Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gursoy, M. H." seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    ACTIONS OF VECTOR GROUPOIDS
    (Iranian Mathematical Soc, 2014) Gursoy, M. H.
    In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion of a crossed module over a vector groupoid. Finally, we show that the category VG of the vector groupoids is equivalent to the category CModVG of the crossed modules over a vector groupoid.
  • Küçük Resim Yok
    Öğe
    A New Concept in the Soft Theory: Soft Groupoids
    (Southeast Asian Mathematical Soc-Seams, 2020) Oguz, G.; Icen, I.; Gursoy, M. H.
    This article is based on the introduction of the soft groupoid concept. Soft groupoid which is defined as a new concept is exemplified and some important properties of it are studied. Subsequently, the relationship between soft groupoid and soft category is examined in detail. Morever, the category of soft groupoids is constructed. Finally, the concepts of soft subgroupoid and normal soft subgroupoid are described and some characterizations related to them are presented.
  • Küçük Resim Yok
    Öğe
    On s-Sheaves
    (Centre Environment Social & Economic Research Publ-Ceser, 2017) Oguz, G.; Icen, I.; Gursoy, M. H.
    In this study, we investigate the interaction of sheaves and groupoids. More precisely, we study the interaction between the local equivalence relations and local subgroupoids. A local equivalence relation on a topological space X is a global section of the sheaf of germs of equivalence relations on X. In the light of this definition, the concept of a local subgroupoid of a topological groupoid G is a global section of a certain sheaf of subgroupoid associated to G. It is also an introduction to the notions of r-sheaves and s-sheaves introduced by Icen (Icen, 2000).

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim