Yazar "Başhan, Ali" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bazı kısmi diferensiyel denklemlerin B-spline diferensiyel quadrature metodu ile nümerik çözümleri(İnönü Üniversitesi, 2015) Başhan, AliBu tez beş bölümden oluşmaktadır. Birinci bölümde, tezde kullanılacak olan diferensiyel quadrature metodu hakkında bazı genel bilgiler verildikten sonra spline fonksiyonlar, B-spline fonksiyonlar, Thomas algoritmaları, dördüncü mertebeden Runge-Kutta algoritması, kararlılık ve yakınsama oranı hakkında temel bilgiler verildi. İkinci bölümde, daha sonraki bölümlerde kullanılacak olan B-spline diferensiyel quadrature metotlar hakkında temel bilgiler verildi. Üçüncü böülümde, mKdV denkleminin kuintik B-spline diferensiyel quadrature metot ile nümerik çözümleri elde edildi. Bu yöntem ele alınan dört test probleme uygulandı. Elde edilen nümerik sonuçlar literatürde mevcut olan bazı sonuçlar ile karşılaştırılarak hata normları ve korunum sabitleri tablolar halinde verildi. Elde edilen nümerik çözümlerin ve bu çözümler elde edilirken kullanılan katsayı matrisinden elde edilen özdeğerlerin grafikleri verilerek kararlılık analizi incelendi. Dördüncü bölümde, KdVB denkleminin yanısıra KdV ve Burgers' denklemlerinin de kuintik B-spline diferensiyel quadrature metot ile nümerik çözümleri elde edildi. Bu yöntem, ele alınan dört test probleme uygulandı. Elde edilen nümerik sonuçlar literatürde mevcut olan bazı sonuçlar ile karşılaştırılarak hata normları ve korunum sabitleri tablolar halinde verildi. Elde edilen nümerik çözümlerin ve bu çözümler elde edilirken kullanılan katsayı matrisinden elde edilen özdeğerlerin grafikleri verilerek kararlılık analizi incelendi. Beşinci bölümde, mBurgers' denkleminin kuintik ve kuartik B-spline diferensiyel quadrature metotlar ile nümerik çözümleri elde edildi. Bu yöntemler ele alınan bir test probleme uygulandı. Elde edilen nümerik sonuçlar literatürdeki mevcut sonuçlar ile karşılaştırılarak hata normları tablolar halinde verildi. Önceki bölümlerde olduğu gibi elde edilen nümerik çözümlerin ve bu çözümler elde edilirken kullanılan katsayı matrisinden elde edilen özdeğerlerin grafikleri verilerek kararlılık analizi incelendi.