Yazar "Mekersi, Mouna" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Electrochemical biodetection of glucose using La0.6Sr0.4Co0.8Fe0.2O3 and La1,7Sr0,3CuO4 NanoParticles modified with black carbon deposited on glassy carbon electrode(Elsevier, 2023) Mekersi, Mouna; Ferkhi, Mosbah; Savan, Ebru KuyumcuNon-enzymatic developed biosensors, especially with noble nanoparticles received tremendous attention in the field of glucose molecule sensing. Herein low-cost, highly sensitive, and more effective nano-sized materials such as La1,7Sr0,3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 were synthesized by a simple citrate method, and modified with black carbon in purpose to use as electrodes for the simultaneous detection of glucose. The crystallite size, refinement, purity, shape, and morphology of nanomaterials were characterized using X-ray diffraction and Scanning Electron Microscopy techniques. Cyclic voltammetry, Differential Potential Voltammetry, Square Wave Voltammetry, and Electrochemical Impedance Spectroscopy techniques were used as investigative techniques. The modified electrodes showed excellent response and sensitivity for glucose molecule detection compared with previous literature, with a wide linear range from 0.1 M to 0.1 nM for La0.6Sr0.4Co0.8Fe0.2O3 and 0.1 M to 0.001 nM for La1,7Sr0,3CuO4, high sensitivities of 614.7 and 876.3 mu A.mM- 1.cm 2 and low detection limits of 0.972 nM and 0.0194 nM respectively. The performance of electrodes was checked by using real samples like synthetic urine and human blood. Both of the modified electrodes demonstrated satisfactory and reproducible results in real samples.Öğe Electrochemical simultaneous determination of nitrate ions in water using modified glassy carbon electrode based on La1.7Sr0.3CuO4 and La0.6Sr0.4Co0.8Fe0.2O3 nanomaterials and black carbon sensors(Springer Heidelberg, 2024) Mekersi, Mouna; Savan, Ebru Kuyumcu; Ferkhi, MosbahNanoparticle-based materials have played an important role in the development of new electrochemical sensors and received recently tremendous attention for the detection of toxic ions such as nitrate molecules (NO3- and NO2-). Here, we employ La1.7Sr0.3CuO4 (LSCu) and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) low-cost, highly sensitive nanoparticles modified with black carbon as sensors for the detection of nitrate ions. The modified nanooxides were synthesized by a simple citrate method then prepared with black carbon powder and nafion solution as a sensing matrix on a glassy carbon electrode for the determination of nitrates ions in water using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy as electrochemical techniques. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization. The calculated crystallite size d, using the Debye-Scherrer equation was found to be 325,193 nm for LSCu and 208,317 nm for LSCF by XRD technique. The grain sizes are, respectively, 47.80 nm and 65.05 nm which were extracted by SEM analysis. In this work, the modified sensors based on LSCu and LSCF demonstrate satisfactory response and sensitivities toward nitrate molecules compared with previous works. They characterized with very low detection limits of 0.0014 nM and 0.02 nM, high sensitivities of 58.8 and 57.3 mu A.mu M-1, respectively, and recorded a wide linear range from 1 M to 10(-12) M for LSCF and 4 M to 10(-13) M for LSCu. Both of the modified electrodes demonstrated excellent results in real river water sample with low detection limits of 3.1 nM for LSCu and 3.5 nM for LSCF and very good recoveries of 100.6% and 101.65%, respectively.