Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bejan, Cornelia-Livia" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Contact-Complex Riemannian Submersions
    (Mdpi, 2021) Bejan, Cornelia-Livia; Meric, Semsi Eken; Kilic, Erol
    A submersion from an almost contact Riemannian manifold to an almost Hermitian manifold, acting on the horizontal distribution by preserving both the metric and the structure, is, roughly speaking a contact-complex Riemannian submersion. This paper deals mainly with a contact-complex Riemannian submersion from an eta-Ricci soliton; it studies when the base manifold is Einstein on one side and when the fibres are eta-Einstein submanifolds on the other side. Some results concerning the potential are also obtained here.
  • Küçük Resim Yok
    Öğe
    Einstein Metrics Induced by Natural Riemann Extensions
    (Springer Basel Ag, 2017) Bejan, Cornelia-Livia; Meric, Semsi Eken; Kilic, Erol
    Clifford algebras are used in theoretical physics and in particular, in the general theory of relativity, where Einstein's equations are rewritten in Girard (Adv Appl Clifford Algebras 9(2):225-230, 1999) within a Clifford algebra. Let M be a manifold with a torsion-free connection which induces on its cotangent bundle T* M , a semi-Riemannian metric (g) over bar , called the natural Riemann extension, Kowalski and Sekizawa (Publ Math Debrecen 78:709-721, 2011). The main result of the present paper gives a necessary and sufficient condition for (g) over bar restricted to certain hypersurfaces of T* M to be Einstein.
  • Küçük Resim Yok
    Öğe
    Legendre Curves on Generalized Paracontact Metric Manifolds
    (Springer, 2019) Bejan, Cornelia-Livia; Eken Meric, Semsi; Kilic, Erol
    Two different notions of almost paracontact structures (which are compatible or anti-compatible with the metric), well known in the literature, are unified and generalized here. Several formulas of paraholomorphic maps are established, and a result of Lichnerowicz type is obtained. The connection transformations which have the same system of paracontact-planar Legendre curves are characterized. Conformal changes of metrics which preserve geodesics (resp. paracontact-planar Legendre curves) are studied.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim