Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Castillo, Oscar" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Gaze-Guided Control of an Autonomous Mobile Robot Using Type-2 Fuzzy Logic
    (Mdpi, 2019) Dirik, Mahmut; Castillo, Oscar; Kocamaz, Adnan Fatih
    Motion control of mobile robots in a cluttered environment with obstacles is an important problem. It is unsatisfactory to control a robot's motion using traditional control algorithms in a complex environment in real time. Gaze tracking technology has brought an important perspective to this issue. Gaze guided driving a vehicle based on eye movements supply significant features of nature task to realization. This paper presents an intelligent vision-based gaze guided robot control (GGC) platform that uses a user-computer interface based on gaze tracking enables a user to control the motion of a mobile robot using eyes gaze coordinate as inputs to the system. In this paper, an overhead camera, eyes tracking device, a differential drive mobile robot, vision and interval type-2 fuzzy inference (IT2FIS) tools are utilized. The methodology incorporates two basic behaviors; map generation and go-to-goal behavior. Go-to-goal behavior based on an IT2FIS is more soft and steady progress in data processing with uncertainties to generate better performance. The algorithms are implemented in the indoor environment with the presence of obstacles. Experiments and simulation results indicated that intelligent vision-based gaze guided robot control (GGC) system can be successfully applied and the IT2FIS can successfully make operator intention, modulate speed and direction accordingly.
  • Küçük Resim Yok
    Öğe
    Global Path Planning and Path-Following for Wheeled Mobile Robot Using a Novel Control Structure Based on a Vision Sensor
    (Springer Heidelberg, 2020) Dirik, Mahmut; Kocamaz, Adnan Fatih; Castillo, Oscar
    This paper presents a novel design for the kinematic control structure of the wheeled mobile robot (WMR) path planning and path-following. The proposed system is focused on the implementation of practical real-time model-free algorithms based on visual servoing. The mainframe of this study is to implement a novel kinematic control structure based on visual sevoing and hybrid algorithms in real-time mobile robot applications. First, the structure of the proposed algorithm based on the visual information extracted from an overhead camera has been addressed. Then, the classification process of robot position and orientation, target, and obstacles has been addressed. Second, the path planning algorithms' initial parameters and obstacles-free path coordinates have been determined by visual information extracted from images in real time. In this step, the interval type-2 fuzzy inference (IT2FIS) algorithm and various algorithms used in path planning have been compared and their performances have been analyzed. The third stage handled the path-following process using a novel control structure for keeping up the robot on the generated path. In this step, the proposed approach is compared with fuzzy Type-1/Type-2 and fuzzy-PID control algorithms, and their results have been analyzed statistically. The proposed system has been successfully implemented on several maps. The experimental results show that the developed design is valid in generating collision-free paths efficiently and consistently and able to guide the robot to follow the path in real time.
  • Küçük Resim Yok
    Öğe
    Visual-Servoing Based Global Path Planning Using Interval Type-2 Fuzzy Logic Control
    (Mdpi, 2019) Dirik, Mahmut; Castillo, Oscar; Kocamaz, Adnan Fatih
    Mobile robot motion planning in an unstructured, static, and dynamic environment is faced with a large amount of uncertainties. In an uncertain working area, a method should be selected to address the existing uncertainties in order to plan a collision-free path between the desired two points. In this paper, we propose a mobile robot path planning method in the visualize plane using an overhead camera based on interval type-2 fuzzy logic (IT2FIS). We deal with a visual-servoing based technique for obstacle-free path planning. It is necessary to determine the location of a mobile robot in an environment surrounding the robot. To reach the target and for avoiding obstacles efficiently under different shapes of obstacle in an environment, an IT2FIS is designed to generate a path. A simulation of the path planning technique compared with other methods is performed. We tested the algorithm within various scenarios. Experiment results showed the efficiency of the generated path using an overhead camera for a mobile robot.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim