Yazar "Dursun, Omerul Faruk" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art(Mdpi, 2022) Heyrani, Mehdi; Mohammadian, Abdolmajid; Nistor, Ioan; Dursun, Omerul FarukOne of the primary steps in managing the flow in an open channel is determining its properties. Empirical equations are developed to provide further information regarding the flow in open channels. Obtaining such experimental equations is expensive and time consuming; therefore, alternative solutions have been sought. Over the last century, the Parshall flume, a static measuring device with no moving parts, has played a significant role in measuring the flow in open channels. Many researchers have focused their interest on studying the application of Parshall flumes in various fields like irrigation and wastewater management. Although various scholars used experimental results to enhance the rating equation of the Parshall flume, others used an alternative source of data to recalibrate the height-discharge relation equation using numerical simulation. Computational Fluid Dynamic (CFD) software is becoming popular nowadays as computing hardware has advanced significantly within the last few decades, making it possible to go beyond the limited resolution that was experienced in the past. Multiple CFD models, depending on their availability, either open-source or commercially licensed, have been used to perform numerical simulations on different configurations of flumes, especially Parshall flumes, to produce water level results. Regarding various CFD tools that have been used, i.e., FLOW-3D, Ansys Fluent, or OpenFOAM, after precise calibration with experimental data, it has been determined that the output is reliable and can be implemented to the actual scenarios. The benefit of using this technique to produce results is the ability of the CFD approach to adjust the initial conditions, like flow velocity or structural geometry, where necessary. With respect to channel size and the condition of the site where the flume is located, the choices are narrowed to the specific Parshall flume suitable to the situation. It is not always possible to select the standard Parshall flume; therefore, engineers provide some modification to the closest flume size and provide a new rating curve to produce accurate flowrates. This review has been performed on the works of a number of scholars who targeted the application of numerical simulation and physical experimental data in Parshall flumes to either enhance the existing rating equation or propose further modification to the structure's geometry.Öğe Experimentally Verified Numerical Investigation of the Sill Hydraulics for Abruptly Expanding Stilling Basin(Springer Heidelberg, 2023) Aydogdu, Mahmut; Gul, Enes; Dursun, Omerul FarukEnergy dissipation structures, particularly stilling basins, are critical for defining the hydraulic jump characteristics that are suitable. Appropriate sill geometry for abruptly expanding stilling basins has been investigated and a central rectangular sill has been proposed in the literature. This study has examined the suggested central sill and alternative flip buckets for abruptly expanding stilling basins. A series of experimental and numerical studies were carried out for two different heights of the central sill and two different flip buckets. Simulations have been evaluated using experimental data of laboratory scale, which indicated that they were acceptably precise. For the simulations, the k-epsilon turbulence model RNG module was preferred using the volume of fluid methods. The PISO approach was chosen to resolve this equation system numerically. The results showed that the hydraulic jump characteristics are strongly influenced by sill geometry. For the Type-3 sill negative static pressures have not occurred and performs better at energy dissipation than other geometries examined in the study. Higher pressures occurred on the rectangular prism-shaped sills. Maximum static pressure happened on the Type-2 sill. The least static pressure was seen in the Type-4 sill type.Öğe Local scour protection using geocell for downstream of spillway(Academic Publication Council, 2021) Gul, Enes; Sarici, Talha; Dursun, Omerul FarukLocal scour is an important problem for hydraulic structures. The local scour in the downstream of dams causes problems such as the damage of the dam body stabilization, erosion of the slopes, and the submergence of the turbines. There are many studies investigating the local scour prediction of the downstream of the hydraulic structures, but in recent years, these studies have been replaced by studies of local scour reduction. The new idea of confining the bed materials using the geocell is becoming a popular solution. This solution can be especially used for the reinforcement of the soils. In this study, the preventability of the local scour downstream of chute channel by cellular confinement system, also known as geocell, was investigated. As a result, in case of using geocell, percentage reduction of the maximum scour depth up to 40.63% was observed.Öğe Numerical Modeling of Venturi Flume(Mdpi, 2021) Heyrani, Mehdi; Mohammadian, Abdolmajid; Nistor, Ioan; Dursun, Omerul FarukIn order to measure flow rate in open channels, including irrigation channels, hydraulic structures are used with a relatively high degree of reliance. Venturi flumes are among the most common and efficient type, and they can measure discharge using only the water level at a specific point within the converging section and an empirical discharge relationship. There have been a limited number of attempts to simulate a venturi flume using computational fluid dynamics (CFD) tools to improve the accuracy of the readings and empirical formula. In this study, simulations on different flumes were carried out using a total of seven different models, including the standard k-epsilon, RNG k-epsilon, realizable k-epsilon, k-omega, and k-omega SST models. Furthermore, large-eddy simulation (LES) and detached eddy simulation (DES) were performed. Comparison of the simulated results with physical test data shows that among the turbulence models, the k-epsilon model provides the most accurate results, followed by the dynamic k LES model when compared to the physical experimental data. The overall margin of error was around 2-3%, meaning that the simulation model can be reliably used to estimate the discharge in the channel. In different cross-sections within the flume, the k-epsilon model provides the lowest percentage of error, i.e., 1.93%. This shows that the water surface data are well calculated by the model, as the water surface profiles also follow the same vertical curvilinear path as the experimental data.