Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bozkurt, Serife Buket" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Cytotoxicity Evaluation of Bioresorbable Fixation Screws on Human Gingival Fibroblasts and Mouse Osteoblasts by Real-Time Cell Analysis
    (W B Saunders Co-Elsevier Inc, 2015) Yolcu, Umit; Alan, Hilal; Malkoc, Siddik; Bozkurt, Serife Buket; Hakki, Sema Sezgin
    Purpose: To evaluate the effects of bioresorbable fixation screws (BFSs) on human gingival fibroblast (HGF) and mouse osteoblast (MC3T3-E1) cell viability. Materials and Methods: The KLS Martin SonicPins Rx, Synthes RapidSorb Cortex Screws, and Inion CPS Bioabsorbable Fixation System each were incubated in Dulbecco's Modified Eagle Medium for 72 hours according to ISO 10993-5 standards. A real-time cell analyzer was used to evaluate cell survival. After seeding 200-mu L cell suspensions in the wells of an E-plate View 96, HGF and MC3T3-E1 cells were treated with the bioactive components released by the bioresorbable materials and monitored every 15 minutes for 96 hours. Statistical significance was determined using 1-way analysis of variance and Tukey-Kramer tests. Results: There were significant differences in the HGF responses to the untreated control conditions and the Synthes (P < .01), Inion (P < .05), and KLS Martin (P < .05) treatments over 48 hours. The Synthes (P < .01) and Inion (P < .01) treatments produced lower HGF cell index values than the untreated control at 72 hours, whereas the KLS Martin treatment did not. When left to elute for 96 hours, there were no significant differences in values among the control and study groups for HGFs (P > .05). All tested BFSs decreased cell survival rates of M3T3C1 cells for 48 hours (P < .01), 72 hours (P < .001), and 96 hours (P < .001). Conclusion: Differences in the sensitivities of the 2 tested cell lines to the different BFSs might be the result of the different materials used to manufacture the screws. These results provide fundamental knowledge and new insights for the future design and development of new biocompatible BFSs for oral and maxillofacial surgery. (C) 2015 American Association of Oral and Maxillofacial Surgeons
  • Küçük Resim Yok
    Öğe
    Cytotoxicity evaluation of luting resin cements on bovine dental pulp-derived cells (bDPCs) by real-time cell analysis
    (Japanese Soc Dental Materials Devices, 2015) Malkoc, Meral Arslan; Demir, Necla; Sengun, Abdulkadir; Bozkurt, Serife Buket; Hakki, Sema Sezen
    To evaluate the cytotoxicity of resin cements on dental pulp-derived cells (bDPCs), Bifix QM (BQM), Choice 2(C2), RelyX U200(RU200), Maxcem Elite(ME), and Multilink Automix(MA) were tested. The materials were incubated in DMEM for 72 h. A real-time cell analyzer was used to evaluate cell survival. The statistical analyses used were one-way ANOVA and Tukey-Kramer tests. BQM, RU200, and ME demonstrated a significant decrease in the bDPCs' index at 24 and 72 h (p <= 0.001). These materials were found to be the most toxic resin cements, as compared to the control and other tested materials (C2 and MA). However, C2 and MA showed a better survival rate, compared to BQM, RU200, and ME, and had lower cell index than the control group. The cytotoxic effects of resin cements on pulpa should be evaluated during the selection of proper cements.
  • Küçük Resim Yok
    Öğe
    Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using real-time cell analysis
    (Korean Acad Prosthodontics, 2015) Malkoc, Meral Arslan; Demir, Necla; Sengun, Abdulkadir; Bozkurt, Serife Buket; Hakki, Sema Sezgin
    PURPOSE. To evaluate the cytotoxicity of temporary luting cements on bovine dental pulp-derived cells (bDPCs). MATERIALS AND METHODS. Four different temporary cements were tested: Rely X Temp E (3M ESPE), Ultratemp (Ultradent), GC Fuji Temp (GC), and Rely X Temp NE (3M ESPE). The materials were prepared as discs and incubated in Dulbecco's modified eagle's culture medium (DMEM) for 72 hours according to ISO 10993-5. A real-time cell analyzer was used to determine cell vitality. After seeding 200 mu L of the cell suspensions into the wells of a 96-well plate, the bDPCs were cured with bioactive components released by the test materials and observed every 15 minutes for 98 hours. One-way ANOVA and Tukey-Kramer tests were used to analyze the results of the proliferation experiments. RESULTS. All tested temporary cements showed significant decreases in the bDPCs index. Rely X Temp E, GC Fuji Temp, and Rely X Temp NE were severely toxic at both time points (24 and 72 hours) (P<.001). When the cells were exposed to media by Ultratemp, the cell viability was similar to that of the control at 24 hours (P>.05); however, the cell viability was significantly reduced at 72 hours (P<.001). Light and scanning electron microscopy examination confirmed these results. CONCLUSION. The cytotoxic effects of temporary cements on pulpal tissue should be evaluated when choosing cement for luting provisional restorations.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim