Yazar "Kahraman H." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of calcium on pseudomonas aeruginasa and bacillus cereus metabolites(Instituto Internacional de Ecologia, 2022) Keskin Z.B.; Kahraman H.The effects of Calcium (Ca+2) on virulence and some parameters should be analyzed in this study. Pseudomonas aeruginosa Gram (-) and Bacillus cereus Gram (+) were used. Both bacteria are soil bacteria. In this study; the effect of Ca+2 on protease, amylase, LasB elastolytic assay, H2 O2, pyorubin and biofilm on metabolites of these bacteria were investigated during 24 hour time. In this study, the effect of Ca+2 on the production of some secondary metabolites on P. aeruginosa and B. cereus was investigated and presented for the first time by us. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Öğe Production of proline and protease with different organic wastes in bacteria (Production proline and protease with organic wastes)(Instituto Internacional de Ecologia, 2022) Kahraman H.; Karaderi C.C.In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. 5 ml of different organic waste materials (OWW: Olive waste water; N.B: Nutrient Broth; EW: Eggshell; PBS: PBS buffer; PLW: Peach leaf wastes; TCW: Turkish coffee wastes; TWW: Tea waste water; WCW: Waste cheese whey; WFO: Waste frying oil) were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at 14,000 rpm for 20 min at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using Turkish coffee wastes (TCW), Waste cheese whey (WCW) and Olive waste water (OWW) organic waste. We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment. © 2022, Instituto Internacional de Ecologia. All rights reserved.Öğe Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene.(2012) Kahraman H.; Erenler S.O.The potential of Pseudomonas aeruginosa expressing the Vitreoscilla hemoglobin gene (vgb) for rhamnolipid production was studied. P. aeruginosa (NRRL B-771) and its transposon mediated vgb transferred recombinant strain, PaJC, were used in the research. The optimization of rhamnolipid production was carried out in the different conditions of cultivation (agitation rate, the composition of culture medium and temperature) in a time-course manner. The nutrient source, especially the carbon type, had a dramatic effect on rhamnolipid production. The PaJC strain and the wild type cells of P. aeruginosa started producing biosurfactant at the stationary phase and its concentration reached maximum at 24 h (838 mg/l(-1)) and at 72 h (751 mg l(-1)) of the incubation respectively. Rhamnolipid production was optimal in batch cultures when the temperature and agitation rate were controlled at 30 degrees C and 100 rpm. It reached 8373 mg l(-1) when the PaJC cells were grown in 1.0% glucose supplemented minimal media. Genetic engineering of biosurfactant producing strains with vgb may be an effective method to increase its production.