Yazar "Baldauf, Michaela C." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets(Impact Journals Llc, 2018) Baldauf, Michaela C.; Orth, Martin F.; Dallmayer, Marlene; Marchetto, Aruna; Gerke, Julia S.; Rubio, Rebeca Alba; Kiran, Merve M.Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics. To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, we performed comparative expression analyses in 768 tumors representing 21 entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing sarcoma. Their high expression was validated by immunohistochemistry and proved to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. Automated cut-off-finding and combination-testing in a tissue-microarray comprising 174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong BCL11B-and GLG1-immunoreactivity. Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the number of misdiagnosed patients, and thus improve patient care.Öğe Systematic identification of cancer-specific MHC-binding peptides with RAVEN(Taylor & Francis Inc, 2018) Baldauf, Michaela C.; Gerke, Julia S.; Kirschner, Andreas; Blaeschke, Franziska; Effenberger, Manuel; Schober, Kilian; Rubio, Rebeca AlbaImmunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.