Yazar "Duran, Nizami" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bisbenzoxazole Derivatives: Design, Synthesis, in Vitro Antimicrobial, Antiproliferative Activity, and Molecular Docking Studies(Taylor & Francis Ltd, 2022) Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Dogen, Aylin; Duran, Nizami; Burmaoglu, Serdar; Algul, OztekinFour series of bisbenzoxazole derivatives were designed, synthesized, and screened for antiproliferative and antimicrobial activities. Generally, all synthesized bisbenzoxazoles (9-24) displayed significant antiproliferative activity; these effects were shown to be related to oxazole rings and substituents in bisbenzoxazole compounds. Especially, the series bearing chloro-substituent (9-12) exhibited better antiproliferative activity with higher selectivity than the other series (13-24); the IC50 values were observed in the range of 0.045-0.342 mu M. Interestingly, only the compound with a nitro substituent (22) showed maximum potency with an IC50 value of 0.011 mu M, which is two-fold more active than the standard drug methotrexate, with moderate selectivity. The compounds bearing fluoro-substituent (14-16) were found to exhibit potent antibacterial activity against the Gram-positive Enterococcus faecalis, with a MIC value of 62.5 mu g/mL, and moderate activity against Gram-negative bacteria and fungi. Only the compound 23 showed potent activity against Escherichia coli, with a MIC value of 62.5 mu g/mL. In order to better evaluate the activity results, crystal structures of five different proteins Human Anaplastic Lymphoma Kinase (PDB ID: 2XP2), CYP2C8dH complexed (PDB ID: 2NNI), factor-human kinase-beta enzyme IKK-beta enzyme (PDB ID: 4KIK), a tubulin heterodimer complex containing alpha and beta sub-units (PDB ID: 1Z2B) and penicillin-binding protein 4 (PBP4) from Enterococcus faecalis (PDB ID: 6MKI) were used in the docking study to examine antiproliferative and antimicrobial activity. Finally, an ADMET screening test was applied to determine the drug-like, toxicological, and optimum physicochemical properties for all of the synthesized compounds. The strategy applied in this research may act as a perspective for the rational design of potential anticancer drugs.Öğe An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities(Taylor & Francis Inc, 2021) Algul, Oztekin; Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Duran, Nizami; Burmaoglu, SerdarA series of unsymmetrical nine di-heterocyclic compounds of benzazole derivatives were synthesized at one step via cyclization reaction. The compounds evaluated forin vitrocytotoxic activity against A549, A498, HeLa, and HepG2 cancer cell lines. The biological evaluation results show that23, 26and29exhibit better activity against HepG2 and HeLa cancer cell lines. Compound23also showed good activity against A549, and A498 cancer cell lines. The analogs were further performed molecular docking studies against human cytochrome P450 2C8 monooxygenase enzyme, calculated some theoretical quantum parameters, ADMET descriptor and molecular electrostatic potential analysis. The strategy applied in this research work may act as a perspective for the rational design of potential anticancer drugs. Communicated by Ramaswamy H. SarmaÖğe Head-to-head bisbenzazole derivatives as antiproliferative agents: design, synthesis, in vitro activity, and SAR analysis(Springer, 2021) Ersan, Ronak Haj; Alagoz, Mehmet Abdullah; Ertan-Bolelli, Tugba; Duran, Nizami; Burmaoglu, Serdar; Algul, OztekinIn the present work, a series of bisbenzazole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of these compounds was investigated using MTT assay. Bisbenzazole derivatives showed significant antiproliferative activity against all the four tested cancer cell lines. Among the various bisbenzazole derivatives, bisbenzoxazole derivatives exhibited the most promising anticancer activity followed by bisbenzimidazole and bisbenzothiazole derivatives. All the derivatives were found to be less toxic as compared to methotrexate (positive control) in normal human cells, indicating selective and efficient antiproliferative activity of these bisbenzazole derivatives. The structure-activity relationships of heteroaromatic systems and linkers present in bisbenzazole derivatives were analyzed in detail. In silico ADMET prediction revealed that bisbenzazole is a drug-like small molecule with a favorable safety profile. Compound31is a potential antiproliferative hit compound that exhibits unique cytotoxic activity distinct from methotrexate. [GRAPHICS]Öğe New chalcone derivatives as effective against SARS-CoV-2 agent(Wiley-Hindawi, 2021) Duran, Nizami; Polat, M. Fatih; Aktas, Derya Anil; Alagoz, M. Abdullah; Ay, Emrah; Cimen, Funda; Tek, ErhanAims Flavonoids and related compounds, such as quercetin-based antiviral drug Gene-Eden-VIR/Novirin, inhibit the protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The alkylated chalcones isolated from Angelica keiskei inhibit SARS-CoV proteases. In this study, we aimed to compare the anti-SARS CoV-2 activities of both newly synthesized chalcone derivatives and these two drugs. Methods Determination of the potent antiviral activity of newly synthesized chalcone derivatives against SARS-CoV-2 by calculating the RT-PCR cycling threshold (C-t) values. Results Antiviral activities of the compounds varied because of being dose dependent. Compound 6, 7, 9, and 16 were highly effective against SARS-CoV-2 at the concentration of 1.60 mu g/mL. Structure-based virtual screening was carried out against the most important druggable SARS-CoV-2 targets, viral RNA-dependent RNA polymerase, to identify putative inhibitors that could facilitate the development of potential anti-coronavirus disease-2019 drug candidates. Conclusions Computational analyses identified eight compounds inhibiting each target, with binding affinity scores ranging from -4.370 to -2.748 kcal/mol along with their toxicological, ADME, and drug-like properties.