Yazar "Avci, Ahmet" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies(Wiley, 2020) Sari, Suat; Avci, Ahmet; Kocak, Ebru; Kart, Didem; Sabuncuoglu, Suna; Dogan, Inci Selin; Ozdemir, ZeynepAzole antifungal drugs are commonly used in antifungal chemotherapy. Antibacterial effects of some topical antifungals, such as miconazole and econazole, have lately been revealed, which suggests a promising venue in antimicrobial chemotherapy. In this study, we tested an in-house azole collection with antifungal properties for their antibacterial activity to identify dual-acting hits using the broth microdilution method. The in vitro screen yielded a number of potent derivatives against gram-positive bacteria,Enterococcus faecalisandStaphylococcus aureus.Compound73's minimum inhibitory concentration (MIC) value less than 1 mu g/ml againstS. aureus; however, none of the compounds showed noteworthy activity against methicillin-resistantS. aureus(MRSA). All the active compounds were found safe at their MIC values against the healthy fibroblast cells in the in vitro cytotoxicity test. Molecular docking studies of the most active compounds using a set of docking programs with flavohemoglobin (flavoHb) structure, the proposed target of the azole antifungals with antibacterial activity, presented striking similarities regarding the binding modes and interactions between the tested compounds and the antifungal drugs with crystallographic data. In addition to being noncytotoxic, the library was predicted to be drug-like and free of pan-assay interference compounds (PAINS). As a result, the current study revealed several potential azole derivatives with both antifungal and antibacterial activities. Inhibition of bacterial flavoHb was suggested as a possible mechanism of action for the title compounds.Öğe Azoles containing naphthalene with activity against Gram-positive bacteria: in vitro studies and in silico predictions for flavohemoglobin inhibition(Taylor & Francis Inc, 2022) Sari, Suat; Sabuncuoglu, Suna; Aslan, Ebru Kocak; Avci, Ahmet; Kart, Didem; Ozdemir, Zeynep; Acar, M. FahirAzoles are first-line drugs used in fungal infections. Topical antifungals, such as miconazole and econazole, are known to be active against Gram-positive bacteria, which was reported to result from bacterial flavohemoglobin (flavoHb) inhibition. Dual antibacterial/antifungal action is believed to have benefits for antimicrobial chemotherapy. In this study, we tested antibacterial effects of an in-house library of naphthalene-bearing azoles, some of which were reported as potent antifungals, in an attempt to find dual-acting hits. Several potent derivatives were obtained against the Gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. 9 was active at a minimum inhibitor concentration (MIC) less than 1 mg/ml against E. faecalis and S. aureus, and 10 against S. aureus. 16 was also potent against E. faecalis and S. aureus (MIC = 1 and 2 mg/ml, respectively). Six more were active against S. aureus with MIC <= 4 mg/ml. In vitro cytotoxicity studies showed that the active compounds were safe for healthy cells within their MIC ranges. According to the calculated descriptors, the library was found within the drug-like chemical space and free of pan-assay interference compounds (PAINS). Molecular docking studies suggested that the compounds might be bacterial flavohemoglobin (flavoHb) inhibitors and the azole and naphthalene rings were important pharmacophores, which was further supported by pharmacophore modeling study. As a result, the current study presents several non-toxic azole derivatives with antibacterial effects. In addition to their previously reported antifungal properties, they could set a promising starting point for the future design of dual acting antimicrobials.