Yazar "Dönmez E." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Human gender estimation from CT images of skull using deep feature selection and feature fusion(Nature Research, 2024) Çiftçi R.; Dönmez E.; Kurtoğlu A.; Eken Ö.; Samee N.A.; Alkanhel R.I.This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. © The Author(s) 2024.Öğe The role of morphometric characteristics in predicting 20-meter sprint performance through machine learning(Nature Research, 2024) Kurtoğlu A.; Eken Ö.; Çiftçi R.; Çar B.; Dönmez E.; Kılıçarslan S.; Jamjoom M.M.The aim of this study was to test the morphometric features affecting 20-m sprint performance in children at the first level of primary education using machine learning (ML) algorithms. In this study, 130 male and 152 female volunteers aged between 6 and 11 years were included. After obtaining demographic information of the participants, skinfold thickness, diameter and circumference measurements, and 20-m sprint performance were determined. The study conducted three distinct experiments to determine the optimal ML technique for predicting outcomes. Initially, the entire feature space was utilized for training the ML models to establish a baseline performance. In the second experiment, only significant features identified through correlation analysis were used for training and testing the models, enhancing the focus on relevant predictors. Lastly, Principal Component Analysis (PCA) was employed to reduce the feature space, aiming to streamline model complexity while retaining data variance. These experiments collectively aimed to evaluate different feature selection and dimensionality reduction techniques, providing insights into the most effective strategies for optimizing predictive performance in the given context. The correlation-based selected features (Age, Height, waist circumference, hip circumference, leg length, thigh length, foot length) has produced a minimum Mean Squared Error (MSE) value of 0.012 for predicting the sprint performance in children. The effective utilization of correlation analysis in the selection of relevant features for our regression model suggests that the features selected exhibit robust linear associations with the target variable and can be relied upon as predictors. © The Author(s) 2024.