Yazar "Disli, Erkan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe ADSORPTION OF CRYSTAL VIOLET FROM AQUEOUS SOLUTION ON ACTIVATED CARBON DERIVED FROM GOLBASI LIGNITE(Oficyna Wydawnicza Politechniki Wroclawskiej, 2012) Depci, Tolga; Kul, Ali Riza; Onal, Yunus; Disli, Erkan; Alkan, Salih; Turkmenoglu, Z. FundaActivated carbon (AC) was obtained from lignite of the local resource, Golbasi - Adiyaman (Turkey) by chemical activation. The Golbasi lignite was chosen as the precursor for its availability and low cost. The BET surface area of the activated carbon was found 921 m2/g. The AC was used as an adsorbent for Crystal Violet (CV) in aqueous solution. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and the kinetic models (pseudo-first-order, pseudo-second-order and intraparticle diffusion model). It was shown that the experimental results best fitted by the Langmuir model, and the second-order kinetic equation. The thermodynamic parameters show that the adsorption process is endothermic. The experimental results point out that the obtained activated carbon is a viable candidate for sorbent removing CV from aqueous solutions.Öğe CHARACTERISTIC PROPERTIES OF ADSORBED CATALASE ONTO ACTIVATED CARBON BASED ADIYAMAN LIGNITE(Parlar Scientific Publications (P S P), 2011) Depci, Tolga; Alkan, Salih; Kul, Ali Riza; Onal, Yunus; Alacabey, Ihsan; Disli, ErkanCatalase is one of the most common and important enzymes in biological systems. However, its purification process has some difficulties and it can be easily decomposed in aqueous or nonaqueous solutions. Therefore, a catalase should be adsorbed on solid materials to reduce its inactivation and to increase its economic value. Activated carbon which was obtained from Turkish low-rank coal (Golbasi-Adiyaman) by chemical activation was used as a solid carrier to adsorb catalase for the first time in this research. The pore structure of the activated carbon was determined by A Tri Star 3000 (Micromeritics, USA) surface analyzer and scanning electron microscope. In order to determine adsorption properties of catalase, ionic strength effect, temperature-activity, pH-activity, storage stability and operational stability of the activated carbon were investigated. The kinetic and thermodynamic mechanisms of adsorbed enzyme were also studied. The experimental results pointed out that the obtained activated carbon is a viable candidate for an alternative solid carrier for catalase and it may be a promising material for various biotechnological applications.