Yazar "Çelik, Gaffari" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Çekişmeli üretken ağ modellerinin görüntü üretme performanslarının incelenmesi(2020) Çelik, Gaffari; Talu, Muhammed FatihDerin öğrenme alanında yaşanan en önemli gelişmelerden biri, hiç şüphesiz çekişmeli üretken ağ (Generative adversarial network-GAN) modelleridir. GAN olarak anılan bu modeller, görüntü veri kümesinin genişletilmesinde (image augmentation), resim/karikatür boyamada (painting), yüksek çözünürlüğe sahip süper görüntü elde etmede, bir görüntüdeki doku/desenin başka bir görüntüye transferinde kullanılan en modern yaklaşımlar olarak karşımıza çıkmaktadır. Bu çalışmada literatürde yaygın olarak kullanılan GAN modellerinin (cGAN, DCGAN, InfoGAN, SGAN, ACGAN, WGAN-GP, LSGAN), gerçek görüntülere çok benzeyen sentetik görüntüleri üretmedeki performansları incelenmiştir. Çalışmanın orijinalliği, cGAN ve DCGAN’ın avantajlarını barındıran hibrit bir GAN modeli (cDCGAN) geliştirilmesi ve GAN yöntemlerinin performansları, derin öğrenme tabanlı evrişimsel sinir ağları(CNN) ile kıyaslamalı olarak değerlendirmesidir. Kodlanan modellerle veri kümelerindeki görüntülere benzer sentetik görüntüler üretilmiştir. Üretilen sentetik görüntülerin mevcut görüntülere benzerliklerini hesaplamak, böylece model performansını değerlendirebilmek için fréchet başlangıç mesafesi (FID) metriği ve CNN kullanılmıştır. Yapılan deneysel çalışmalarda, tüm modellerin zamana bağlı görüntü üretim performansları değerlendirilmiştir. Sonuç olarak, LSGAN modeliyle üretilen görüntülerin yüksek sınıflandırma başarım oranı sağladığı, ancak DCGAN ve WGANGP ile daha gürültüsüz net görüntüler ürettiği gözlemlenmiştir.Öğe EEG sinyallerinden bakılan görselin üretilmesi(2021) Talu, Muhammed Fatih; Çelik, GaffariÖz: EEG sinyalleri kullanılarak engelliler için kontrol edilebilir tekerlekli sandalyelerin üretildiği veya yapılması düşünülen aktivitenin tahmin edildiği çalışmalara literatürde sıklıkla rastlanmaktadır. Genel olarak bu çalışmalarda elektroensefalografi (EEG) sinyalinin önceden belirlenen sınıflara aktarımı gerçekleştirilir. Bu çalışmalar EEG sinyalinin sınıflandırmasından ibarettir. Ancak son yıllarda yapay öğrenme alanında yaşanan gelişmelerle sınıflandırmadan öteye gidildiği, EEG sinyalinden bakılan görselin üretilebildiği görülmektedir. Klasik çekişmeli üretici ağlar (Generative adversarial networks-GAN) ve otomatik kodlayıcı (Auto encoder-AE) yaklaşımlarının kullanıldığı sınırlı sayıdaki bu çalışmalar incelendiğinde, EEG sinyallerinden kabaca görsellerin üretilebildiği görülmektedir. Bu çalışmanın özgün yönü, görsel üretim kabiliyetini arttıracak matematiksel yaklaşımlar içermesidir. Klasik GAN mimarileri üretilen görüntülerin çeşitliliğini sağlayabilmek için rastgele vektör girişini kullanırlar. Bu yaklaşım ile EEG sinyalinden üretilen görsellerin düşük kalitede olduğu gözlemlenmiştir. Önerilen yöntemde giriş iki kısım (kodlanmış EEG ve rastgelelik) olarak düşünülmüştür. EEG’nin kodlanması için değişken oto kodlayıcı (Variational auto encoder-VAE) ve fourier dönüşümü (FD) kullanılırken, rastgelelik için iki farklı yaklaşım önerilmiştir. Bu özgün GAN kullanımı, EEG sinyallerinden daha kaliteli görsel üretilmesini sağlamıştır. Bu kalitenin sayısal olarak anlaşılabilmesi için önceden eğitilmiş evrişimsel sinir ağları (ESA) kullanılmıştır. Yapılan deneysel çalışmalar neticesinde, klasik GAN ile EEG’den üretilen görsellerin başarım seviyesi %93 civarındayken, önerilen yaklaşımda bu seviyenin %95-%100 aralığına çıktığı görülmektedir.Öğe Parameter Analysis of Convolutional Neural Network Operated on Embedded Platform for Estimation of Combustion Efficiency in Coal Burners(2023) Gündüzalp, Veysel; Çelik, Gaffari; Talu, Muhammed Fatih; Onat, CemAccurately and effectively calculating combustion efficiency in coal burners is crucial for industrial boiler manufacturers. Two main approaches can be used to calculate boiler efficiency: 1) Analyzing the gas emitted from the flue; 2) Visualizing the combustion chamber in the boiler. Flue gas analyzers, which are not user-friendly, come with high costs. Additionally, the physical distance between the flue and the combustion chamber causes the measurement to be delayed. Methods based on visualizing the combustion chamber do not have these disadvantages. This study proposes a system based on visualizing the combustion chamber and has two contributions to the literature: 1) for the first time, the modern Convolutional Neural Networks (CNN) approach is used to estimate combustion efficiency; 2) the CNN architecture with optimal parameters can work on an embedded platform. When classical classification techniques and a CPU-supported processor card are used, efficiency can be calculated from one flame image in 1.7 seconds, while this number increases to approximately 20 frames per second (34 times faster) when the proposed CNN architecture and GPU-supported processor card are used. The results obtained demonstrate the superiority of the proposed CNN architecture and hardware over classical approaches in estimating coal boiler combustion efficiency.Öğe Transfer Öğrenme ve Çekişmeli Üretici Ağ Yaklaşımlarını Kullanarak Cilt Lezyonu Sınıflandırma Doğruluğunun İyileştirilmesi(2020) Fırıldak, Kazım; Çelik, Gaffari; Talu, Muhammed FatihBu çalışmada, en yaygın kanser türlerinden biri olan cilt kanseri imgelerinin sınıflandırılmasına odaklanılmıştır. Yapılanaraştırma sonucunda cilt kanseriyle ilgili literatürdeki en kapsamlı etiketlenmiş veri kümesinin HAM10000 olduğugörülmüştür. 7 farklı lezyon türüne ait 10.000’den fazla etiketli imge içeren bu veri kümesinin klasik Evrişimsel SinirAğlarıyla (ESA) sınıflandırma doğruluğunun arttırılması amaçlanmaktadır. Bu makalede, mevcut iki farklı tekniğin (transferöğrenme ve imge üretimi) lezyon sınıflandırma doğruluğuna etkisi incelenmiştir. Birinci teknik, cilt lezyonu veri kümesinisınıflandırmak için tasarlanan yeni bir ESA’ya, ImageNet veri kümesiyle eğitilmiş AlexNET ağındaki parametrelerin kısmive tam transfer yoluyla aktarılmasıdır. İkinci teknik, gerçek lezyon imgelerinden imge üretilmesiyle veri kümesiningenişletilmesidir. Bu genişletme işleminde klasik üretme ve Çekişmeli Üretici Ağ (ÇÜA) tekniklerinin başarımlarıdeğerlendirilmiştir. Yapılan deneysel çalışmalar neticesinde, kısmi parametre transferi ve Derin Evrişimsel Çekişmeli ÜreticiAğ (DEÇÜA) temelli imge üretim tekniği kullanılarak veri kümesinin genişletilmesi yaklaşımlarının birlikte kullanılması enyüksek lezyon sınıflandırma doğruluğunu (%93) vermiştir. Yöntemler, literatürdeki güncel yöntemle kıyaslanarak toplamdoğruluk başarımındaki üstünlüğü gösterilmiştir.