Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Karakoc, S. Battal Gazi" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A NUMERICAL SOLUTION OF THE MODIFIED REGULARIZED LONG WAVE (MRLW) EQUATION USING QUARTIC B-SPLINES
    (Turkic World Mathematical Soc, 2013) Karakoc, S. Battal Gazi; Geyikli, Turabi; Bashan, Ali
    In this paper, a numerical solution of the modified regularized long wave (MRLW) equation is obtained by subdomain finite element method using quartic B-spline functions. Solitary wave motion, interaction of two and three solitary waves and the development of the Maxwellian initial condition into solitary waves are studied using the proposed method. Accuracy and efficiency of the proposed method are tested by calculating the numerical conserved laws and error norms L-2 and L-infinity. The obtained results show that the method is an effective numerical scheme to solve the MRLW equation. In addition, a linear stability analysis of the scheme is found to be unconditionally stable.
  • Küçük Resim Yok
    Öğe
    Petrov-Galerkin method with cubic B-splines for solving the MEW equation
    (Belgian Mathematical Soc Triomphe, 2012) Geyikli, Turabi; Karakoc, S. Battal Gazi
    In the present paper, we introduce a numerical solution algorithm based on a Petrov-Galerkin method in which the element shape functions are cubic B-splines and the weight functions quadratic B-splines. The motion of a single solitary wave and interaction of two solitary waves are studied. Accuracy and efficiency of the proposed method are discussed by computing the numerical conserved laws and L-2, L-infinity error norms. The obtained results show that the present method is a remarkably successful numerical technique for solving the modified equal width wave(MEW) equation. A linear stability analysis of the scheme shows that it is unconditionally stable.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim