Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Alisoy, Hafiz" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Adaptive Control of Nonlinear TRMS Model by Using Gradient Descent Optimizers
    (Ieee, 2018) Alagoz, Baris Baykant; Tepljakov, Aleksei; Kavuran, Gurkan; Alisoy, Hafiz
    This study demonstrates an application of direct gradient descent control for adaptively control of a nonlinear stable system models. The approach is based on utilization of gradient descent optimization techniques for the synthesis of control signals to control a specific plant model. In a former work, gradient descent optimizers were designed by considering a first degree instant input-output relation model assumption of the controlled system and this can allow model independent adaptive control of a class of plant models that can approximate to first order stable plant dynamics. The current study is an extension of this scheme for the purpose of nonlinear adaptive control. Here, we consider a higher degree polynomial assumption of instant input-output relations of the controlled system to obtain gradient descent optimizers that can be applied for adaptive control of a class of nonlinear systems. For evaluation of control performance of gradient descent optimizers, it is applied for the control of nonlinear TRMS model and the results are compared with performance of conventional PID control.
  • Küçük Resim Yok
    Öğe
    An effective analog circuit design of approximate fractional-order derivative models of M-SBL fitting method
    (Elsevier - Division Reed Elsevier India Pvt Ltd, 2022) Koseoglu, Murat; Deniz, Furkan Nur; Alagoz, Baris Baykant; Alisoy, Hafiz
    There is a growing interest in fractional calculus and Fractional Order (FO) system modeling in many fields of science and engineering. Utilization of FO models in real-world applications requires practical realization of FO elements. This study performs an analog circuit realization of approximate FO derivative models based on Modified Stability Boundary Locus (M-SBL) fitting method. This study demonstrates a low-cost and accurate analog circuit implementation of M-SBL fitting based approximate model of FO derivative elements for industrial electronics. For this purpose, a 4th order approximate derivative transfer function model of the M-SBL method is decomposed into the sum of first order low-pass filters form by using Partial Fraction Expansion (PFE) method, and the analog circuit design of the approximate FO derivative model is performed. Firstly, by using the final value theorem, authors theoretically show that the time response of the sum of first order low-pass filter form can converge to the time response of fractional order derivative operators. Then, the approximation performance of proposed FO derivative circuit design is validated for various input waveforms such as sinusoidal, square and sawtooth waveforms via Multisim simulations. Results indicate an accurate realization of the FO derivative in time response (an RMSE of 0.0241). The derivative circuit realization of the M-SBL fitting model in the form of the sum of first order low pass filters can yield a better time response approximation performance compared to the Continued Fraction Expansion (CFE) based ladder network realization of the approximate derivative circuit.
  • Küçük Resim Yok
    Öğe
    A note on applications of time-domain solution of Cole permittivity models
    (Elsevier Gmbh, 2017) Alagoz, Bads Baykant; Alisoy, Gulizar; Alagoz, Serkan; Alisoy, Hafiz
    The complex dielectric permittivity is an important parameter for characterization of electrical properties of dielectric materials. Experimental studies demonstrated that Cole models of dielectric permittivity can provide a better fitting to the experimental data because of allowing for fractional-order frequency dependence. This study aims to investigate physical interpretation of time domain solutions of Cole permittivity models. For this purpose, impulse responses of Cole-Cole model and Davidson-Cole model are expressed in Mittag-Leffler function form by using inverse Laplace transform. The impulse responses of these models are decomposed into impulsive and dispersive components, and the relations of these components with relaxation mechanism of dielectric materials are discussed. By considering impulse response solution of Cole-Cole models, a fractional order dynamic capacitance model is introduced for time domain equivalent circuit modeling of dielectric materials. Moreover, transient properties of electromagnetic wave penetration to dielectric materials are analyzed according to impulse response solution of Cole-Cole model. To illustrate applications of proposed time domain permittivity solutions, the Cole-Cole model of ethyl-acetate liquids was also studied and results are presented. (C) 2017 Elsevier GmbH. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Sigmoid Based PID Controller Implementation for Rotor Control
    (Ieee, 2015) Ates, Abdullah; Alagoz, Baris Baykant; Yeroglu, Celaleddin; Alisoy, Hafiz
    This paper presents a sigmoid based variable coefficient PID (SBVC-PID) controller design for Twin Rotor MIMO System (TRMS). The proposed SBVC-PID controller dynamically changes controller coefficients according to a modified sigmoid function of the error signal. The modified sigmoid function is used to limit variability of PID controller coefficients in a predefined range. In the proposed method, each parameters of PID, namely k(P), k(i) and k(d), alter between predefined upper and lower bounds. A modified sigmoid function adjusted by a transition coefficient is used to alter each of the PID parameters between these bound limits. The variable coefficients of SBVC-PID maintain a hypercube in k(P), k(i) and k(d). parameter space satisfying robust stability of the system. Well-known Kharitonov polynomials are used to ensure that the SBVC-PID coefficient alteration takes place in the robust stability intervals. Due to dynamically change of PID coefficients depending on magnitude of error signal, the control performance can be improved compared to conventional PID control. Performance of SBVC-PID controller is demonstrated via theoretical examples and TRMS rotor control simulations.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim