Yazar "Aksoy, I. G." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Performance Analysis on Pressure Loss and Airflow Diffusion in a Chamber with Perforated V-Proflle Diffuser Designed for Air Handling Units (AHUs)(Isfahan Univ Technology, 2018) Kamer, M. S.; Erdogan, A.; Tacgun, E.; Sonmez, K.; Kaya, A.; Aksoy, I. G.; Canbazoglu, S.Outlet cross-sectional area of fans used in air handling units is smaller than cross-sectional area of chambers which are located next to the fan. In order to ensure efficiently operating of the air handling units, it is required that the air flows through a perforated diffuser to create a uniform air diffusion from fan outlet to following chamber with a minimum pressure loss and uniform velocity distribution. In this concept, numerical simulations and experiments were performed for the chamber with perforated V-profile diffuser, which is often used in air handling units because of its simple geometry and easy manufacturing. Pressure losses were firstly obtained experimentally for different air velocities in the chamber. Then a performance analysis on the air flow diffusion and pressure losses inside chamber with perforated V-profile diffuser for different geometric parameters such as entry length, apex angle, geometry and pattern of hole, plate thickness, porosity and surface roughness has been carried out numerically. It is seen that the experimental results validated with the numerical turbulence model results.Öğe Thermal analysis of annular fins with temperature-dependent thermal properties(Shanghai Univ, 2013) Aksoy, I. G.The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency.