Yazar "Emre, FB" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Preparation, characterization and H2O2 selectivity of hyperbranched polyimides, containing triazine(Springer, 2005) Ekinci, E; Emre, FB; Köytepe, S; Seçkin, TNovel polyimides based on aromatic dianhyride and various hexahydrotriazine monomers were synthesized via two-stage solution polycondensation method. The resulting polyimides were characterized by solubility, viscosity, density, spectroscopic and thermal analysis methods. The results showed that polyimides soluble in polar solvents and had inherent viscosities ranging from 1.92 to 2.32 dL/g. The glass transition temperatures were 315 and 344 degrees C, and the 10% weight loss Then, polyimide-modified electrodes were prepared for the selective determina-temperatures were above 604 and 628 degrees C. Then, polyimide-mofified electrodes were prepared for the selective determination of hydrogen peroxide. The electrochemical behavior of the resulting polyimide film electrodes to the electroactive and non-electroactive species such as ascorbic acid, oxalic acid, hydrogen peroxide, lactose, sucrose and urea was examined by CV, DPV and TB techniques. From the obtained findings, it was shown that polyimide-coated electrode (PI-2) was only permitted to hydrogen peroxide among the species examined. As a result, it is claimed that polyimide electrode could be used as a selective membrane for hydrogen peroxide.Öğe Removal of inorganic-organic bound Cu(II) from different aqueous solutions by new adsorbents synthesized by sol-gel process(Taylor & Francis Inc, 2004) Erdemoglu, S; Sayilkan, F; Emre, FB; Akarsu, M; Sener, S; Sayilkan, HHydrolysis product of alcohol modified titanium(IV)-n-propoxide and its coated form were prepared as new and regenerable adsorbents for adsorbing and removing Cu(II) ions from its different aqueous solutions. The hydrolysis and alcoholysis products and adsorbents were characterized using GC, H-1-NMR, FT-IR, SEM, and TG-DTA analysis. It was found that Cu(II) ion adsorption rather increased when hydrolysis product of alcohol modified titanium(IV)-n-propoxide was coated with prehydrolyzed 3-mercaptopropyltrimethoxy silane in n-propanol and this coated material was used as adsorbent. Depending on the results of experiments performed at optimum conditions of initial Cu(II) concentration, amount of adsorbent, contact time, and pH, maximum adsorption of Cu(II), i.e., >98% has been achieved under the non-competitive conditions, while almost 60% is achieved under the competitive conditions of Pb(II), Zn(II), Fe(III), and alkali and earth alkali metals. It was also concluded that Cu(II) adsorption efficiency is not affected from the media containing acetate, tannic acid, or Turkish Blue dye. The adsorbent was easily regenerated with 5 N HNO3 solution and used over and over again for the adsorption of Cu(II) ions.