Yazar "Balkan, Cigdem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genomewide Elucidation of Drug Resistance Mechanisms for Systemically Used Antifungal Drugs Amphotericin B, Caspofungin, and Voriconazole in the Budding Yeast(Amer Soc Microbiology, 2019) Balkan, Cigdem; Ercan, Ilkcan; Isik, Esin; Akdeniz, Esra Sahin; Balcioglu, Orhan; Kodedova, Marie; Zimmermannova, OlgaThere are only a few antifungal drugs used systemically in treatment, and invasive fungal infections that are resistant to these drugs are an emerging problem in health care. In this study, we performed a high-copy-number genomic DNA (gDNA) library screening to find and characterize genes that reduce susceptibility to amphotericin B, caspofungin, and voriconazole in Saccharomyces cerevisiae. We identified the PDR16 and PMP3 genes for amphotericin B, the RMD9 and SWH1 genes for caspofungin, and the MRS3 and TRI1 genes for voriconazole. The deletion mutants for PDR16 and PMP3 were drug susceptible, but the other mutants had no apparent susceptibility. Quantitative-PCR analyses suggested that the corresponding drugs upregulated expression of the PDR16, PMP3, SWH1, and MRS3 genes. To further characterize these genes, we also profiled the global expression patterns of the cells after treatment with the antifungals and determined the genes and paths that were up-or downregulated. We also cloned Candida albicans homologs of the PDR16, PMP3, MRS3, and TRI1 genes and expressed them in S. cerevisiae. Heterologous expression of Candida homologs also provided reduced drug susceptibility to the budding yeast cells. Our analyses suggest the involvement of new genes in antifungal drug resistance.Öğe Identification of novel arsenic resistance genes in yeast(Wiley, 2022) Isik, Esin; Balkan, Cigdem; Karl, Vivien; Karakaya, Huseyin Caglar; Hua, Sansan; Rauch, Sebastien; Tamas, Markus J.Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.