration the following equality

$$
\begin{align*}
& \sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n} a_{k}\left(\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}_{k j} y_{j}+\frac{1}{r u_{k} v_{k}} y_{k}\right) \\
& \quad=\left[\sum_{k=0}^{n-1} \frac{a_{k}}{r u_{k} v_{k}}+\frac{1}{u_{k}} \sum_{j=k+1}^{n-1} \widetilde{\nabla}_{j k} a_{j}\right] y_{k}+\frac{a_{n}}{r u_{n} v_{n}} y_{n} \tag{5}\\
& \quad=(E y)_{n}
\end{align*}
$$

where the general term $e_{n k}$ of the matrix E is determined as follows:

$$
\begin{cases}\sum_{k=0}^{n-1} \frac{a_{k}}{r u_{k} v_{k}}+\frac{1}{u_{k}} \sum_{j=k+1}^{n-1} \widetilde{\nabla}_{j k} a_{j}, & 0 \leq k \leq n-1, \tag{6}\\ \frac{a_{n}}{r u_{n} v_{n}}, & k=n, \\ 0, & k>n,\end{cases}
$$

for all $k, n \in \mathbb{N}$. Thus, we deduce from [5] that $a_{k} x_{k} \in b s$ whenever $x=\left(x_{k}\right) \in f(G, B)$ necessary and sufficient condition $E y \in l_{\infty}$ whenever $y=\left(y_{k}\right) \in f$, where $E=$ ($e_{n k}$) is described in (6). That's why with assistance of Lemma 1, $f(G, B)^{\gamma}=b_{1} \cap b_{2}$.

Theorem 4: The β-dual of the space $f(G, B)$ is the intersection of the sets

$$
\begin{gathered}
b_{3}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} e_{n k} \text { exists }\right\}, \\
b_{4}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k} e_{n k} \text { exists }\right\}, \\
b_{5}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k} \Delta\left[e_{n k}-\alpha_{k}\right]<\infty\right\},
\end{gathered}
$$

where $\alpha_{k}=\lim _{n \rightarrow \infty} e_{n k}$. Then $\{f(G, B)\}^{\beta}=\cap_{k=1}^{5} b_{k}$.
Proof: Let us take any sequence $a \in w$. By (5), $a x=$ ($a_{k} x_{k}$) $\in c s$ whenever $x=\left(x_{k}\right) \in f(G, B)$ necessary and sufficient condition Ey $\in c$ whenever $y=\left(y_{k}\right) \in f$, where $E=\left(e_{n k}\right)$ is designated in (6). We reproduce the consequence by Lemma 2 that $\{f(G, B)\}^{\beta}=\cap_{k=1}^{5} b_{k}$.

Theorem 5: The γ-dual of the space $f s(G, B)$ is the intersection of the sets,

$$
\begin{gathered}
b_{6}=\left\{a=\left(a_{k}\right) \in w: \sup _{n} \sum_{k}\left|\Delta e_{n k}\right|<\infty\right\}, \\
b_{7}=\left\{a=\left(a_{k}\right) \in w: \lim _{k \rightarrow \infty} e_{n k}=0\right\} .
\end{gathered}
$$

In another saying, we get $\{f s(G, B)\}^{\gamma}=b_{6} \cap b_{7}$.
Proof: This might be acquired in a similar concept as talk about in the proof of Theorem 3 with Lemma 1 in lieu of Lemma 4 (iii). So, we neglect details.

Theorem 6: Defined the set

$$
b_{8}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|\Delta^{2} e_{n k}\right|<\infty\right\} .
$$

Then, $\quad\{f s(G, B)\}^{\beta}=b_{3} \cap b_{6} \cap b_{7} \cap b_{8}$.
Proof: This might be acquired in a similar concept as talk about in the proof of Theorem 4 with Lemma 2 in lieu of Lemma 4 (iv). So, we disregard details.

4. SOME MATRIX TRANSFORMATIONS

For briefness, we write

$$
\begin{gathered}
a_{n k}=\sum_{j=0}^{n} a_{j k} \\
a(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k} \\
\Delta a_{n k}=a_{n k}-a_{n, k+1}
\end{gathered}
$$

Theorem 7: [16] Let η be an FK-space, U be a triangle, P be its inverse and μ be optional subset of w. Then we have $A=\left(a_{n k}\right) \in\left(\eta_{U}: v\right)$ necessary and sufficient condition

$$
\begin{equation*}
C^{(n)}=\left(C_{m k}^{(n)}\right) \in(\eta, c) \text { for all } n \in \mathbb{N} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
C=\left(c_{n k}\right) \in(\eta: v), \tag{8}
\end{equation*}
$$

where,

$$
C_{m k}^{(n)}= \begin{cases}\sum_{j=k}^{m} a_{n j} p_{j k,} & 0 \leq k \leq m \\ 0, & k>m\end{cases}
$$

and

$$
c_{n k}=\sum_{j=k}^{\infty} a_{n j} p_{j k}, \text { for all } k, m, n \in \mathbb{N}
$$

Lemma 3: So as to the matrix A appertains to the matrix class from f to f is necessary and sufficient conditions:

$$
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty
$$

for each fixed $k \in \mathbb{N}, f-\lim a_{n k}=\alpha_{k}$ exist,

$$
f-\lim \sum_{k} a_{n k}=\alpha
$$

and uniformly in n

$$
\left.\lim _{m \rightarrow \infty} \sum_{k} \mid \Delta a(n, k, m)-\alpha_{k}\right] \mid=0
$$

are satisfied.
For an infinite matrix $A=\left(a_{n k}\right)$, we shall write for briefness that,

$$
\begin{equation*}
\frac{1}{u_{k}} \sum_{j=k+1}^{m} \widetilde{\nabla}_{j k} a_{n j,}(k<m) \tag{9}
\end{equation*}
$$

$$
d_{m k}^{n}=\tilde{a}_{n k}(m)=\frac{1}{r u_{k} v_{k}} a_{n k}+
$$

and

$$
\begin{equation*}
d_{n k}=\tilde{a}_{n k}=\frac{1}{r u_{k} v_{k}} a_{n k}+\frac{1}{u_{k}} \sum_{j=k+1}^{\infty} \widetilde{\nabla}_{j k} a_{n j} \tag{10}
\end{equation*}
$$

for all $n, k, m \in \mathbb{N}$,
$\hat{a}_{n k}=u_{n}\left(\sum_{i=0}^{n-1}\left(r v_{i}+s v_{i+1}\right) a_{i k}+r v_{n} a_{n k}\right)$.
Theorem 8: Let us assume that the entries of the infinite matrices given by $A=\left(a_{n k}\right)$ and $H=\left(h_{n k}\right)$ are related by the following relation

$$
\begin{equation*}
h_{n k}=\tilde{a}_{n k} \tag{12}
\end{equation*}
$$

for all k and $n \in \mathbb{N}, \mu$ is an arbitrary sequence space. Then, $A \in(f(G, B): \mu)$ necessary and sufficient condition for all $n \in \mathbb{N},\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ and $H \in(f: \mu)$.

Proof: We assume that μ is a given sequence space. Let us assume that (12) yields among the entries of $A=\left(a_{n k}\right)$ and $H=\left(h_{n k}\right)$, and consider the fact that the spaces $f(G, B)$ and f are defined to be linearly isomorphic.
We take $A \in(f(G, B): \mu)$ and any $y=\left(y_{k}\right) \in f$. Thus, $H \cdot R(G, B)$ does exist and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in \cap_{k=1}^{5} b_{k}$ which yields that $\left\{h_{n k}\right\}_{k \in \mathbb{N}} \in l_{1}$ for each $n \in \mathbb{N}$. Hence, Hy exists and thus for all $n \in \mathbb{N}$

$$
\begin{equation*}
\sum_{k} h_{n k} y_{k}=\sum_{k} a_{n k} x_{k} \tag{13}
\end{equation*}
$$

we have by (12) that $H y=A x$, which leads us to consequence $H \in(f: \mu)$.
Conversely, let $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for each $n \in \mathbb{N}$ and $H \in(f: \mu)$ yield, and take any $x=\left(x_{k}\right) \in f(G, B)$. Then, $A x$ exists. Thus, we acquire from the following equality for each $n \in \mathbb{N}$,

$$
\begin{gather*}
\sum_{k=0}^{m} a_{n k} x_{k}= \\
\sum_{k=0}^{m}\left[\sum_{j=0}^{k-1} \frac{1}{u_{j}} \widetilde{\nabla}(k, j) a_{n j} y_{j}+\frac{1}{r u_{k} v_{k}} a_{n k} y_{k}\right], \tag{14}
\end{gather*}
$$

as $m \rightarrow \infty$ that $A x=H y$ and this shows that $A \in$ $(f(G, B): \mu)$.

This completes the proof
Theorem 9: $A \in(f(G, B): c)$ necessary and sufficient condition $D^{(n)}=\left(d_{m k}^{(n)}\right) \in(f: c)$ and $D=\left(d_{n k}\right) \in(f: c)$.

Theorem 10: $A \in\left(f(G, B): l_{\infty}\right)$ necessary and sufficient condition $D^{(n)}=\left(d_{m k}^{(n)}\right) \in(f: c)$ and $D=\left(d_{n k}\right) \in\left(f: l_{\infty}\right)$.

If we change the roles for the spaces $f(G, B)$ and f with μ, we have;

Theorem 11: Assume that the entries of the infinite matrices $A=\left(a_{n k}\right)$ and $L=\left(l_{n k}\right)$ are connected with the relation $l_{n k}=\hat{a}_{n k},(11)$, for all $k, n \in N$ and μ be any given sequence space. Then, $A \in(\mu: f(G, B))$ necessary and sufficient condition $L \in(\mu: f)$.

Proof: Let $x=\left(x_{k}\right) \in \mu$ and take into account the following equality

$$
\begin{aligned}
& \{R(G, B)(A x)\}_{n}=u_{n}\left(\sum_{j=0}^{n-1}\left(r v_{j}+s v_{j+1}\right)(A x)_{j}+r u_{n} v_{n}(A x)_{n}\right) \\
& \quad=u_{n}\left(\sum_{j=0}^{n-1}\left(\operatorname{rv}_{j}+\operatorname{sv}_{j+1}\right) \sum_{j} a_{n j} x_{j}\right)+r u_{n} v_{n} \sum_{k} a_{n k} x_{k} \\
& \quad=\sum_{k}\left(\sum_{j=k}^{n-1} u_{k}\left(r v_{j-k}+s v_{j-k+1}\right) a_{n, j-k} x_{j-k}+r u_{n} v_{n} a_{n k} x_{k}\right) \\
& \quad=(L x)_{n},
\end{aligned}
$$

which leads us to consequence that $A x \in f(G, B)$ necessary and sufficient condition $L x \in f$.
This step completes the proof.
At this time, we are going to denote the following conditions:

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|<\infty, \\
& \lim _{n \rightarrow \infty} a_{n k}=\alpha_{k}, \quad \text { for each fixed } k \in \mathbb{N}, \\
& \lim _{n \rightarrow \infty} \sum_{k} a_{n k}=\alpha, \\
& \lim _{n \rightarrow \infty} \sum_{k}\left|\Delta\left(a_{n k}-\alpha_{k}\right)\right|=0, \\
& \sup _{n \in \mathbb{N}} \sum_{k}\left|\Delta\left(a_{n k}\right)\right|<\infty, \\
& \lim _{k \rightarrow \infty} a_{n k}=0, \text { for each fixed } n \in \mathbb{N}, \\
& \lim _{n \rightarrow \infty} \sum_{k}\left|\Delta^{2} a_{n k}\right|=\alpha, \tag{21}
\end{align*}
$$

for each fixed $k \in \mathbb{N}$
$f-\operatorname{lima} a_{n k}=\alpha_{k}$ exists,
uniformly in n

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{k}\left|a(n, k, m)-\alpha_{k}\right|=0, \tag{23}
\end{equation*}
$$

uniformly in n

$$
\begin{equation*}
f-\lim \sum_{k} a_{n k}=\alpha \tag{24}
\end{equation*}
$$

$\lim _{m \rightarrow \infty} \sum_{k}\left|\Delta\left[a(n, k, m)-\alpha_{k}\right]\right|=0$,
uniformly in n
$\lim _{q \rightarrow \infty} \sum_{k} \frac{1}{q+1}\left|\sum_{i=0}^{q} \Delta\left[a(n+i, k)-\alpha_{k}\right]\right|=0$,

$$
\sup _{n \in \mathbb{N}} \sum_{k}|\Delta a(n, k)|<\infty,
$$

for each fixed $k \in \mathbb{N}$,
$f-\operatorname{lima}(n, k)=\alpha_{k}$ exists,
uniformly in n

$$
\begin{gather*}
\lim _{q \rightarrow \infty} \sum_{k} \frac{1}{q+1}\left|\sum_{i=0}^{q} \Delta^{2}\left[a(n+i, k)-\alpha_{k}\right]\right|=0, \tag{29}\\
\sup _{n \in \mathbb{N}} \sum_{k}|a(n, k)|<\infty, \tag{30}\\
\sum_{n} a_{n k}=\alpha_{k}, \text { for each fixed } k \in \mathbb{N} \tag{31}\\
\sum_{n} \sum_{k} a_{n k}=\alpha, \tag{32}\\
\lim _{n \rightarrow \infty} \sum_{k}\left|\Delta a(n, k)-\alpha_{k}\right|=0 . \tag{33}
\end{gather*}
$$

Let $A=\left(a_{n k}\right)$ be an infinite matrix. In that case, the following expressions yield:

Lemma 4: i) $A=\left(a_{n k}\right) \in\left(\ell_{\infty}: f\right)$ necessary and sufficient condition (15), (22) and (23) yield. [17]
ii) $A=\left(a_{n k}\right) \in(f: f)$ necessary and sufficient condition (15), (22), (24), and (25) yield. [17]
iii) $A=\left(a_{n k}\right) \in\left(f s: \ell_{\infty}\right)$ necessary and sufficient condition (19) and (20) yield.
iv) $A=\left(a_{n k}\right) \in(f s: c)$ necessary and sufficient condition (16), (19) and (21) yield. [18]
v) $A=\left(a_{n k}\right) \in(c: f)$ necessary and sufficient condition (15), (22) and (24) yield. [19]
vi) $A=\left(a_{n k}\right) \in(b s: f)$ necessary and sufficient condition (19), (20), (22) and (26) yield. [20]
vii) $A=\left(a_{n k}\right) \in(f s: f)$ necessary and sufficient condition (20), (22), (25) and (26) yield. [21]
viii) $A=\left(a_{n k}\right) \in(c s: f)$ necessary and sufficient condition (19) and (22) yield. [22]
ix) $A=\left(a_{n k}\right) \in(b s: f s)$ necessary and sufficient condition (20), (26) and (28) yield. [20]
x) $A=\left(a_{n k}\right) \in(f s: f s)$ necessary and sufficient condition (26) and (29) yield. [21]
xi) $A=\left(a_{n k}\right) \in(c s: f s)$ necessary and sufficient condition
(27) and (28) yield. [22]
xii) $A=\left(a_{n k}\right) \in(f: c s)$ necessary and sufficient condition
(30) and (33) yield. [23]

Corollary 2: The following statements hold:
i) $A=\left(a_{n k}\right) \in\left(f(G, B): l_{\infty}\right)$ necessary and sufficient condition $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for all $n \in \mathbb{N}$ and (15) yields with $\tilde{a}_{n k}$ lieu of $a_{n k}$.
ii) $\quad A=\left(a_{n k}\right) \in(f(G, B): c)$ necessary and sufficient condition $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for all $n \in \mathbb{N}$ and (15), (16), (18) yield with $\tilde{a}_{n k}$ lieu of $a_{n k}$.
iii) $A=\left(a_{n k}\right) \in(f(G, B)$: bs) necessary and sufficient condition $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for all $n \in \mathbb{N}$ and (30) yields.
iv) $A=\left(a_{n k}\right) \in(f(G, B): c s)$ necessary and sufficient condition $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in f(G, B)^{\beta}$ for all $n \in \mathbb{N}$ and (30), (33) yield with $\tilde{a}_{n k}$ lieu of $a_{n k}$.

Corollary 3: The following statements hold:
i) $A=\left(a_{n k}\right) \in\left(l_{\infty}: f(G, B)\right)$ necessary and sufficient condition (15), (22) and (23) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
ii) $\quad A=\left(a_{n k}\right) \in(f: f(G, B))$ necessary and sufficient condition (15), (22), (24) and (25) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
iii) $\quad A=\left(a_{n k}\right) \in(c: f(G, B))$ necessary and sufficient condition (15), (22) and (24) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.

Corollary 4: The following statements hold:
i) $\quad A=\left(a_{n k}\right) \in(b s: f(G, B))$ necessary and sufficient condition (19), (20), (22) and (26) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
ii) $\quad A=\left(a_{n k}\right) \in(f s: f(G, B))$ necessary and sufficient condition (20), (22) and (26) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
iii) $\quad A=\left(a_{n k}\right) \in(c s: f(G, B))$ necessary and sufficient condition (19), (22) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.

Corollary 5: The following statements hold:
i) $A=\left(a_{n k}\right) \in(b s: f s(G, B))$ necessary and sufficient condition (20), (26) and (28) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
ii) $A=\left(a_{n k}\right) \in(f s: f s(G, B))$ necessary and sufficient condition (26) and (29) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.
iii) $A=\left(a_{n k}\right) \in(c s: f s(G, B))$ necessary and sufficient condition (27) and (28) yield with $\hat{a}_{n k}$ lieu of $a_{n k}$.

ACKNOWLEDGMENTS

This article is the written version of the authors' plenary talk delivered on April 18-21, 2017 at 2nd International Conference on Advances in Natural and Applied Sciences ICANAS-2017 in Antalya, TURKEY.

REFERENCES

[1] B. Choudhary and S. Nanda, "Functional Analysis with applications," John Wiley and Sons, New Delhi, İndia, 1989
[2] G. G. Lorentz, "A contribution to the theory of divergent sequences," Acta Mathematica, Vol. 80, pp. 167-190, 1948.
[3] H. Kızmaz, "On certain sequence spaces," Canad. Math. Bull. Vol. 24, no.2, pp.169-176, 1981.
[4] M. Kirisçi, "Almost convergence and generalized weighted mean," AIP Conf. Proc, Vol. 1470, pp. 191-194, 2012.
[5] F. Başar and M. Kirisçi, "Almost convergence and generalized difference matrix," Comput. Math. Appl., Vol. 61, pp. 602-611, 2011.
[6] K. Kayaduman and M. Şengönül, "On the Riesz almost convergent sequence space," Abstr. Appl. Anal. Vol. 2012, article ID: 691694, 18 pages, 2012.
[7] M. Candan, "Almost convergence and double sequential band matrix," Acta Math. Scientia, Vol. 34, no. 2, pp. 354-366, 2014.
[8] D. Butkovic, H. Kraljevic and N. Sarapa "On the almost convergence," in Functional analysis, II, Lecture Notes in Mathematics, Vol. 1242, 396417, Springer, Berlin, Germany, 1987.
[9] M. Kirisçi, "Almost convergence and generalized weighted mean II," J. Ineq. and Appl, Vol.1, no.93, 13 pages, 2014.
[10] H. Polat, V. Karakaya and N. Şimşek, "Difference sequence space reproduced by using a generalized weighted mean," Applied Mathematics Letters, Vol. 24, pp. 608-614, 2011.
[11] A. Karaisa and F. Başar, "Some new paranormed sequence spaces and core theorems," AIP Conf. Proc. Vol. 1611, pp. 380-391, 2014.
[12] A. Karaisa and F. Özger, "Almost difference sequence spaces reproduced by using a generalized weighted mean," J. Comput. Anal. and Appl., Vol. 19, no. 1, pp. 27-38, 2015.
[13] K. Kayaduman and M. Şengönül, "The space of Cesaro almost convergent sequence and core theorems," Acta Mathematica Scientia, Vol. 6, pp. 2265-2278, 2012.
[14] A. M. Jarrah and E. Malkowsky, "BK- spaces, bases and linear operators," Ren. Circ. Mat. Palermo, Vol. 2, no. 52, pp. 177-191, 1990.
[15] J. A. Sıddıqi, "Infinite matrices summing every almost periodic sequences," Pacific J. Math, Vol. 39, no. 1, pp. 235-251, 1971.
[16] F. Başar, "Summability Theory and Its Applications," Bentham Science Publishers ebooks, Monographs, xi+405 pp, ISB:978-1-60805-252-3, İstanbul, (2012).
[17] J. P. Duran, "Infinite matrices and almost convergence," Math. Z. Vol.128, pp.75-83, 1972.
[18] E. Öztürk, "On strongly regular dual summability methods," Commun. Fac. Sci. Univ. Ank. Ser. A_{1} Math. Stat., Vol. 32, p. 1-5, 1983.
[19] J. P. King, "Almost summable sequences," Proc. Amer. Math. Soc. Vol. 17, pp. 1219-1225, 1966.
[20] F. Basar and İ. Solak, "Almost-coercive matrix transformations," Rend. Mat. Appl. Vol. 7, no.11, pp. 249-256, 1991.
[21] F. Başar, " f-conservative matrix sequences" Tamkang J. Math, Vol. 22, no. 2, pp. 205-212, 1991.
[22] F. Başar and R. Çolak, "Almost-conserva- tive matrix transformations," Turkish J. Math, Vol. 13, no.3, pp. 91-100, 1989.
[23] F. Başar, "Strongly-conservative sequence to series matrix transformations," Erc. Üni. Fen Bil. Derg. Vol. 5, no.12, pp. 888-893, 1989.
[24] M. Candan and K. Kayaduman, "Almost Convergent sequence space Reproduced By Generalized Fibonacci Matrix and Fibonacci Core," British J. Math. Comput. Sci, Vol. 7, no.2, pp.150167, 2015.
[25] M. Candan, "Domain of Double Sequential Band Matrix in the Spaces of Convergent and Null Sequences," Advanced in Difference Equations, Vol.1, pp. 1-18, 2014.
[26] M. Candan and A. Güneş, "Paranormed sequence spaces of Non Absolute Type Founded Using Generalized Difference Matrix," Proceedings of the National Academy of Sciences; India Section A: Physical Sciences, Vol. 85, no.2, pp. 269- 276, 2014.
[27] M. Candan, "A new Perspective On Paranormed Riesz sequence space of Non Absolute Type," Global Journal of Mathematical Analysis, Vol. 3, no. 4, pp. 150-163, Doi: 10.14419/gjma.v3i4.5335, 2015.
[28] E. E. Kara and M. İlkhan, "Some Properties of Generalized Fibonacci Sequence Spaces," Linear and Multilinear Algebra, Vol. 64, no. 11, pp. 22082223, 2016.
[29] S. Ercan and Ç. A. Bektaş, "On some sequence spaces of non-absolute type," Kragujevac J. Math., Vol. 38, no. 1, pp. 195-202, 2014.
[30] S. Ercan and Ç. A. Bektaş, "On new λ^{2}-Convergent Difference BK-spaces," J. Comput. Anal. Appl., Vol. 23, no. 5, pp. 793-801, 2017.
[31] M. Başarır and E. E. Kara, "On the B-Difference Sequence Spaces Derived by Generalized Weighted Mean and Compact Operators," Journal of Mathematical Analysis and Applications, Vol. 391, no. 1, pp. 67-81, 2012.
[32] M. Başarır and E. E. Kara, "On the $\mathrm{m}^{\text {th }}$ Difference Sequence Space of Generalized Weighted Mean and Compact Operators," Acta Mathematica Scienta, Vol. 33, no. B(3), pp. 797-813, 2013.
[33] M. Başarır and E. E. Kara, "On Compact Operators on the Riesz B ${ }^{\mathrm{m}}$-Difference Sequence Space," Iranian Journal of Science \& Technology, Vol.35, no. A4, pp. 279-285, 2011.
[34] M. Başarır and E. E. Kara, "On some Difference Sequence Spaces of Weighted Means and Compact Operators," Annals of Functional Analysis, Vol.2, no. 2 pp. 116-131, 2011.
[35] E. E. Kara, "Some Topological and Geometrical Properties of New Banach Sequence Spaces," Journal of Inequalities and Applications, Vol. 2013, no. 38, 16 Pages, 2013, doi:10.1186/1029-242X-2013-38.
[36] E. E. Kara and M. İlkhan, " On Some Banach Sequence Spaces Derived by a New Band Matrix," British Journal of Mathematics \& Computer Science, Vol.9, no. 2, pp. 141-159, 2015.

[^0]: * Corresponding Author/Sorumlu Yazar

 1 Adiyaman University, Faculty of Education, Department of Elementary Education, Adıyaman - gkilinc@adiyaman.edu.tr 2 Inonu University, Faculty of Arts and Science, Department of Mathematics, Malatya -murat.candan@inonu.edu.tr

