Yazar "Bayindir, Mehmet Ilyas" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 3D residual spatial-spectral convolution network for hyperspectral remote sensing image classification(Springer London Ltd, 2023) Firat, Huseyin; Asker, Mehmet Emin; Bayindir, Mehmet Ilyas; Hanbay, DavutHyperspectral remote sensing images (HRSI) are 3D image cubes that contain hundreds of spectral bands and have two spatial dimensions and one spectral dimension. HRSI analysis are commonly used in a wide variety of applications such as object detection, precision agriculture and mining. HRSI classification purposes to assign each pixel in HRSI to a unique class. Deep learning is seen as an effective method to improve HRSI classification. In particular, convolutional neural networks (CNNs) are increasingly used in remote sensing field. In this study, a hybrid 3D residual spatial-spectral convolution network (3D-RSSCN) is proposed to extract deep spatiospectral features using 3D CNN and ResNet18 architecture. Simultaneously spatiospectral features extraction is provided using 3D CNN. In deeper CNNs, ResNet architecture is used to achieve higher classification performance as the number of layers increases. In addition, thanks to the ResNet architecture, problems such as degradation and vanishing gradient that may occur in deep networks are overcome. The high dimensionality of the HRSIs increases the computational complexity. Thus, most of studies apply dimension reduction as preprocessing. In the proposed study, principal component analysis (PCA) is used as the preprocessing step for optimum spectral band extraction. The proposed 3D-RSSCN method is tested with Indian pines, Pavia University and Salinas datasets and compared against various deep learning-based methods (SAE, RPNet, 2D CNN, 3D CNN, M3D CNN, HybridSN, FC3D CNN, SSRN, FuSENet, S3EResBoF). As a result of the applications, the best classification accuracy among these methods compared in all datasets is obtained with the proposed 3D-RSSCN. The proposed 3D-RSSCN method has the best accuracy and time performance in classifying.Öğe Hybrid 3D/2D Complete Inception Module and Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification(Springer, 2023) Firat, Huseyin; Asker, Mehmet Emin; Bayindir, Mehmet Ilyas; Hanbay, DavutClassification in hyperspectral remote sensing images (HRSIs) is a challenging process in image analysis and one of the most popular topics. In recent years, many methods have been proposed to solve the HRSIs classification problem. Compared to traditional machine learning methods, deep learning, especially convolutional neural networks (CNNs), is commonly used in the classification of HRSIs. Deep learning-based methods based on CNNs show remarkable performance in HRSIs classification and greatly support the development of classification technology. In this study, a method in which the Hybrid 3D/2D Complete Inception module and the Hybrid 3D/2D CNN method are used together has been proposed to solve the HRSIs classification problem. In the proposed method, multi-level feature extraction is performed by using multiple convolution layers with the Inception module. This improves the performance of the network. Conventional CNN-based methods use 2D CNN for feature extraction. However, only spatial features are extracted with 2D CNN. 3D CNN is used to extract spatial-spectral features. However, 3D CNN is computationally complex. Therefore, in the proposed method, a hybrid approach is used by first using 3D CNN and then 2D CNN. This reduces computational complexity and extracts more spatial features. In addition, PCA is used as a preprocessing step for optimum spectral band extraction in the proposed method. The proposed method has been tested using Indian pines, Salinas, University of Pavia, HyRANK-Loukia and Houston datasets, which are frequently used in studies for HRSIs classification. The overall accuracy of the proposed method in these five datasets are 99.83%, 100%, 100%, 90.47% and 98.93%, respectively. These results reveal that the proposed method provides higher classification performance compared to state-of-the-art methods.Öğe Spatial-spectral classification of hyperspectral remote sensing images using 3D CNN based LeNet-5 architecture(Elsevier, 2022) Firat, Hueseyin; Asker, Mehmet Emin; Bayindir, Mehmet Ilyas; Hanbay, DavutHyperspectral remote sensing image (HRSI) analysis are commonly used in a wide variety of remote sensing applications such as land cover analysis, military surveillance, object detection and precision agriculture. Deep learning is seen as an effective method to improve HRSI classification. In particular, convolutional neural net-works (CNNs) are increasingly used in this field. The high dimensionality of the HRSIs increases the computa-tional complexity. Thus, most of studies apply dimension reduction as preprocessing. Another problem in HRSI classification is that spatial-spectral features must be considered in order to obtain accurate results. Because, HRSI classification results are highly dependent on spatiospectral information. The aim of this paper is to build a 3D CNN-based LeNet-5 method for HRSI classification. Principal component analysis (PCA) is used as the pre-processing step for optimum spectral band extraction. 3D CNN is used to simultaneously extract spatial -spectral features in HRSIs. LeNet-5 architecture has a simple and straightforward architecture. At the same time, the number of trainable parameters is very low. With the use of the LeNet-5 architecture, the number of trainable parameters of the proposed method is considerably reduced. This is one of the most important features that distinguish the proposed method from other deep learning methods. The proposed method is tested with Indian pines, Pavia University and Salinas datasets. As a result of experimental studies, 100% overall accuracy result is obtained in all datasets. The proposed 3DLeNet method is compared against various state-of-the-art CNN based methods. From the experimental results, it is seen that our 3DLeNet method performs more accurate result. It has also been found that the proposed 3DLeNet method shows a satisfactory result with less computational complexity.