Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Hanbay K." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A novel texture classification method based on Hessian matrix and principal curvatures
    (IEEE Computer Society, 2014) Alpaslan N.; Hanbay K.; Hanbay D.; Talu M.F.
    In this study, in order to obtain similar effect with conventional gradient operation and extract more robust feature for texture, we use the principal curvature informations instead of the gradient calculation. Through this methods, sharp and important informations about the texture images were obtained by analyzing images of the second order. Considering the classification results obtained, it is shown that the proposed method improve the performance of original CoHOG and HOG feature extraction methods. As a result of experiments on datasets with different characteristics, it is seen that, the proposed method has higher classification performance. © 2014 IEEE.
  • Küçük Resim Yok
    Öğe
    Segmentation of color texture images with artificial bee colony algorithm and wavelet transform
    (2012) Hanbay K.; Talu M.F.; Karci A.
    Segmentation is an important application in the analysis of gray level and color images numerically. The task of image segmentation is to separate a given image into different regions having homogenous properties. Although the most basic segmentation is thresholding, this method has been insufficient in time. In this paper, the segmentation of color texture images is carried out with the approach of wavelet transform and artificial bee colony algorithm. Through this approach, the segmentation of typical natural scenes, including no uniform statistical color and texture characteristics is achieved. The superior and weak points of the developed method are evaluated. © 2012 IEEE.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim