Yazar "Özge, Aynur" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Sınıflamada Daha Güçlü Bir Yaklaşım Olan Boosting Ağacı: Karpal Tunel Sendromu Uygulaması(İnönü Üniversitesi Tıp Fakültesi Dergisi, 2012) Ankaralı, Handan; Temel, Gülhan Örekici; Taşdelen, Bahar; Özge, AynurBoosting ağaç yöntemi topluluk birleştirme yöntemlerinden en başarılı olanıdır. Birleştirme algoritmalarının temel amacı, zayıf sınıflayıcıların kombinasyonundan tahmin hatası düşük güçlü sınıflayıcılar oluşturmaktır. Gereç ve Yöntemler: Bu çalışmada Karpal Tunel Sendromu vakaları boosting metodunu kullanılarak sınıflanmıştır. Mersin Üniversitesi Tıp Fakültesi Nöroloji Anabilim Dalının Elektrofizyoloji Laboratuvarına 2006-2010 tarihleri arasında Karpal Tünel Sendromu (KTS) ön tanısı ile başvuru yapan bireyler çalışmaya alınmıştır. Boosting Tree uygulaması Statistica 7.0 paket programında yapılmıştır. Bulgular: Test verisi kullanıldığında ise modelin genel doğru sınıflama başarısı %87.67 olarak hesaplanmıştır. Test verisi kullanıldığında son modelin sensitivite ve spesifitesi ise sırasıyla %85.65 ve %92.36 olarak hesaplanmıştır. Sonuç: Kullanılan modelin KTS tanısının konulmasında başarılı bir yöntem olarak kullanılabilir.