Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ciavattini, Andrea" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Endometrial Cancer Individualized Scoring System (ECISS): A machine learning-based prediction model of endometrial cancer prognosis
    (Wiley, 2023) Shazly, Sherif A.; Coronado, Pluvio J.; Yilmaz, Ercan; Melekoglu, Rauf; Sahin, Hanifi; Giannella, Luca; Ciavattini, Andrea
    ObjectiveTo establish a prognostic model for endometrial cancer (EC) that individualizes a risk and management plan per patient and disease characteristics. MethodsA multicenter retrospective study conducted in nine European gynecologic cancer centers. Women with confirmed EC between January 2008 to December 2015 were included. Demographics, disease characteristics, management, and follow-up information were collected. Cancer-specific survival (CSS) and disease-free survival (DFS) at 3 and 5 years comprise the primary outcomes of the study. Machine learning algorithms were applied to patient and disease characteristics. Model I: pretreatment model. Calculated probability was added to management variables (model II: treatment model), and the second calculated probability was added to perioperative and postoperative variables (model III). ResultsOf 1150 women, 1144 were eligible for 3-year survival analysis and 860 for 5-year survival analysis. Model I, II, and III accuracies of prediction of 5-year CSS were 84.88%/85.47% (in train and test sets), 85.47%/84.88%, and 87.35%/86.05%, respectively. Model I predicted 3-year CSS at an accuracy of 91.34%/87.02%. Accuracies of models I, II, and III in predicting 5-year DFS were 74.63%/76.72%, 77.03%/76.72%, and 80.61%/77.78%, respectively. ConclusionThe Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient-specific survival probability with high accuracy.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim