Yazar "Bejan, Cornelia-Livia" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Contact-Complex Riemannian Submersions(Mdpi, 2021) Bejan, Cornelia-Livia; Meric, Semsi Eken; Kilic, ErolA submersion from an almost contact Riemannian manifold to an almost Hermitian manifold, acting on the horizontal distribution by preserving both the metric and the structure, is, roughly speaking a contact-complex Riemannian submersion. This paper deals mainly with a contact-complex Riemannian submersion from an eta-Ricci soliton; it studies when the base manifold is Einstein on one side and when the fibres are eta-Einstein submanifolds on the other side. Some results concerning the potential are also obtained here.Öğe Einstein Metrics Induced by Natural Riemann Extensions(Springer Basel Ag, 2017) Bejan, Cornelia-Livia; Meric, Semsi Eken; Kilic, ErolClifford algebras are used in theoretical physics and in particular, in the general theory of relativity, where Einstein's equations are rewritten in Girard (Adv Appl Clifford Algebras 9(2):225-230, 1999) within a Clifford algebra. Let M be a manifold with a torsion-free connection which induces on its cotangent bundle T* M , a semi-Riemannian metric (g) over bar , called the natural Riemann extension, Kowalski and Sekizawa (Publ Math Debrecen 78:709-721, 2011). The main result of the present paper gives a necessary and sufficient condition for (g) over bar restricted to certain hypersurfaces of T* M to be Einstein.Öğe Legendre Curves on Generalized Paracontact Metric Manifolds(Springer, 2019) Bejan, Cornelia-Livia; Eken Meric, Semsi; Kilic, ErolTwo different notions of almost paracontact structures (which are compatible or anti-compatible with the metric), well known in the literature, are unified and generalized here. Several formulas of paraholomorphic maps are established, and a result of Lichnerowicz type is obtained. The connection transformations which have the same system of paracontact-planar Legendre curves are characterized. Conformal changes of metrics which preserve geodesics (resp. paracontact-planar Legendre curves) are studied.











