Yazar "Dagdelen, F." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Microstructural and wear properties of the Al-B4C composite coating produced by hot-press sintering on AA-2024 alloy(Korean Soc Mechanical Engineers, 2021) Ozay, C.; Ballikaya, H.; Dagdelen, F.; Karlidag, O. E.In this study, the surface of an AA-2024 alloy was covered with reinforced composite coating using hotpress sintering method. Al and B4C powders were synthesized through mechanical alloying technique and coated on the AA-2024 substrate at different rates. The microstructure of the intermediate transition region formed between the substrate (AA-2024 Al alloy) and the coating layer (Al/B4C MMCs), the microstructure of the Al/B4C metal matrix composites (MMCs) coating, the microhardness, and the adhesive wear resistance of the Al/B4C MMCs coating layer were investigated. It was observed that B4C powders homogeneously dispersed in the microstructure of the Al/B4C MMCs coating layer, moreover, the Al matrix and B4C reinforcement particles were bonded without a gap. It was also determined that an interface bonding occurred between Al/B4C MMCs coating layer and the AA-2024 substrate. Accordingly, it was determined that with the increase of B4C reinforcement particle ratio, the hardness of the coating layer, and the wear resistance increased.Öğe The Relationship between Cobalt Amount and Oxidation Parameters in NiTiCo Shape Memory Alloys(Maik Nauka/Interperiodica/Springer, 2020) Mohammed, S. S.; Kok, M.; Cirak, Z. D.; Qader, I. N.; Dagdelen, F.; Zardawi, H. S. A.Coating shape-memory alloys (SMAs) with a ceramic layer is an important way by which metallurgists change some physical properties and improve biocompatibilities of (SMAs) for some medical purposes. The oxidation behaviors of five NiTiCo samples with different compositions were investigated and their influence on the thermal characteristics of phase transformation temperatures was studied. The kinetic oxidation as a function of time was determined by using the results of measurements via a combined method of the thermal gravimetrical (TG) and differential thermal (DT) analysis (TG/DTA), at 1323 K for one hour. The SEM-EDX results showed that an oxidation layer covered the surface of the alloys with ceramic compounds consisting of titanium and oxygen. The phase transformation temperatures were increased with respect to non-oxidized NiTiCo alloys. Likewise, the enthalpy change during the heating process was affected by the oxidation process.