Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kuran, Umut" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Classification of Diffusion Constants of Transmitter and Receiver and Distance Between Them Using Mobile Molecular Communication via Diffusion Model
    (Springer Heidelberg, 2024) Er, Mehmet Bilal; Isik, Ibrahim; Kuran, Umut; Isik, Esme
    Molecular communication (MC) holds promise for enabling communication in scenarios where traditional wireless methods may be impractical or ineffective, offering unique capabilities for a range of applications in both natural and engineered systems. In this research, a novel approach to MC is explored, diverging from the standard use of stationary transmitter and receiver models typically found in the field. The study introduces a dynamic MC model, where both the transmitter and receiver are mobile within a diffusion environment. This model operates using a 5-bit system. The key finding is that the mobility of these nanodevices alters their distance, which in turn impacts the likelihood of molecule reception at the receiver. The study employs deep learning techniques, specifically a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, to categorize the mobility patterns of the receiver (Rx) and transmitter (Tx). By analyzing various mobility rates (Drx and Dtx) and distances between the Tx and Rx, the research successfully identifies the most efficient mobile MC model in terms of molecule reception rates. The use of Linear Support Vector Machine alongside the CNN and LSTM hybrid feature vector resulted in an 87.68% accuracy in predicting diffusion coefficients. Moreover, using a Cubic Support Vector with the same hybrid feature vector, the study achieved an 88.09% accuracy in estimating the distance between the transmitter and receiver. The study concludes that an increase in the mobilities of Rx and Tx correlates with a higher rate of molecule reception.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim