Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cardoso, Susana" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Hydrogen-Sensing Properties of Ultrathin Pt-Co Alloy Films
    (Mdpi, 2022) Erkovan, Mustafa; Deger, Caner; Cardoso, Susana; Kilinc, Necmettin
    The present work aims to investigate the feasibility of utilizing Pt and PtCo alloy ultrathin films as hydrogen gas sensors in order to reduce the cost of the hydrogen gas sensors by using low-cost metallic materials. In this study, ultrathin Pt and PtCo alloy thin films are evaluated for hydrogen sensors. The stoichiometry and structural characterization of the thin films are observed from XPS, SEM, and EDX measurements. The 2-nm-thick Pt and PtCo films deposited by sputtering onto Si/SiO2 covers homogeneously the surface in an fcc crystalline plane (111). The hydrogen gas-sensing properties of the films are assessed from the resistance measurement between 25 degrees C and 150 degrees C temperature range, under atmospheres with hydrogen concentration ranging from 10 ppm to 5%. The hydrogen-sensing mechanism of ultrathin PtxCo1-x alloy films can be elucidated with the surface scattering phenomenon. PtCo thin alloy films show better response time than pure Pt thin films, but the alloy films show lower sensor response than pure Pt film's sensor response. Aside from these experimental investigations, first-principles calculations have also been carried out for bare Pt and Co, and also PtCo alloys. Compared to the theoretical calculations, the sensor response to change decreases with increasing Co content, a result that is compatible with the experimental results. In an attempt to explain the decrease in the sensor response of PtCo alloy films compared to bare Pt film, a variety of different phenomena are discussed, including the shrinking lattice of the structure or dendritic surface structure of PtCo alloy films by the increasing cobalt ratio.
  • Küçük Resim Yok
    Öğe
    Rare Earth Material for Hydrogen Gas Sensing: PtGd Alloy Thin Films as a Promising Frontier
    (Mdpi, 2024) Kilinc, Necmettin; Cardoso, Susana; Erkovan, Mustafa
    At the focus of our investigation lies the precision fabrication of ultrathin platinum-gadolinium (PtGd) alloy films, with the aim to use these films for resistive hydrogen gas sensing. The imperative for sensitive and selective sensors to harness hydrogen's potential as an alternative energy source drives our work. Applying rare earth materials, we enhance the capabilities of hydrogen gas sensing applications. Our study pioneers PtGd alloy thin films for hydrogen gas sensing, addressing a gap in existing literature. Here, we demonstrate the functional characteristics of 2 nm thick PtxGd100 ' x (x = 25, 50 and 75) alloy films, analyzing their hydrogen gas sensing properties, comprehensively examining the interplay between alloy composition, temperature fluctuation and hydrogen concentration. The effect of composition and structural properties on the sensing response were assessed using EDX and XPS. The films are tested at a temperature range between 25 degrees C and 150 degrees C with hydrogen gas concentrations ranging from 10 ppm to 5%. Hydrogen gas sensing mechanisms in PtGd alloy ultrathin films are explained by surface scattering. The unique combination of Pt and Gd offers promising characteristics for gas sensing applications, including high reactivity with hydrogen gas and tunable sensitivity based on the alloy composition.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim