Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Avcu, F. Mehmet" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    AZ VERİ SETLİ ÇALIŞMALARINDA DERİN ÖĞRENME VE DİĞER SINIFLANDIRMA ALGORİTMALARININ KARŞILAŞTIRILMASI: AGONİST VE ANTAGONİST LİGAND ÖRNEĞİ
    (2022) Avcu, F. Mehmet
    Makine öğrenme algoritmaları günümüzde hemen hemen tüm bilim dallarında kullanılmaktadır. Özellikle sınıflandırma algoritmaları fen ve sağlık bilimleri açısından oldukça popüler bir konudur. Derin öğrenme, diğer algoritmalar gibi makina öğrenme tekniklerinden biridir. Günümüzde işlemci hızlarının artması nedeni ile tekrar popüler olmuştur. Özellikle grafik işlemci tabanlı hesaplamalar bu konuyu popüler yapmıştır. Bu çalışmanın amacı, kimyasal veri tabanlarından elde edilen veriler ile literatürde iyi bilinen, dopamin reseptörlerine bağlanan agonist ve antiagonist moleküllerini makine öğrenme algoritmaları ile sınıflandırmaktır.Çalışmanın amacı ayrıca veri sayısı az olan durumlarda sınıflandırma yaparken doğru bir sınıflandırma için derin öğrenme algoritmasının kullanımını önermektir. Algoritmanın eğitmek için, Python kütüphanelerinden Scikit-learn ve Tensorflow-Keras kullanılmıştır.Sınıflandırma işlemi popüler makine öğrenme algoritmaları ile kıyaslanmış ve sonuçlar bir tablo olarak sunulmuştur.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim