Yazar "Bayraktar, Yuksel" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analyzing of Alzheimer's Disease Based on Biomedical and Socio-Economic Approach Using Molecular Communication, Artificial Neural Network, and Random Forest Models(Mdpi, 2022) Bayraktar, Yuksel; Isik, Esme; Isik, Ibrahim; Ozyilmaz, Ayfer; Toprak, Metin; Kahraman Guloglu, Fatma; Aydin, SerdarAlzheimer's disease will affect more people with increases in the elderly population, as the elderly population of countries everywhere generally rises significantly. However, other factors such as regional climates, environmental conditions and even eating and drinking habits may trigger Alzheimer's disease or affect the life quality of individuals already suffering from this disease. Today, the subject of biomedical engineering is being studied intensively by many researchers considering that it has the potential to produce solutions to various diseases such as Alzheimer's caused by problems in molecule or cell communication. In this study, firstly, a molecular communication model with the potential to be used in the treatment and/or diagnosis of Alzheimer's disease was proposed, and its results were analyzed with an artificial neural network model. Secondly, the ratio of people suffering from Alzheimer's disease to the total population, along with data of educational status, income inequality, poverty threshold, and the number of the poor in Turkey were subjected to detailed distribution analysis by using the random forest model statistically. As a result of the study, it was determined that a higher income level was causally associated with a lower risk of Alzheimer's disease.Öğe Role of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Cases(Routledge Journals, Taylor & Francis Ltd, 2021) Bayraktar, Yuksel; Ozyilmaz, Ayfer; Toprak, Metin; Isik, Esme; Buyukakin, Figen; Olgun, Mehmet FiratIn the fight against Covid-19, developed countries and developing countries diverge in success. This drew attention to the discussion of how different health systems and different levels of health spending are effective in combating Covid-19. In this study, the role of the health system in the fight against Covid-19 is discussed. In this context, the number of hospital beds, the number of doctors, life expectancy at 60, universal health service and the share of health expenditures in GDP were used as health indicators. In the study, firstly 2020 data was estimated by using the Artificial Neural Networks simulation method and this year was used in the analysis. The model, with the data of 124 countries, was estimated using the cross-sectional OLS regression method. The estimation results show that the number of hospital beds, number of doctors and life expectancy at the age of 60 have statistically significant and positive effects on the ratio of Covid-19 recovered/cases. Universal health service and share of health expenditures in GDP are not significant statistically on the cases and recovered. Hospital bed capacity is the most effective variable on the recovered/case ratio.