Yazar "Malkowsky, Eberhard" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Matrix transformations on some sequence spaces related to strong Cesaro summability and boundedness(Elsevier Science Inc, 2009) Altay, Bilal; Basar, Feyzi; Malkowsky, EberhardThe spaces a(0)(r)(Delta), a(c)(r)(Delta) and a(infinity)(r)(Delta) introduced by Aydin and Basar [ C. Aydin, F. Basar, Some new difference sequence spaces, Appl. Math. Comput. 157 (3) (2004) 677-693] can be considered as the matrix domains of a triangle in the sets of all sequences that are summable to zero, summable, and bounded by the Cesaro method of order 1. Here we de. ne the sets of sequences which are the matrix domains of that triangle in the sets of all sequences that are summable, summable to zero, or bounded by the strong Cesaro method of order 1 with index p >= 1. We determine the beta-duals of the new spaces and characterize matrix transformations on them into the sets of bounded, convergent and null sequences. (c) 2009 Elsevier Inc. All rights reserved.Öğe Matrix transformations on the matrix domains of triangles in the spaces of strongly C1-summable and bounded sequences(Kossuth Lajos Tudomanyegyetem, 2008) Basar, Feyzi; Malkowsky, Eberhard; Altay, BilalLet w(0)(p), w(p) and w(infinity)(p) be the sets of sequences that are strongly summable to zero, summable and bounded of index p >= 1 by the Cesaro method of order 1, which were introduced by Maddox [I. J. MADDOX, On Kuttner's theorem, J. London Math. Soc. 43 (1968), 285-290]. We study the matrix domains w(0)(p)(T) = (W-0(p))(T), w(p)(T) = (W-p)T and w(infinity)(p) (T) = (W-infinity(p))T of arbitrary triangles T in w(0)(p),w(p) and w(infinity)(p), determine their beta-duals, and characterize matrix transformations on them into the spaces c(0), c and l(infinity).