Roopaei, HadiBasar, Feyzi2024-08-042024-08-0420210170-42141099-1476https://doi.org/10.1002/mma.6973https://hdl.handle.net/11616/99596In this paper, we investigate some properties of the domainsc(0)(C-n),c(C-n), andl(p)(C-n)with0 < p < 1of the Cesaro matrix of ordernin the classical spacesc(0),c, andl(p)of null, convergent, and absolutelyp-summable sequences, respectively, and compute the alpha-,beta-, and gamma-duals of these spaces. We characterize the classes of infinite matrices from the spacel(p)(C-n)to the spacesl(infinity),c, andc(0)and from a normed sequence spaces to the sequence spacesc(0)(C-n),c(C-n), andl(p)(C-n). Moreover, we compute the lower bound of operators froml(p)intol(p)(C-n), froml(p)(C-n)intol(p)and froml(p)(C-n)into itself.eninfo:eu-repo/semantics/closedAccessbackward difference operatorCesaro matrixHausdorff matrixHilbert matrixmatrix operatorsequence spaceOn the spaces of Cesaro absolutelyp-summable, null, and convergent sequencesArticle4453670368510.1002/mma.69732-s2.0-85092926828Q1WOS:000579830100001Q1