Yazar "Acikgoz, Nilgun Pala" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Downregulatory effect of miR-342-3p on epileptogenesis in the PTZ-kindling model(Springer, 2022) Pala, Mukaddes; Meral, Ismail; Acikgoz, Nilgun Pala; Yilmaz, Senay Gorucu; Okur, Semra Karaca; Acar, Seyma; Polat, YalcinBackground Epileptogenesis is a process that results in neurons firing abnormally, causing seizures. Increasing evidence has shown that miRNAs expressed in the epileptic hippocampus are involved in epileptogenesis. We demonstrated the expression changes of miRNAs that may be effective in epileptogenesis in silico analysis in the kindling model created with Pentylenetetrazole (PTZ). Thus, we aimed to identify the target genes responsible for epileptogenesis. Methods and results Fifteen male Wistar-albino rats (200-230 g) were randomly divided into two groups control (n = 6) and PTZ (n = 9). The control group received 0.5 ml saline, and the PTZ group (35 mg/kg i.p.) intraperitoneally (i.p.) (11 times, every other day) to induce tonic-clonic seizures. Seizures were observed and scored 30 min after PTZ injection. After the last dose of PTZ (75 mg/kg) administration, the hippocampus tissues of the rats were removed by anesthesia. Analysis of miRNAs was performed with the Affymetrix gene chip miRNA sequence (728 miRNA) and confirmed by the Real-Time Polymerase Chain Reaction (Real-Time PCR) method (29 miRNAs). We evaluated the expression change of the target gene of miRNA, whose expression change was detected using in silico analysis, by q-RT PCR. Eight miRNAs with changes in expression were detected. Of these miRNAs, miR-342-p was downregulated in the PTZ group and was statistically significant (p < 0.005). Ultimately, we determined that the target gene of miR-342-p is a metabotropic glutamate receptor 2 (GRM2) and that GRM2 expression is upregulated. Conclusions Downregulation of miR-342-3p in the PTZ kindling model may result in the upregulation of GRM2.Öğe How Does Social Media Impact the Number of Citations? An Altmetric Analysis of the 50 Most-Cited MicroRNA Articles(Aves, 2021) Pala, Mukaddes; Demirbilek, Mahmut; Acikgoz, Nilgun Pala; Dokur, MehmetObjective: Altmetric analysis is web-based a metric analysis. Social media platforms affect medical literature over the last few years. The altmetric Attention Score (AAS) is an automatically calculated metric for monitoring social media. This study aimed to determine the correlation between AAS and the number of citations received from important articles published in the last 11 years with microRNAs. Methods: MicroRNA as a search term was entered into the Web of Science database to identify all articles. The most 50 cited articles were analyzed by Topic, Journal Name, First Author, Publication Year, Citation, Average Citation Per Year (ACPY), Impact Factor (IF), Quartile (Q) Category, H Index, and AAS. Results: Altmetric explorer identified 45.911 articles as being referred to online. Correlation analysis revealed that there was a weak correlation between AAS and the number of citations (p<0.15), while a very strong correlation was found between the number of citations and ACPY (p<0.01). Conclusion: These results give some clues about the articles studied did not lose their currency. They are cited regularly each year so they are very popular in academia. This study provides a detailed list of 50 most cited microRNA articles and social media interest using the Altmetric.com database. miRNAs can be used in the diagnosis, prognosis, or treatment of various diseases.Öğe Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus(Taylor & Francis Ltd, 2022) Pala, Mukaddes; Meral, Ismail; Acikgoz, Nilgun Pala; Yilmaz, Senay Gorucu; Taslidere, Elif; Okur, Sema Karaca; Acar, SeymaObjectives: Epilepsy is a neurological disease that pathologically affects brain functions. The epileptic hippocampus has modified microRNA(miRNA) levels. Therefore, we aimed to evaluate the neuroprotective effect of thymoquinone (TQ) in PTZ-induced epilepsy and to demonstrate the overlap between miRNA and mRNA expression profiles. Methods: Male adult Wistar albino rats (200-230 g, n = 20) were divided into three groups as control (n = 6), PTZ (n = 7), and TQ + PTZ (n = 7). The PTZ kindling model was created by injecting PTZ in sub convulsive doses to rats on days 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, and 24 of the study into animals. Clonic and tonic seizures were induced by injecting a convulsive dose of PTZ on day 26 of the study. Rats in the TQ+PTZ group were treated by oral gavage with a 20 mg/kg TQ 2 h before each PTZ injection. The rats in the control group were treated with 0.5 ml saline. Seizure severity was evaluated with the Racine scale. The genes and signaling pathways targeted by miRNAs were determined by bioinformatics analysis. Results: In the rat hippocampus, mature 728 miRNAs were analyzed by microarray and the nine miRNA were verified by quantitative Real-Time PCR. rno-miR-182 and rno-miR-27b-3p were up-regulated in the PTZ group and down-regulated in the TQ + PTZ group. Discussion: In the PTZ kindling epilepsy model, the expression of these two miRNAs was regulated by TQ and exerted a neuroprotective effect by controlling the activities of target genes.