Yazar "Burmaoglu, Serdar" seçeneğine göre listele
Listeleniyor 1 - 11 / 11
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 2-Phenyl substituted Benzimidazole derivatives: Design, synthesis, and evaluation of their antiproliferative and antimicrobial activities(Springer Birkhauser, 2022) Ersan, Ronak Haj; Kuzu, Burak; Yetkin, Derya; Alagoz, Mehmet Abdullah; Dogen, Aylin; Burmaoglu, Serdar; Algul, OztekinThe inability to meet the desired outcomes of anticancer treatment and decrease in treatment success of bacterial and fungal infections accelerated research in these areas. Our research group has conducted numerous studies, especially on benzimidazole ring systems' antiproliferative and antimicrobial activities. In this study, the antiproliferative activity of benzimidazole compounds was tested against A549, A498, HeLa, A375, and HepG2 cancer cell lines by MTT assay. All compounds exhibited good to potent antiproliferative activity against all tested cancer cell lines. Compounds 6-chloro-2-(4-fluorobenzyl)-1H-benzo[d] imidazole (30) and 6-chloro-2-phenethyl-1H-benzo[d]imidazole (46) were especially active against HeLa and A375 cancer cell lines with IC50 values in the range of 0.02-0.04 mu M. In contrast, compounds 6-chloro-2-((p-tolyloxy)methyl)-1H-benzo[d] imidazole (67) and 5(6)-chloro-2-((4-hydroxyphenoxy)methyl)-1H-benzimidazole (68) were active against A549 and A498 cancer cell lines with an IC50 value of 0.08 mu M. These compounds (30, 46, 67, and 68) were less toxic to normal human cells than the positive control compound methotrexate, which was screened to determine its toxicity against normal cell lines (HEK293). In the second part of the study, all compounds were tested to demonstrate their antimicrobial properties. All compounds exhibited moderate activity against all tested bacteria and fungi. However, some phenoxy methyl derivatives 5-chloro-2-((4-chlorophenoxy)methyl)-1H-benzo[d]imidazole (69) and 5,6-dichloro-2-((4-chlorophenoxy)methyl)-1H-benzo[d] imidazole and (74) were most active against Candida (<3.90 mu g/mL). Molecular docking studies were carried out against certain proteins in order to identify potential targets of the antiproliferative effects of the synthesized compounds. The docking scores of the compounds were found to be significantly compatible with the antiproliferative activity results. [GRAPHICS] .Öğe Assessing the Antiangiogenic Effects of Chalcones and Their Derivatives(Taylor & Francis Ltd, 2024) Burmaoglu, Serdar; Gobek, Arzu; Anil, Derya Aktas; Alagoz, Mehmet Abdullah; Guner, Adem; Guler, Cem; Hepokur, CeylanPathological angiogenesis plays a critical role in tumorigenesis and tumor progression, and anti-angiogenesis therapies have evinced promising antitumor effects in solid tumors. Chalcone skeleton has been regarded as a potential antitumor agent that also targets angiogenesis. In this study, we designed twenty-one non-fluoro-substituted chalcones (13-18, 24-27) and saturated chalcone derivatives (19-23, 28-33) as anti-angiogenic compounds. During the initial stage, these compounds were assessed for their anti-cancer activities against MCF-7 cancer cell lines according to the MTT assay. The compounds revealed satisfactory anti-proliferative capability. An ex vivo fertilized hens' egg-chorioallantoic membrane (HET-CAM) angiogenic study was conducted for the compounds to gauge their mortality and toxicity, which, in turn, revealed a potent anti-angiogenic effect. Eight compounds (16, 17, 21, 24, 26, 27, 29, and 31) significantly reduced densities of capillaries on CAM, whereas compounds 27 and 29 were the most effective anti-angiogenic agents, when compared with Suramin. Moreover, RT-qPCR analysis demonstrated that the anti-angiogenic activity was associated with the fold changes of VEGFR2. Molecular docking studies were conducted for compounds to investigate their mode of interaction within the binding site of VEGFR-2 kinases. This work provided a basis for further design, structural modification, and development of chalcone derivatives as new anti-angiogenic agents.Öğe Bisbenzoxazole Derivatives: Design, Synthesis, in Vitro Antimicrobial, Antiproliferative Activity, and Molecular Docking Studies(Taylor & Francis Ltd, 2022) Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Dogen, Aylin; Duran, Nizami; Burmaoglu, Serdar; Algul, OztekinFour series of bisbenzoxazole derivatives were designed, synthesized, and screened for antiproliferative and antimicrobial activities. Generally, all synthesized bisbenzoxazoles (9-24) displayed significant antiproliferative activity; these effects were shown to be related to oxazole rings and substituents in bisbenzoxazole compounds. Especially, the series bearing chloro-substituent (9-12) exhibited better antiproliferative activity with higher selectivity than the other series (13-24); the IC50 values were observed in the range of 0.045-0.342 mu M. Interestingly, only the compound with a nitro substituent (22) showed maximum potency with an IC50 value of 0.011 mu M, which is two-fold more active than the standard drug methotrexate, with moderate selectivity. The compounds bearing fluoro-substituent (14-16) were found to exhibit potent antibacterial activity against the Gram-positive Enterococcus faecalis, with a MIC value of 62.5 mu g/mL, and moderate activity against Gram-negative bacteria and fungi. Only the compound 23 showed potent activity against Escherichia coli, with a MIC value of 62.5 mu g/mL. In order to better evaluate the activity results, crystal structures of five different proteins Human Anaplastic Lymphoma Kinase (PDB ID: 2XP2), CYP2C8dH complexed (PDB ID: 2NNI), factor-human kinase-beta enzyme IKK-beta enzyme (PDB ID: 4KIK), a tubulin heterodimer complex containing alpha and beta sub-units (PDB ID: 1Z2B) and penicillin-binding protein 4 (PBP4) from Enterococcus faecalis (PDB ID: 6MKI) were used in the docking study to examine antiproliferative and antimicrobial activity. Finally, an ADMET screening test was applied to determine the drug-like, toxicological, and optimum physicochemical properties for all of the synthesized compounds. The strategy applied in this research may act as a perspective for the rational design of potential anticancer drugs.Öğe Deep learning approach to the discovery of novel bisbenzazole derivatives for antimicrobial effect(Elsevier, 2024) Barcin, Tunga; Yucel, Mehmet Ali; Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Dogen, Aylin; Burmaoglu, Serdar; Algul, OztekinBecause of the growing bacterial resistance to antibiotics, the discovery of new antibiotics is critical. The search for new antimicrobial drugs that are effective in treating new and existing microbial diseases is arduous and timeconsuming. Deep learning (DL) can help find potential candidates resulting in a more efficient, and cost-effective, and it is more useful on large datasets than other algorithms.Our research team focused on developing an effective DL workflow for discovering new antimicrobial agents. Our group has previously synthesized and tested bisbenzazole structures with various linkers for a variety of pharmacological activities. Antimicrobial activities of bisbenzazole compounds have been also reported in the literature. Deep Neural Networks (DNN) were used to predict the activity of all bisbenzazole compounds synthesized by our group against Staphylococcus aureus and Candida albicans. DNN successfully predicted compounds 16, 17, and 30 out of six molecules (11, 16, 17, 29, 30, and 33) with activity results of 31.25 mu g /mL or better results based on in vitro studies. Compounds 13 and 15 out of four molecules (13, 15, 29, and 30) for C. albicans were successfully predicted. Molecular modeling studies were also carried out, and the compounds' docking scores agreed with the DNN models and in vitro antimicrobial activity results. Finally, this workflow, which includes deep learning, molecular docking, and in vitro studies, is a dependable and efficient way of discovering new antimicrobial agents for S. aureus and C. albicans.Öğe An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities(Taylor & Francis Inc, 2021) Algul, Oztekin; Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Duran, Nizami; Burmaoglu, SerdarA series of unsymmetrical nine di-heterocyclic compounds of benzazole derivatives were synthesized at one step via cyclization reaction. The compounds evaluated forin vitrocytotoxic activity against A549, A498, HeLa, and HepG2 cancer cell lines. The biological evaluation results show that23, 26and29exhibit better activity against HepG2 and HeLa cancer cell lines. Compound23also showed good activity against A549, and A498 cancer cell lines. The analogs were further performed molecular docking studies against human cytochrome P450 2C8 monooxygenase enzyme, calculated some theoretical quantum parameters, ADMET descriptor and molecular electrostatic potential analysis. The strategy applied in this research work may act as a perspective for the rational design of potential anticancer drugs. Communicated by Ramaswamy H. SarmaÖğe Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis(Springer, 2021) Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Ertan-Bolelli, Tugba; Duran, Nizami; Burmaoglu, Serdar; Algul, OztekinIn the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was investigated using MTT assay. Bisbenzazole derivatives showed significant antiproliferative activity against all the four tested cancer cell lines. Among the various bisbenzazole derivatives, bisbenzoxazole derivatives exhibited the most promising anticancer activity followed by bisbenzimidazole and bisbenzothiazole derivatives. All the derivatives were found to be less toxic as compared to methotrexate (positive control) in normal human cells, indicating selective and efficient antiproliferative activity of these bisbenzazole derivatives. The structure-activity relationships of heteroaromatic systems and linkers present in bisbenzazole derivatives were analyzed in detail. In silico ADMET prediction revealed that bisbenzazole is a drug-like small molecule with a favorable safety profile. Compound31is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from methotrexate. [GRAPHICS]Öğe N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives: Design, synthesis and biological evaluation against MCF7 breast cancer cell line(Elsevier, 2023) Zoatier, Bayan; Yildirim, Metin; Alagoz, Mehmet Abdullah; Yetkin, Derya; Turkmenoglu, Burcin; Burmaoglu, Serdar; Algul, OztekinThis work describes the straightforward and efficient one-pot synthesis of a new library of N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives (19-27). Using the MTT assay, these compounds were evaluated for their in vitro anticancer activity against the MCF7 human breast cancer cell line, and the results were compared to the standard doxorubicin. The majority of compounds exhibited an inhibitory effect against the cancer cell line, with compounds 19, 22, and 26 exhibiting exceptional cytotoxicity against MCF7 cells. Using flow cytometry, the most potent compound 19 on the induction of apoptosis in the breast cancer cell line was determined. Compound 19 induced G1-phase cell cycle arrest followed by apoptotic cell death. In silico analyses of potent compounds 19, 22, and 26 were conducted to investigate their interactions with Human DNA topoisomerase II. The energy calculations were found to be in excel-lent agreement with the calculated IC50 values. In addition, drug similarity parameter values for the three active compounds were determined using in silico ADME prediction studies. Considering all of these re-sults, it appears that these N-(benzazol-2-yl)-2-substituted phenylacetamide derivatives may be effective anticancer agents. This work may possibly generate new concepts for the enhancement of inhibitors of human DNA topoisomerase II for breast cancer treatment.(c) 2023 Elsevier B.V. All rights reserved.Öğe Structure-based inhibition of acetylcholinesterase and butyrylcholinesterase with 2-Aryl-6-carboxamide benzoxazole derivatives: synthesis, enzymatic assay, and in silico studies(Springer, 2024) Kuzu, Burak; Alagoz, M. Abdullah; Demir, Yeliz; Gulcin, Ilhami; Burmaoglu, Serdar; Algul, OztekinAn important research topic is the discovery of multifunctional compounds targeting different disease-causing components. This research aimed to design and synthesize a series of 2-aryl-6-carboxamide benzoxazole derivatives that inhibit cholinesterases on both the peripheral anionic and catalytic anionic sides. Compounds (7-48) were prepared from 4-amino-3-hydroxybenzoic acid in three steps. The Ellman test, molecular docking with Maestro, and molecular dynamics simulation studies with Desmond were done (Schrodinger, 12.8.117). Compound 36, the most potent compound among the 42 new compounds synthesized, had an inhibitory concentration of IC50 12.62 nM for AChE and IC50 25.45 nM for BChE (whereas donepezil was 69.3 nM and 63.0 nM, respectively). Additionally, compound 36 had docking values of - 7.29 kcal/mol for AChE and - 6.71 kcal/mol for BChE (whereas donepezil was - 6.49 kcal/mol and - 5.057 kcal/mol, respectively). Furthermore, molecular dynamics simulations revealed that compound 36 is stable in the active gorges of both AChE (average RMSD: 1.98 & Aring;) and BChE (average RMSD: 2.2 & Aring;) (donepezil had average RMSD: 1.65 & Aring; and 2.7 & Aring;, respectively). The results show that compound 36 is a potent, selective, mixed-type dual inhibitor of both acetylcholinesterase and butyrylcholinesterase. It does this by binding to both the catalytically active and peripheral anionic sites of cholinesterases at the same time. These findings show that target compounds may be useful for establishing the structural basis for new anti-Alzheimer agents. [GRAPHICS] .Öğe Synthesis, Biological Evaluation and In Silico Studies of Some 2-Substituted Benzoxazole Derivatives as Potential Anticancer Agents to Breast Cancer(Wiley-V C H Verlag Gmbh, 2022) Kuzu, Burak; Hepokur, Ceylan; Alagoz, Mehmet Abdullah; Burmaoglu, Serdar; Algul, OztekinIn an attempt to develop potent and selective anticancer agents, some 5- or 6- and N-substituted benzoxazol-2-carboxamide derivatives were designed, synthesized, and evaluated for their cyclooxygenase inhibitory, antioxidant, and anti-proliferative activity against MCF-7 and MDA-MB-231 cell lines. Among them 5-OMe, N-piperidine substituted (compound 30), 5-OMe, N-4-methylpiperidine substituted (compound 31) and 5-Cl, N-piperidine substituted (compound 34) benzoxazole 2-carboxamide compounds have a moderate inhibitory effect in COX-1 and COX-2 enzymes. Anti-proliferative studies show that compound 30 (IC50=5.35 mu M) and compound 31 (IC50=5.82 mu M) have similar activity to reference drug 5-FU (IC50=3.95 mu M) on MCF-7 cell but they have lower toxic effect for healthy WI-38 cell line. For the MCF-7 cell line, compounds 30 and 31 show approximately 1.5 times higher selectivity compared to the 5-FU control. Among the synthesized compounds 30, 31, and 34 had the best anti-proliferative effect and were used to perform flow cytometry and cell cycle analysis on MCF-7 cell line. To predict the binding modes and pharmacokinetic parameters of all compounds, in silico studies were carried out. These compounds may shed light on cancer treatment and cancer research.Öğe Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents(Academic Press Inc Elsevier Science, 2019) Burmaoglu, Serdar; Ozcan, Seyda; Balcioglu, Sevgi; Gencel, Melis; Noma, Samir Abbas Ali; Essiz, Sebnem; Ates, BurhanIn this study, a series of B-ring fluoro substituted bis-chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and evaluated for their ability to inhibit xanthine oxidase (XO) and growth inhibitory activity against MCF-7 and Caco-2 human cancer cell lines, in vitro. According to the results obtained, the bis-chalcone with fluoro group at the 2 (4b) or 2,5-position (4g) of B-ring were found to be potent inhibitors of the enzyme with IC50 values in the low micromolar range. The effects of these compounds were about 7 fold higher than allopurinol. The binding modes of the bis-chalcone derivatives in the active site of xanthine oxidase were explained using molecular docking calculations. Also, compound 4g and 4h showed in vitro growth inhibitory activity against a panel of two human cancer cell lines 1.9 and 6.8 mu M of IC50 values, respectively.Öğe Synthesis, In Vitro Biological Evaluation, and Molecular Docking Studies of Novel Biphenyl Chalcone Derivatives as Antimicrobial Agents(Taylor & Francis Ltd, 2022) Burmaoglu, Serdar; Kazancioglu, Elif Akin; Kazancioglu, Mustafa Z.; Alagoz, Mehmet Abdullah; Dogen, Aylin; Algul, OztekinThe increasing resistance to antimicrobial drugs has instigated the crucial need for the discovery of novel compounds with different modes of action that could target both sensitive and resistant strains. For this purpose, we developed some new chalcone analogs. Herein, a novel series of hybrid biphenyl chalcones (17-24), which have organohalogens in their B ring, were synthesized and examined for their antimicrobial effect. The position of the substituent on ring B was changed to find the effect of the substitution on antimicrobial activity. Compounds 18, 19, and 24 showed better antibacterial and antifungal activity when compared other compounds. Also, molecular docking studies on ATP binding site of S. aureus DNA gyrase for antibacterial targets were performed to elucidate the mechanism of antibacterial activity of synthesized compounds. Three of the most active compounds could be considered as lead compounds for the development of more new potent agents.