Yazar "Dogan, Sengul" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An Accurate Multiple Sclerosis Detection Model Based on Exemplar Multiple Parameters Local Phase Quantization: ExMPLPQ(Mdpi, 2022) Macin, Gulay; Tasci, Burak; Tasci, Irem; Faust, Oliver; Barua, Prabal Datta; Dogan, Sengul; Tuncer, TurkerMultiple sclerosis (MS) is a chronic demyelinating condition characterized by plaques in the white matter of the central nervous system that can be detected using magnetic resonance imaging (MRI). Many deep learning models for automated MS detection based on MRI have been presented in the literature. We developed a computationally lightweight machine learning model for MS diagnosis using a novel handcrafted feature engineering approach. The study dataset comprised axial and sagittal brain MRI images that were prospectively acquired from 72 MS and 59 healthy subjects who attended the Ozal University Medical Faculty in 2021. The dataset was divided into three study subsets: axial images only (n = 1652), sagittal images only (n = 1775), and combined axial and sagittal images (n = 3427) of both MS and healthy classes. All images were resized to 224 x 224. Subsequently, the features were generated with a fixed-size patch-based (exemplar) feature extraction model based on local phase quantization (LPQ) with three-parameter settings. The resulting exemplar multiple parameters LPQ (ExMPLPQ) features were concatenated to form a large final feature vector. The top discriminative features were selected using iterative neighborhood component analysis (INCA). Finally, a k-nearest neighbor (kNN) algorithm, Fine kNN, was deployed to perform binary classification of the brain images into MS vs. healthy classes. The ExMPLPQ-based model attained 98.37%, 97.75%, and 98.22% binary classification accuracy rates for axial, sagittal, and hybrid datasets, respectively, using Fine kNN with 10-fold cross-validation. Furthermore, our model outperformed 19 established pre-trained deep learning models that were trained and tested with the same data. Unlike deep models, the ExMPLPQ-based model is computationally lightweight yet highly accurate. It has the potential to be implemented as an automated diagnostic tool to screen brain MRIs for white matter lesions in suspected MS patients.Öğe Exemplar deep and hand-modeled features based automated and accurate cerebral hemorrhage classification method(Elsevier Sci Ltd, 2022) Din, M. Sait; Gurbuz, Sukru; Akbal, Erhan; Dogan, Sengul; Durak, M. Akif; Yildirim, I. Okan; Tuncer, TurkerBackground: : Cerebral hemorrhage (CH) is a commonly seen disease, and an accurate diagnosis of the type of CH is a very crucial step in treatment. Therefore, CH requires a prompt and accurate diagnosis. To simplify this process, an accurate CH classification model is presented using a machine learning technique. Material and method: : A computed tomography (CT) image dataset was collected retrospectively in this research. This dataset contains 9818 images with five categories. An exemplar fused feature generator is presented to classify these features. This generator uses pre-trained AlexNet, local binary pattern (LBP), and local phase quantization (LPQ). The neighborhood component analysis (NCA) method selects the top features, and the chosen feature vector is classified on the support vector machine. Results: : Six validation methods are utilized to calculate the performance of the presented exemplar fused features and NCA-based CH classification model. This model attained 97.47%, 96.05%, 95.21%, 93.62%, 91.28% and 96.34% accuracies using five hold-out validations and ten-fold cross-validation respectively. Conclusions: : The calculated results clearly demonstrate the success and robustness of the introduced exemplar fused feature generation and NCA-based model. Furthermore, this model can be used in emergency services to overcome a prompt diagnosis of CH.Öğe Swin-PHOG-LPQ: An accurate computed tomography images classification model using Swin architecture with handcrafted features(Elsevier Sci Ltd, 2023) Kaya, Davut; Gurbuz, Sukru; Yildirim, Okan; Akbal, Erhan; Dogan, Sengul; Tuncer, TurkerBackground and aim: Computed tomography (CT) image classification has been the subject of intense research in the area of biomedical image classification with the objective of developing intelligent disorder detection models. In this paper, we aim to detect three disorders in lung CT images: hemothorax, contusion, and pneumothorax. Deep learning models are particularly effective for computer vision tasks. Thus our second goal is to propose a new hand-modeled image classification model that achieves high performance using the shifted windows (swin) architecture.Materials and Methods: We collected a new lung CT image dataset containing four classes - hemothorax, contusion, pneumothorax, and control - with 2730 CT images. Our proposed swin architecture-based CT image classification model is designed to extract features from patches using the Pyramidal histogram-oriented gradient (PHOG) and local phase quantization (LPQ) methods for directional and textural features. We utilized an iterative neighborhood component analysis (INCA) feature selector for feature selection and classified the chosen features using the k-nearest neighbors (kNN) classifier with 10-fold cross-validation. Finally, majority voting was employed to obtain the final classification.Results: Our proposed Swin-PHOG-LPQ achieved a classification accuracy of 95.53%. We also evaluated our model on two publicly available CT image datasets and achieved classification accuracies of 95.31% and 97.63%, respectively.Conclusion: The high classification accuracies obtained by our proposed Swin-PHOG-LPQ model demonstrate its efficacy in detecting the three disorders in lung CT images.