Yazar "Li, Yan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe PID2018 Benchmark Challenge: learning feedforward control(Elsevier, 2018) Zhao, Yang; Dehghan, Sina; Ates, Abdullah; Yuan, Jie; Zhou, Fengyu; Li, Yan; Chen, YangQuanThe design and application of learning feedforward controllers (LFFC) for the one staged refrigeration cycle model described in the PID2018 Benchmark Challenge is presented, and its effectiveness is evaluated. The control system consists of two components: 1) a preset PID component and 2) a learning feedforward component which is a function approximator that is adapted on the basis of the feedback signal. A B-spline network based LFFC and a low-pass filter based LFFC are designed to track the desired outlet temperature of evaporator secondary flux and the superheating degree of refrigerant at evaporator outlet. Encouraging simulation results are included. Qualitative and quantitative comparison results evaluations show that, with little effort, a high-performance control system can be obtained with this approach. Our initial simple attempt of low-pass filter based LFFC and B-spline network based LFFC give J=0.4902 and J=0.6536 relative to the decentralized PID controller, respectively. Besides, the initial attempt of a combination controller of our optimized PI controller and low-pass filter LFFC gives J=0.6947 relative to the multi-variable PID controller. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Öğe SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia(Hindawi Ltd, 2022) Siuly, Siuly; Li, Yan; Wen, Peng; Alcin, Omer FarukSchizophrenia (SZ) is a severe and prolonged disorder of the human brain where people interpret reality in an abnormal way. Traditional methods of SZ detection are based on handcrafted feature extraction methods (manual process), which are tedious and unsophisticated, and also limited in their ability to balance efficiency and accuracy. To solve this issue, this study designed a deep learning-based feature extraction scheme involving the GoogLeNet model called SchizoGoogLeNet that can efficiently and automatically distinguish schizophrenic patients from healthy control (HC) subjects using electroencephalogram (EEG) signals with improved performance. The proposed framework involves multiple stages of EEG data processing. First, this study employs the average filtering method to remove noise and artifacts from the raw EEG signals to improve the signal-to-noise ratio. After that, a GoogLeNet model is designed to discover significant hidden features from denoised signals to identify schizophrenic patients from HC subjects. Finally, the obtained deep feature set is evaluated by the GoogleNet classifier and also some renowned machine learning classifiers to find a sustainable classification method for the obtained deep feature set. Experimental results show that the proposed deep feature extraction model with a support vector machine performs the best, producing a 99.02% correct classification rate for SZ, with an overall accuracy of 98.84%. Furthermore, our proposed model outperforms other existing methods. The proposed design is able to accurately discriminate SZ from HC, and it will be useful for developing a diagnostic tool for SZ detection.