Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Norouzirad, Mina" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    LAD, LASSO and Related Strategies in Regression Models
    (Springer International Publishing Ag, 2020) Yuzbasi, Bahadir; Ahmed, Syed Ejaz; Arashi, Mohammad; Norouzirad, Mina
    In the context of linear regression models, it is well-known that the ordinary least squares estimator is very sensitive to outliers whereas the least absolute deviations (LAD) is an alternative method to estimate the known regression coefficients. Selecting significant variables is very important; however, by choosing these variables some information may be sacrificed. To prevent this, in our proposal, we can combine the full model estimates toward the candidate sub-model, resulting in improved estimators in risk sense. In this article, we consider shrinkage estimators in a sparse linear regression model and study their relative asymptotic properties. Advantages of the proposed estimators over the usual LAD estimator are demonstrated through a Monte Carlo simulation as well as a real data example.
  • Küçük Resim Yok
    Öğe
    Rank-based Liu regression
    (Springer Heidelberg, 2018) Arashi, Mohammad; Norouzirad, Mina; Ahmed, S. Ejaz; Yuzbasi, Bahadir
    Due to the complicated mathematical and nonlinear nature of ridge regression estimator, Liu (Linear-Unified) estimator has been received much attention as a useful method to overcome the weakness of the least square estimator, in the presence of multicollinearity. In situations where in the linear model, errors are far away from normal or the data contain some outliers, the construction of Liu estimator can be revisited using a rank-based score test, in the line of robust regression. In this paper, we define the Liu-type rank-based and restricted Liu-type rank-based estimators when a sub-space restriction on the parameter of interest holds. Accordingly, some improved estimators are defined and their asymptotic distributional properties are investigated. The conditions of superiority of the proposed estimators for the biasing parameter are given. Some numerical computations support the findings of the paper.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim