Yazar "Barua, Prabal Datta" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An Accurate Multiple Sclerosis Detection Model Based on Exemplar Multiple Parameters Local Phase Quantization: ExMPLPQ(Mdpi, 2022) Macin, Gulay; Tasci, Burak; Tasci, Irem; Faust, Oliver; Barua, Prabal Datta; Dogan, Sengul; Tuncer, TurkerMultiple sclerosis (MS) is a chronic demyelinating condition characterized by plaques in the white matter of the central nervous system that can be detected using magnetic resonance imaging (MRI). Many deep learning models for automated MS detection based on MRI have been presented in the literature. We developed a computationally lightweight machine learning model for MS diagnosis using a novel handcrafted feature engineering approach. The study dataset comprised axial and sagittal brain MRI images that were prospectively acquired from 72 MS and 59 healthy subjects who attended the Ozal University Medical Faculty in 2021. The dataset was divided into three study subsets: axial images only (n = 1652), sagittal images only (n = 1775), and combined axial and sagittal images (n = 3427) of both MS and healthy classes. All images were resized to 224 x 224. Subsequently, the features were generated with a fixed-size patch-based (exemplar) feature extraction model based on local phase quantization (LPQ) with three-parameter settings. The resulting exemplar multiple parameters LPQ (ExMPLPQ) features were concatenated to form a large final feature vector. The top discriminative features were selected using iterative neighborhood component analysis (INCA). Finally, a k-nearest neighbor (kNN) algorithm, Fine kNN, was deployed to perform binary classification of the brain images into MS vs. healthy classes. The ExMPLPQ-based model attained 98.37%, 97.75%, and 98.22% binary classification accuracy rates for axial, sagittal, and hybrid datasets, respectively, using Fine kNN with 10-fold cross-validation. Furthermore, our model outperformed 19 established pre-trained deep learning models that were trained and tested with the same data. Unlike deep models, the ExMPLPQ-based model is computationally lightweight yet highly accurate. It has the potential to be implemented as an automated diagnostic tool to screen brain MRIs for white matter lesions in suspected MS patients.Öğe LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain's Primes on Ulam's Spiral-Based Features with Electroencephalogram Signals(Mdpi, 2023) Atila, Orhan; Deniz, Erkan; Ari, Ali; Sengur, Abdulkadir; Chakraborty, Subrata; Barua, Prabal Datta; Acharya, U. RajendraAnxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam's spiral and Sophia Germain's prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time-frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time-frequency representation is saved as a time-frequency image, and a non-overlapping n x n sliding window is applied to this image for patch extraction. An n x n Ulam's spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain's primes are located in Ulam's spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children's neurological disorders.