Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Dogan, Cagla Nur" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Prediction of Epidemic Disease Severity and the Relative Importances of the Factors for Epidemic Disease Using the Machine Learning Methods
    (2022) Kutlu, Hüseyin; Dogan, Cagla Nur; Doğan, Çağla Nur; Turgut, Mehmet
    Epidemic diseases have been seen frequently in recent years. Today’s, thanks to advanced database systems, it is possible to reach the clinical and demographic data of citizens. With the help of these data, machine learning algorithms can predict how severe (at home, hospital or intensive care unit) the disease will be experienced by patients in the risk group before the epidemic begins to spread. With these estimates, necessary precautions can be taken. In this study, during the COVID-19 epidemic, the data obtained from the Italian national drug database was used. COVID-19 severity and the features (Age, Diabetes, Hypertension etc.) that affect the severity was estimated using data mining (CRISP-DM method), machine learning approaches (Bagged Trees, XGBoost, Random Forest, SVM) and an algorithm solving the unbalanced class problem (SMOTE). According to the experimental findings, the Bagged Classification and Regression Trees (Bagged CART) yielded higher accuracy COVID-19 severity prediction results than other methods (83.7%). Age, cardiovascular diseases, hypertension, and diabetes were the four highest significant features based on the relative features calculated from the Bagged CART classifier. The proposed method can be implemented without losing time in different epidemic diseases that may arise in the future.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim